Bioinorganic Chemistry

Content

- 1. What is bioinorganic chemistry?
- 2. Evolution of elements
- 3. Elements and molecules of life
- 4. Phylogeny
- 5. Metals in biochemistry
- 6. Ligands in biochemistry
- 7. Principals of coordination chemistry
- 8. Properties of bio molecules
- 9. Biochemistry of main group elements
- **10. Biochemistry of transition metals**
- 11. Biochemistry of lanthanides and actinides
- **12. Modell complexes**
- 13. Analytical methods in bioinorganic
- 14. Applications areas of bioinorganic chemistry

"Simplicity is the ultimate sophistication" Leonardo Da Vinci

Literature

- C. Elschenbroich, A. Salzer, Organometallchemie, 2. Auflage, Teubner, 1988
- S.J. Lippard, J.N. Berg, Bioinorganic Chemistry, Spektrum Akademischer Verlag, 1995
- J.E. Huheey, E. Keiter, R. Keiter, Anorganische Chemie Prinzipien von Struktur und Reaktivität, 3. Auflage, Walter de Gruyter, 2003
- W. Kaim, B. Schwederski: Bioinorganic Chemistry, 4. Auflage, Vieweg-Teubner, 2005
- H. Rauchfuß, Chemische Evolution und der Ursprung des Lebens, Springer, 2005
- A.F. Hollemann, N. Wiberg, Lehrbuch der Anorganischen Chemie, 102. Auflage, de Gruyter, 2007
- I. Bertini, H.B. Gray, E.I. Stiefel, J.S. Valentine, Biological Chemistry, University Science Books, 2007
- N. Metzler-Nolte, U. Schatzschneider, Bioinorganic Chemistry: A Practical Course, Walter de Gruyter, 2009
- W. Ternes, Biochemie der Elemente, Springer, 2013
- D. Rabinovich, Bioinorganic Chemistry, Walter de Gruyter, 2020
- F. Williams, Principles of Bioinorganic Chemistry, Murphy & Moore Publ., 2022

1. What is Bioinorganic Chemistry?

A Highly Interdisciplinary Science at the Verge of Biology, Chemistry, Physics, and Medicine

Most Abundant Elements in the Universe

according to Atom Number Fractions are

1.	Hydrogen	88.6%	Reactive: H_2 , H_2O , $CH_4 \rightarrow biology$
2.	Helium	11.3%	Noble gas \rightarrow atmospheres
3.	Oxygen	0.063%	Reactive: O_2 , $H_2O \rightarrow biology$
4.	Carbon	0.035%	Reactive: CO_2 , $CH_4 \rightarrow biology$
5.	Nitrogen	0.011%	Reactive: N_2 , $NH_3 \rightarrow biology$
6.	Neon	0.010%	Noble gas \rightarrow atmospheres
7.	Magnesium	0.0032 %	Oxides \rightarrow planetary crusts
8.	Silicon	0.0029 %	Silicates \rightarrow planetary crusts

Elements from Lithium onwards, which are regarded as metals by astronomers, contribute to only about 0.1%

Whilst hydrogen, helium, and traces of lithium have been formed during the big bang, all other heavier elements up to iron had to be generated by fission within the stars. Even heavier elements were formed only in supernovae (SN) events or in super giants.

⁴ He production in stars and during the big bang					
$\mathbf{D} + \mathbf{D}$	\rightarrow	$^{3}\text{He} + \text{n}$			
$\mathbf{D} + \mathbf{D}$	\rightarrow	$^{3}\text{H} + \text{p}$			
$^{3}\text{H} + \text{D}$	\rightarrow	$^{4}\text{He} + n$			
$ ^{3}\text{He} + \text{D}$	\rightarrow	⁴ He + p			
D + D	\rightarrow	$^{4}\text{He} + \gamma$			

Table of	Isotop	es of t	he Lig	ht Ele	ments	(Stabl	e Isote	opes are	e Drawı	ı in Blue)
	10								¹⁷ Ne	¹⁸ Ne
	9								¹⁶ F	¹⁷ F
	8						¹³ O	¹⁴ O	¹⁵ O	¹⁶ O
	7						^{12}N	¹³ N	^{14}N	¹⁵ N
	6				⁹ C	¹⁰ C	¹¹ C	¹² C	¹³ C	¹⁴ C
	5				⁸ B	⁹ B	¹⁰ B	¹¹ B	¹² B	¹³ B
	4			⁶ Be	⁷ Be	⁸ Be	⁹ Be	¹⁰ Be	¹¹ Be	¹² Be
	3			⁵ Li	⁶ Li	⁷ Li	⁸ Li	⁹ Li		
	2		³ He	⁴ He	⁵ He	⁶ He		⁸ He		
	1	¹ H	² H	³ Н						
		0	1	2	3	4	5	6	7	8

Beryllium ⁹Be is the first element with solely one stabile isotope (pure element): Very toxic...

Fluorine ¹⁹F is the first biochemical relevant element with solely one stabile isotope...

Phosphorus ³¹P is the only stable isotope and the most critical element for biology...

Formation of Moderately Heavy Elements (Stellar Synthesis)

Several fission processes lead to a number of products: ${}^{1}H \rightarrow {}^{4}He \rightarrow {}^{12}C, {}^{16}O \rightarrow {}^{20}Ne \rightarrow {}^{24}Mg, {}^{28}Si \rightarrow {}^{54}Fe, {}^{56}Ni$

Formation of phosphorus (rare) ${}^{12}C + {}^{12}C \rightarrow {}^{24}Mg^* \rightarrow {}^{23}Na + p$ ${}^{26}Mg + \alpha \rightarrow {}^{30}Si$

 $^{23}Na + \alpha \rightarrow \ ^{26}Mg + p$ $^{30}Si + p \rightarrow \ ^{31}P$

Pre-supernova	burning	stages of	°a star	with 25	5 times tl	he solar	mass
---------------	---------	-----------	---------	---------	------------	----------	------

Burn process	T [10 ⁹ K]	Main products Dur	ation of burning stage
Η	0.02	⁴ He, ¹⁴ N	7·10 ⁶ a
He	0.2	¹² C, ¹⁶ O, ²⁰ Ne	$5.10^5 a \frac{1}{2}$
С	0.8	²⁰ Ne, ²³ Na, ²⁴ Mg	6·10 ² a ² / _g Now
Ne	1.5	²⁰ Ne, ²³ Na, ²⁴ Mg	1 a
0	2.0	²⁸ Si, ³² S, ⁴⁰ Ca	180 days
Si	3.5	⁵⁴ Fe, ⁵⁶ Ni, ⁵² Cr	1 day!
Bioinorganic Chemist Prof. Dr. Thomas Jüst	ry cel		Slide 6

Formation of the Heavy Elements

S(slow)-process (in red supergiants):

- Kinetics: Time of ß-decay must be orders of magnitude higher than the period till the next capture of a neutron
- Starting points are seed cores such as ⁵⁶Fe
- They capture neutrons → ⁵⁹Fe and decompose via a β-decay to ⁵⁹Co
- This process is repeating itself → the process moves along the stability valley of the table of isotopes

Formation of the Heavy Elements

R(rapid)-process (in supernovae, SN):

- Requires extremely high flux of neutrons to compensate for the ß-decay
- The core is enriched with neutrons (20 - 30 neutrons) until it reaches the "neutron drip line". By spontaneous emission of neutrons the core remains in that waiting state until it decomposes via the ß-decay
- Such neutron density (10²⁴ cm⁻³) is reached by photo disintegration within the core of SN

Distribution within the Interstellar Medium

- 1. Supernovae explosions, e.g. in Supernova Type Ia of white dwarfs (SN1572, observed by Danish astronomer Tycho Brahe)
- 2. T-Tauri stars \rightarrow strong stellar winds, e.g. in the columns of creation (JWST)

X-ray images of SN1572 by space telescope on board of satellite "Chandra"

Elemental Composition of the Sun and of Carbonaceous Chondrites (C1) Typical for Stars in the Milky Way

Tabelle 4.9.1. *Elementhäufigkeiten* log N im Sonnensystem: *Sonne* (\odot) nach H. Holweger (1985) und *kohlige Chondrite vom Typ* C1 nach E. Anders und M. Ebihara (1982). Normierung auf Wasserstoff log N(H) = 12.0, Anpassung der solaren und meteoritischen Häufigkeitsverteilungen bei Silizium log N(Si) = 7.6. Bestimmung der Sonnenhäufigkeiten aus der Photosphäre mit Ausnahme von He, Ne, Ar (Korona bzw. Protuberanzen) und Tl (Sonnenflecken). Meteorite: C1-Chondrite bis auf Be, B, Br, Rh, I, für die andere Chondrite herangezogen wurden. Für Kr, Xe, Hg geschätzte Werte aus Interpolationen. Radioaktive Elemente: Th, U Angabe der *heutigen* Häufigkeiten; bei der Entstehung des Sonnensystems vor $4.5 \cdot 10^9$ a (2.8.24) waren die Häufigkeiten um $\delta \log N = 0.2$ (Th) bzw. 0.3 (U) höher

	•	C1		\odot	C1		\odot	C1		\odot	C1
1 H	12.0	_	22 Ti	5.1	5.0	44 Ru	1.8	1.9	66 Dy	1.1	1.2
2 He	11.0	-	23 V	4.1	4.1	45 Rh	1.1	1.1	67 Ho	0.3	0.6
3 Li	1.1	3.4	24 Cr	5.8	5.7	46 Pd	1.7	1.7	68 Er	0.9	1.0
4 Be	1.2	1.5	25 Mn	5.4	5.6	47 Ag	0.9	1.3	69 Tm	0.3	0.1
5 B	2.5	3.0	26 Fe	7.6	7.6	48 Cd	1.9	1.8	70 Yb	1.1	1.0
6 C	8.6	-	27 Co	4.9	5.0	49 In	1.7	0.9	71 Lu	0.8	0.2
7 N	8.0	-	28 Ni	6.2	6.3	50 Sn	1.9	2.2	72 Hf	0.9	0.8
8 O	8.9	_	29 Cu	4.2	4.3	51 Sb	1.0	1.1	73 Ta	_	0.0
9 F	4.6	4.5	30 Zn	4.6	4.7	52 Te	_	2.3	74 W	1.1	0.7
10 Ne	7.6		31 Ga	2.9	3.2	53 I	-	1.6	75 Re	_	0.3
11 Na	6.3	6.4	32 Ge	3.5	3.7	54 Xe		(2.2)	76 Os	1.4	1.5
12 Mg	7.5	7.6	33 As	_	2.4	55 Cs		1.2	77 Ir	1.4	1.4
13 Al	6.4	6.5	34 Se	-	3.4	56 Ba	2.1	2.2	78 Pt	1.8	1.7
14 Si	7.6	7.6	35 Br	-	2.7	57 La	1.1	1.3	79 Au	1.1	0.9
15 P	5.4	5.6	36 Kr	—	(3.3)	58 Ce	1.6	1.7	80 Hg	_	(1.3)
16 S	7.2	7.3	37 Rb	2.6	2.5	59 Pr	0.7	0.8	81 TI	0.9	0.9
17 Cl		5.3	38 Sr	3.0	3.0	60 Nd	1.4	1.5	82 Pb	1.9	2.1
18 Ar	6.7	_	39 Y	2.2	2.3	62 Sm	0.8	1.0	83 Bi	_	0.8
19 K	5.1	5.2	40 Zr	2.6	2.6	63 Eu	0.5	0.6	90 Th	0.2	0.1
20 Ca	6.4	6.4	41 Nb	1.4	1.5	64 Gd	1.1	1.1	92 U	_	-0.4
21 Sc	3.1	3.1	42 Mo	1.9	2.0	65 Tb	0.2	0.4			

Normalised by hydrogen by N(H) = 12.0

Elemental Composition of the Solar Systems

About 4.7 billion years ago:

81 stable elements existing in the protoplanetary (solar) nebula. That means all elements till Bi, except Tc and Pm, since they only possess short-lived isotopes

About 26 elements in living organisms:

- 1. Necessary in quantitative amounts: 11 elements C, H, O, N, S, P, Na, Mg, Cl, K, Ca
- 2. In smaller amounts needed: 8 elements Mn, Fe, Co, Ni, Cu, Zn, I, Mo
- 3. Elements, occurring only in some species: 8 elements B, F, Si, V, Cr, Se, Sn, W

		C	H	0	IN	S	P
	Carbohydrates	X	X	X			
)	Lipides	X	X	X	X		X
Pro	Proteins	X	X	X	X	X	
	Nucleotides	X	X	X	X		X
	Porphyrines	X	X	X	X		

Most Abundant Elements of Earth's Crust (Atmo-, Bio-, Hydro-, Cryo- and Lithosphere) According to Weight Fractions:

1.	Oxygen	48.9%
2.	Silicon	26.3%
3.	Aluminium	7.7%
4.	Iron	4.7%
5.	Calcium	3.4%
6.	Sodium	2.6%
7.	Potassium	2.4%
8.	Magnesium	<u>1.9%</u>
		97.9%

All other elements of the periodic table add up to only 2.1%:

H	1: 1400 ppm S	S 350 ppm	C 200 ppm	Cu 60 ppm	Co 25 ppm
	Bioinorganic Chemistry Prof. Dr. Thomas Jüstel				Slide 14

Μ	ost Abundant Ele	According to	CHARTER CONTRACTOR	
W	eight Fraction			
1.	Oxygen	65.4%		annen A Later /
2.	Carbon	18.1%		- JAJA C
3.	Hydrogen	10.1%		
4.	Nitrogen	3.0%		- Hall
5.	Calcium	1.5%	Trace Elements	Daily demand of the human body
6.	Phosphorus	1.0%	Iron	10 - 20 mg
7.	Sulphur	<u>0.25%</u>	Zinc	7 - 10 mg
		99.35%	Manganese	2 - 5 mg
			Copper	1 – 1.5 mg
	l other elements of t	the periodic table contribute	Molybdenum	0.05 – 0.1 mg
to	solely 0.65% to the	mass of humans	Vanadin	0.01 - 0.03 mg
			Cobalt	0.003 mg
]	Bioinorganic Chemistry Prof. Dr. Thomas Jüstel			Slide 15

Composition of the Human Body (70 kg) by the Elemental Weight Fraction

- oxygen 43 kg
- carbon 16 kg
- hydrogen 7 kg
- nitrogen 1.8 kg
- calcium 1.0 kg
- phosphorus 780 g
- potassium 140 g
- sulphur 140 g
- sodium 100 g
- chlorine 95 g
- magnesium 19 g
- iron 4.2 g
- fluorine 2.6 g
- zinc 2.3 g
- silicon 1.0 g
- rubidium 0.68 g
- strontium 0.32 g
- bromine 0.26 g
- lead 0.12 g
- copper 72 mg

Bioinorganic Chemistry Prof. Dr. Thomas Jüstel

- aluminium 60 mg
- cadmium 50 mg
- cerium 40 mg
- barium 22 mg
- iodine 20 mg
- tin 20 mg
- titanium 20 mg
- boron 18 mg
- nickel 15 mg
- selenium 15 mg
- chromium 14 mg
- manganese 12 mg
- arsenic 7 mg
- lithium 7 mg
- caesium 6 mg
- mercury 6 mg
- germanium 5 mg
- molybdenum 5 mg
- cobalt 3 mg
- antimony 2 mg John Emsley, "The Elements", 3rd ed. Clarendon Press, Oxford, 1998

• silver 2 mg

- niobium 1.5 mg
- zirconium 1 mg
- lanthanum 0.8 mg
- gallium 0.7 mg
- tellurium 0.7 mg
- yttrium 0.6 mg
- bismuth 0.5 mg
- thallium 0.5 mg
- indium 0.4 mg
- gold 0.2 mg
- scandium 0.2 mg
- tantalum 0.2 mg
- vanadium 0.11 mg
- thorium 0.1 mg
- uranium 0.1 mg
- samarium 50 μg
- beryllium 36 μg
- tungsten 20 μg

Slide 16

Formation of Amino acids is crucial to life

Probiotic Astrochemistry

Probiotic Astrochemistry

Formation of peptides in space without condensation reaction at dust particles of the interstellar medium (ISM), T ~ 10-20 K:

 $C + NH_3 \rightarrow H + C-NH_2$ (at dust particle surface)

```
HC-NH_2 + CO \rightarrow O=C=HC-NH_2 (aminoketene)
```

```
O=C=HC-NH_2 + H_2O \rightarrow HOOC-CH_2-NH_2 (glycine)
```

 $O=C=HC-NH_2 + HOOC-CH_2-NH_2 \rightarrow HOOC-CH_2-NH-CO-CH_2-NH_2 (glycylglycine)$

 \rightarrow polypeptides?

Lit.: Nature Astronomy 6 (2022) 381

Probiotic Geochemistry

Primordial atmosphere H₂↑, He↑, CH₄, N₂, NH₃, H₂O

Geological Timescale: Concentration of CO₂ and Temperature fluctuations

1st atmosphere (4 bill. years ago) 80% H₂O 10% CO₂ 5-7% H₂S Traces of N₂, H₂, CO, He, NH₃

```
2^{nd} atmosphere (3 bill. years ago) N_2 Traces of CO_2, H_2O, and Ar
```

Present atmosphere 78% N₂, 21% O₂ 0.93% Ar Traces of CO₂, H₂O, O₃, CH₄

1- Analysis of the Temperature Oscillations in Geological Eras by Dr. C. R. Scotese © 2002. 2- Ruddiman, W. F. 2001. Earth's Climate: post and future. W. H. Freeman & Sons. New York, NY. 3- Mark Pagani et all. Marked Decline in Atmospheric Carbon Diaxide Concentrations During the Paleocene. Science; Vol. 309, No. 5734; pp. 600-603. 22 July 2005. Corrected on 07 July 2008 (CO2: Ordovician Period).

The Distribution of Elements in the Terrestrial Atmos-, Bio-, Hydro, Cryo-, and Lithosphere Differs Significantly from the Stellar Distribution of Elements

Earth's core

Heavy elements \Rightarrow Fe, Ni and other metals along with C as carbides

Lithosphere

lighter elements \Rightarrow silicates, alumosilicate, Mg- and Ca-compounds

Primordial atmosphere

- Rapid emission of H₂ due to too low mass of the earth
- Photolysis of water vapour: $2 H_2 O \rightarrow 2 H_2 + O_2$
- Reductive: CH_4 , N_2 , NH_3 , H_2O , PH_3 , H_2S , CO_2

Present atmo-, hydro-, cryosphere, and lithosphere-

- $N_2 \rightarrow NO_x \rightarrow NO_2^-/NO_3^-$ (fertiliser) through lightning
- $CO_2 \rightarrow CO_3^2 \rightarrow carbonates \downarrow (e.g. dolomite)$
- $CO_2 \rightarrow C$ (fossil fuels) + O_2 through biological activity $\rightarrow O_3$ (ozone layer)
- $H_2O(g) \rightarrow H_2O(l)$ "oceans" $\rightarrow H_2O(s)$ "ice caps"

Bioinorganic Chemistry Prof. Dr. Thomas Jüstel × 10⁹

Solar Luminosity

6

Solar Age (vears)

1.8

1.7

Relative Luminosity 1.4 1.3

1.2

1.1

From Prokaryotes to Eukaryotes

Prokaryotes

Bacteria and archaea

 \rightarrow mostly unicellular but bigger agglomerates possible

Eukaryotes

All higher organisms

Plants

Animals

Fungi

Algae

 \rightarrow cell core and mitochondria/chloroplasts

 \rightarrow mostly polycellular

Key Points so far

- Many (transition) metals are essential for life
- Evolution is driven by presence or absence of transition metals
- Organisms make economic use of available resources, but also have developed mechanisms to accumulate certain elements
- Despite the low amount of metal ions present in living systems, they are enormously important for virtually all life processes
- Both deficiency and overload / excess lead to illness
- Dissipation of "toxic" metals, such as Pb into the biosphere is a threat to many ecosystems

Essential Metals for Life (Aqueous Chemistry)

Alkaline metals	Na, K	readily soluble in water, acids, and bases
Alkaline earth metal	s Mg, Ca	readily soluble in acids
Main group metals	Sn, Se	relatively poor solubility
Transition metals	V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, W	moderate and variable solubility
Rare earth metals	LREE (La-Nd)?	poor solubility
	Eu?	some hyperaccumulators known, e.g.
		wheat, dycranopteris (ferns)
Bioinorganic Chemistry Prof. Dr. Thomas Jüstel		Slide 29

Functions of Metals for Life

- Metal cations can adopt several coordination numbers

 bonding and activation of substrates to enhance Lewis acidity
- Metal cations can adopt several coordination geometries
 - fine tuning of electronic properties such as redox potentials
- Ligands can be substituted without changing the structure
 fast ligand exchange, i.e. fast but unspecific catalysis

E^e (volts) Redox Potential

- (Transition) metal cations can change size without changing the oxidation state
 changing number of ligands, activation of inactive ligands
 - high spin Fe^{2+} (78 pm) in $[Fe(por)(H_2O)]$ vs. low spin Fe^{2+} (55 pm) in $[Fe(por)(O_2)]$
- (Transition) metal cations can adopt many oxidation states and transfer "spin"
 - atom transfer reactions, redox reactions, electron storage
 - activation of ${}^{3}O_{2}$ (triplet)

Functions of Metals for Life: Transfer of Spin for the Activation of Oxygen

Most chemical reactions between organic molecules and oxygen are "forbidden" and thus very slow:

 $\begin{array}{cccc} \text{R-CH}_3 + \text{O}_2 & \rightarrow & \text{R-CH=O} + \text{H}_2\text{O} & \text{exothermic but very slow!} \\ (\text{S}) & (\text{T}) & & (\text{S}) & (\text{S}) & \end{array}$

Activation of ³O₂ (triplet) possible by spin transfer to a metal cation:

2 Cu+	$+ \mathbf{O}_2$	\rightarrow	$2 Cu^{2+} +$	O_2^{2-}	\rightarrow	R-CH=	$-0 + 2 Cu^{+} + H_2C$)
(S)	(T)		$(\mathbf{D} + \mathbf{D})$	(S)		(S)	$(\mathbf{S} + \mathbf{S})$ (\mathbf{S})	
0 + 0	2/2		$\frac{1}{2} + \frac{1}{2}$	0		0	0 + 0 = 0	
			+ R-C]	H ₃				

 \rightarrow Metals eases spin-exchange \rightarrow catalysis of "spin-forbidden" chemical reactions

Bioinorganic Chemistry	Slide 31
Prof. Dr. Thomas Jüstel	

Τ	'he All	kaline Metal	Cations Na ⁺ and K ⁺		11 N	Va 22.98	Dell			
 Functions in biochemistry Maintenance of membrane potentials through concentration gradients of Na⁺ and K⁺ in cooperation with Cl⁻ and Ca²⁺ via the (muscular) cell membrane ⇒ signal transmission, kidney function Ion transport occurs via ion channels (passive or active) 										
I	on	Extracell.	mM] Intracell. [mM]	Ratio	Membr	ane potential [mV	1			
N	[a +	145	12	12	+68		_			
K	+	4	155	0.026	-99					
C	'l -	1.5	< 10 ⁻⁷	>15000	>+12	8				
C	2^{2+}	123	4.2	30	-90					
Membrane potential: Free enthalpy:			l: $\mathbf{E} = \mathbf{RT/zF} \cdot \mathbf{ln}[\mathbf{c}(\mathbf{I})]$ with $\mathbf{F} = \mathbf{Far}$ $\Delta \mathbf{G} = -\mathbf{z} \cdot \mathbf{F} \cdot \mathbf{E}$	$\begin{split} E &= RT/zF \cdot ln[c(M^{n+})_{ec}/c(M^{n+})_{ic}] \\ with & F = Faraday \ constant = 96485 \ As/mol, \ T = 310 \ K \\ \Delta G &= -z \cdot F \cdot E \end{split}$						
	Bioinorg Prof. Dr.	anic Chemistry Thomas Jüstel				Slide 33				

The Alkaline Metal Cations Na⁺ and K⁺

Na⁺ functions (in extracellular fluid)

- Electrical impulses along nerve systems (see above)
- Osmotic balance "sodium pump"
- Acid-base balance
- Conformation of proteins and nucleic acids

 $3 \operatorname{Na^{+}_{ic}} + 2 \operatorname{K^{+}_{ec}} + \operatorname{ATP^{4-}} + \operatorname{H_2O} \longrightarrow 3 \operatorname{Na^{+}_{ec}} + 2 \operatorname{K^{+}_{ic}} + \operatorname{ADP^{3-}} + \operatorname{HPO_4^{2-}} + \operatorname{H^+}_{\operatorname{Ic}}$

 Mg^{2+}

K⁺ functions (in intracellular fluid)

- Enzyme activator
- Conformation of proteins and RNA
- Secretion of gastric acid
- Transmembrane potentials
- Cyclic antibiotics: Valinomycin, Monactin, Nonactin

Magnesium Cations

- Metal centres in chlorophyll (photosynthesis)
- In active centres of ATPases and other enzymes
 ⇒ PCR (Polymerase Chain Reaction)
- Intracellular fluids

Calcium Cations

- Extracellular fluids
- Of importance for blood coagulation and muscle contraction
- Exoskeleton: CaCO₃
 - Mollusca (scallops, snails)
 - Cnidaria (corals, jelly fish)
- Endoskeletons: $Ca_5(PO_4)_3X$ with X = OH, F, Cl
 - Chordata or vertebrata (vertebrates)
 - Cephalopoda

Oxidation States of Transitions Metals (TM)

3d-Elements	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn
	+3	+2,	+2,+3,	+2,	+2, +3	+2, +3	+2, +3	+2	+1, +2	+2
		+3, +4	+4, +5	+3, +6	+4, +7					
4d-Elements	Y	Zr	Nb	Мо	Tc*	Ru	Rh	Pd	Ag	Cd
	+3	+4	+5	+4, +6	+7	+2,	+3	+2	+1, +2	+2
						+3, +4				
5d-Elements	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg
	+3	+4	+5	+4, +6	+4, +7	+4, +8	+3, +4	+2, +4	+1, +3	+1, +2

• All TM, which are sufficiently abundant within earth's crust and possess relatively stable oxidation states, are readily soluble and thus biologically available and are of importance as trace elements

- Many metals in high oxidation states form poorly soluble oxides ⇒ TiO₂, ZrO₂, HfO₂, Nb₂O₅, Ta₂O₅, MnO₂, RuO₂, OsO₄, IrO₂
- Metals, that are most stable at high oxidation states, occur in the earth's crust as poorly soluble oxides and are thus not biologically available (Ti, Zr, Hf)

Oxidationsstufe z

- The metals are reducing agents, with titanium being the strongest reducing agent and copper in cationic form as (half) noble metal being slightly oxidising.
- Cr^{VI} is a strong and Mn^{VI}, Mn^{VII} and Fe^{VI} are extremely strong oxidising agents
- Relatively stable oxidation states: Ti^{III/IV}, V^{III/IV}, Cr^{III}, Mn^{II/III/IV}, Fe^{II/III}, Co^{II/III}, Ni^{II}, Cu^{I/II}, Zn^{II}

Mn²⁺-Ions: Labile Complexes with Highly Variable Coordination Sphere

Properties	Typical Values / Products
Ionic radius/Å ^[coordination]	0.97 ^[hs-60]
Configuration	[Ar]3d ⁵
CFSE/Dq	0
Preferred coordination	(N,O) ₆
Species at pH 7	$[Mn(H_2O)_6]^{2+}$
pK _A of aqua-ion	10.6
$+ \mathbf{NH}_3$	Mn(OH) ₂
+ H_2S + metal salt/ NH_3 -solution	MnS
$+ CN^{-}$	$ls-[Mn(CN)_6]^{4-}$

Mn³⁺-Ions: Complexes with Strong Distortion (Jahn-Teller-Ion)

Properties	Typical Values / Products	
Ionic radius/Å ^[coordination]	0.785 ^[hs-6]	
Configuration	[Ar]3d ⁴	
CFSE/Dq	> 0	
Preferred coordination	O ₄₋₆ , JT-distorted	
Species at pH 7	Mn(OH) ₃ ; MnOOH	
pK _A of aqua-ion	0.7	
$+ \mathbf{NH}_3$	Mn(OH) ₃ , MnOOH?	
+ H ₂ S + metal salt/NH ₃ -solution	?	
$+ CN^{-}$	ls-[Mn(CN) ₆] ³⁻	

Mn⁴⁺-Ions: Kinetically Stable Complexes with High Oxidation Strength

Properties	Typical Values / Products
Ionic radius/Å ^[coordination]	0.67 ^[60]
Configuration	[Ar]3d ³
CFSE/Dq	-12
Preferred coordination	O ₆
Species at pH 7	$MnO(OH)_2, MnO_2$
pK _A of aqua-ion	_
$+ \mathbf{NH}_3$	-?
+ H ₂ S + metal salt/NH ₃ -solution	?
$+ CN^{-}$	-?

Fe²⁺-Ions: Predominantly High-Spin Complexes

Properties	Typical Values / Products
Ionic radius/Å ^[coordination]	$0.77^{[hs-4t]}, 0.78^{[hs-4sp]}, 0.92^{[hs-6o]}, 0.75^{[ls-6o]}$
Configuration	[Ar]3d ⁶
CFSE/Dq	hs: -4, ls: -24
Preferred coordination	hs: (N,O) ₅₋₆ , S ₄ , ls: N ₆ , N ₅ (O,S)
Dissolved species at pH 7	[Fe(H ₂ O) ₅₋₆] ²⁺
pK _A of aqua-ion	9.5
$+ \mathbf{NH}_3$	almost [Fe(NH ₃) ₄₋₆] ²⁺ , Fe(OH) ₂
+ H ₂ S + metal salt/NH ₃ -solution	FeS
$+ CN^{-}$	[Fe(CN) ₆] ^{4–}

Fe³⁺-Ions: Formation of Poorly Soluble Fe(OH)₃ Favours the Formation of Highly Stable Complexes

Properties	Typical Values / Products
Ionic radius/Å ^[coordination]	0.63 ^[hs-4t] , 0.785 ^[hs-60] , 0.69 ^[ls-60]
Configuration	[Ar]3d ⁵
CFSE/Dq	hs: 0, [ls-60]: -20
Preferred coordination	hs: O ₆ , ls: (N,O) ₆
Dissolved species at pH 7	Fe(OH) ₃
pK_A of aqua-ion	2.2
+ NH ₃	Fe(OH) ₃
+ H ₂ S + metal salt/NH ₃ -solution	Fe(OH) ₃
$+ CN^{-}$	$ls-[Fe(CN)_6]^{3-}$

Zu "Aligemeine und Anorganische Chemie" (Binnewies, Jäckel, Willner, Rayner-Cenham), erschienen bei Spe Aladiemischer Verlag, Heideberg, 19 2004 Elsevier GmbH München, FeCG jpg.

Ni²⁺-Ions: Kinetically Stable Octahedral Complexes

Properties	Typical Values / Products	}
Ionic radius/Å ^[coordination]	0.69 ^[4] , 0.83 ^[60]	
Configuration	[Ar]3d ⁸	
CFSE/Dq	-12	
Preferred coordination	(N,O) ₆	
Solution at pH 7	$[Ni(H_2O)_6]^{2+}$	
pK _A of aqua-ion	9.9	
$+ \mathbf{NH}_3$	[Ni(NH ₃) ₆] ²⁺	
+ H ₂ S + metal salt/NH ₃ -solution	NiS	
$+ CN^{-}$	$[Ni(CN)_4]^{2-}, [Ni(CN)_5]^{3-}$	

Zu "Algeneine und Anorganische Chemie" (Binnewies, Jäckel, Wilner, Rayner-Canham), erschienen bei Spektrur Akademischer Verlag, Itoldetterg, © 2004 Elszvier Gerbill Marchen (Ni(120)8)S04 (pg.

Cu+-Ions: Kinetically Labile Complexes of Tetrahedral Structure

Properties	Typical Values / Products
Ionic radius/Å ^[coordination]	$0.74^{[4t]}, 0.91^{[60]}$
Configuration	[Ar]3d ¹⁰
CFSE/Dq	0
Preferred coordination	N ₄ , S ₄
Solution at pH 7	Disproportion
pK _A of aqua-ion	_
E0'	0.1 V
$+ \mathbf{NH}_3$	$[Cu(NH_3)_4]^+$
+ H ₂ S + metal salt/NH ₃ -solution	Cu ₂ S
$+ CN^{-}$	$[Cu(CN)_{4}]^{3-}$

Cu²⁺-Ions: Complexes with Strong Distortion (Jahn-Teller-Ion)

Properties	Typical Values / Products	
Ionic radius/Å ^[coordination]	0.71 ^[4] , 0.79 ^[5] , 0.87 ^[60]	
Configuration	[Ar]3d ⁹	
CFSE/Dq	> 0	
Preferred coordination	N/O ₄₋₆ , JT-distorted	
Solution at pH 7	$[Cu(H_2O)_5]^{2+}$	
pK _A of aqua-ion	8.0	
E ⁰ '	0.1 V	CuCl ₂ (Dr. J.N. Keil 2022)
$+ \mathrm{NH}_3$	$[Cu(NH_3)_4(H_2O)_2]^{2+}$	
+ H ₂ S + metal salt/NH ₃ -solution	"CuS" contains Cu^{II} and S^{2-} next to Cu^{I} and S_2^{2-}	
$+ CN^{-}$	Reduction to [Cu(CN) ₄] ³⁻	

Zn²⁺-Ions: Labile Complexes with Variable Coordination Geometry

Properties	Typical Values / Products
Ionic radius/Å ^[coordination]	$0.74^{[4t]}, 0.82^{[5]}, 0.88^{[60]}$
Configuration	[Ar]3d ¹⁰
CFSE/Dq	0
Preferred coordination	N ₄ , (N,O) ₅₋₆ , S ₄
Dissolved species at pH 7	$[Zn(H_2O)_{5-6}]^{2+}$
pK _A of aqua-ion	9.0
$+ \mathbf{NH}_3$	$[Zn(NH_3)_4]^{2+}$
+ H ₂ S + metal salt /NH ₃ -solution	ZnS
$+ CN^{-}$	$[Zn(CN)_4]^{2-}$

Coordination of Biochemically Relevant Metal Cations

Cation	CN	Geometry	Biochemical ligands
Na ⁺	6	octahedral	O: ether, hydroxyl, carboxylate
\mathbf{K}^+	6-8	flexible	O: ether, hydroxyl, carboxylate
Mg^{2+}	6	octahedral	O: carboxylate, phosphate
Ca ²⁺	6-8	flexible	O: carboxylate, carbonyl, phosphates
$Mn^{2+}(d^5)$	6	octahedral	O: carboxylate, phosphates
			N: imidazole
$Mn^{3+}(d^4)$	6	tetragonal	O: carboxylate, phosphate, hydroxide
Fe ²⁺ (d ⁶)	4	tetrahedral	S: thiolate
	6	octahedral	O: carboxylate, alkoxide, oxide, phenolates
			N: imidazole, porphyrin
$Fe^{3+}(d^5)$	4	tetrahedral	S: thiolate
	6	octahedral	O: carboxylate, alkoxide, oxide, phenolates
			N: imidazole, porphyrin
$Co^{2+}(d^7)$	6	octahedral	O, carboxylate
			N, imidazole

Coordination of Biochemically Relevant Metal Cations

Cation	CN	Geometry	Biochemical li	igands
$\overline{\mathrm{Ni}^{2+}(\mathrm{d}^8)}$	4	square-planar	S: thiolate	
			N: imidazole, p	olypyrrole
	6	octahedral	rare!	
$Cu^{+}(d^{10})$	4	tetrahedral	S: thiolate, thio	ether
			N: imidazole	
$Cu^{2+}(d^9)$	4	tetrahedral	S: thiolate, thio	ether
			N: imidazole	
	4	square-planar	O: carboxylate	
			N: imidazole	
	6	tetragonal	O: carboxylate	
		(distorted octahedral)	N: imidazole	
$Zn^{2+}(d^{10})$	4	tetrahedral	O: carboxylate,	, carbonyl
			S: thiolate	
			N: imidazole	
	5	square-pyramidal	O: carboxylate,	, carbonyl
			N: imidazole	
Bioinorganic Cher Prof. Dr. Thomas	mistry Jüstel			Slide 48

Small Inorganic Molecules \Rightarrow "Hard Ligands" H_2O Aquo (aqua) OH-Hydroxy (hydroxido) **O**²⁻ Oxo RNR-R2 CO₂/CO₃²⁻ Carbonato **C** source O_2^{2-} **Oxidant** Peroxy

ÒН **Oxidant Hydroperoxy** HnO **Superoxy Radical** Dioxygenyl **Radical** intermediate X Nitrosyl **Radical** Nitrito **Radical** Strong bonding to Fe²⁺ Carbonyl Strong bonding to Fe²⁺ **Sulfido** Strong bonding to Fe²⁺ Cyanido Strong bonding to Fe²⁺ Cyanato Thiocyanato Strong bonding to Fe²⁺ Strong bonding to Fe²⁺ **Azido** Strong binding to Ca²⁺, Zn²⁺ Cyanamide CaCN₂ as a fertiliser

Bioinorganic Chemistry Prof. Dr. Thomas Jüstel

HO₂-

 0_{2}^{-}

 $\mathbf{0}_2$

NO

NO₂

CO

S²⁻

CN⁻

OCN⁻

SCN-

N=C=N²⁻

 N_3^-

O2

peroxo

Prof. Dr. Thomas Jüstel

Aspartic Acid (Asp, D) and Glutamic Acid (Glu, E) \Rightarrow Acidic Ligands with High Affinity to Mg²⁺ and Ca²⁺

 Cysteine (Cys, C) and Glutamic Acid (Glu, E)

 ⇒ Soft Ligands with Affinity to Zn, Cu, Fe and Ni

 Organic group R

 -CH2-SH
 Cysteine (Cys, C)

 -CH2-SeH
 Selenocysteine (Sec, U)

-CH₂-CH₂-S-CH₃ Methionine (Met, M)

- \rightarrow Relevant for protein folding
- \rightarrow R-S-S-R or R-Se-Se-R bridges

Porphyrins → Macrocyclic Ligands in Heme Proteins

Hemoglobin (Hb), Myoglobin (Mb) \Rightarrow Fe²⁺Chlorophyll \Rightarrow Mg²⁺

Porphyrin (Por)

Thermodynamic Complex Stability

Complex equilibria in solution (cleavage of ligands) $[ML_n] \leftrightarrows [ML_{n-1}] + L$ K_D with K_D = dissociation constant, n = coordination number

Formation of a complex normally proceeds stepwise

 $M + L \leftrightarrows [ML] \qquad K_{1} \qquad K_{1} \qquad K_{i} = \frac{c(ML)}{c(M) \cdot c(L)}$ $[ML] + L \leftrightarrows [ML_{2}] \qquad K_{2}$ $[ML_{2}] + L \leftrightarrows [ML_{3}] \qquad K_{3} \qquad K_{3} = \frac{c(ML_{3})}{c(ML_{2}) \cdot c(L)}$ and so on $total \text{ formation constant} = K_{F} = \beta_{n}$ $[ML_{n-1}] + L \leftrightarrows [ML_{n}] \qquad K_{n} \qquad K_{n} = \frac{c(ML_{n})}{c(ML_{n-1}) \cdot c(L)} \implies K_{B} = \beta_{n} = \prod_{i...n} K_{i} = \frac{c(ML_{n})}{c(M) \cdot c(L)^{n}}$ Free reaction enthalpy $\Delta G_{r}^{0} = -R \cdot T \cdot InK$

Complex Stability utilizing [Cd(CN)₄]²⁻ as an Example

 \Rightarrow The complex formation constant K_n often declines with increasing degree of substitution!

Cause for that behaviour

- Sterical hindrance
- Coulomb-effect during the incorporation of charged ligands, i.e. CN⁻
- Reduction of entropy through increased degree of order, i.e. $\Delta S_r^0 < 0$

Thermodynamic and Kinetic Complex Stability

The thermodynamic stability is described by the complex formation constant K_f or β . The higher this number the more stable the complex is (unstable – stable) Free reaction enthalpy $\Delta G_r^0 = -RT \cdot lnK_f$

Example: $[Ni(H_2O)_6]^{2+} + 4 CN^{-} \xrightarrow{k_1} [Ni(CN)_4]^{2-} + 6 H_2O \qquad K_B \sim 10^{29}$

The equilibrium favours the right side, which means the complex is thermodynamically stable

Never the less ligand exchange happens fast, i.e. kinetic complex stability is low (labile – inert)

 $[\operatorname{Ni}(\operatorname{CN})_4]^{2-} + 4 \, {}^{14}\operatorname{CN}^- \xrightarrow{k_1} [\operatorname{Ni}({}^{14}\operatorname{CN})_4]^{2-} + 4 \, \operatorname{CN}^-$

Free activation enthalpy ΔG_r^{\neq}

Eyring-equation:

$$k = \frac{k_B \cdot T}{h} \cdot e^{\frac{-\Delta G^{\#}}{RT}}$$

$$\tau_{1/2} = 30 \text{ s (fast)}$$

The Kinetic Complex Stability, i.e. the Reactivity of a Complex is Defined by the Structure and the Possible Reaction Pathway

Octahedral complexes

$$[CrCl_2(H_2O)_4]^+ + 2 H_2O \xrightarrow{k_1} [Cr(H_2O)_6]^{3+} + 2 Cl^-$$

⇒ Very slow ligand exchange although the hexaquochromium(III)-complex is more stable

Square-planar complexes

$$\begin{bmatrix} CN \\ CN \\ CN \end{bmatrix}^{2-} + {}^{14}CN^{-} \longleftrightarrow \begin{bmatrix} CN \\ CN \\ CN \end{bmatrix}^{3-} \begin{bmatrix} CN \\ CN \\ CN \end{bmatrix}^{3-} \longleftrightarrow \begin{bmatrix} CN \\ CN \\ CN \end{bmatrix}^{4-CN} + CN^{-} + CN^{-}$$

 \Rightarrow Very fast ligand exchange although the thermodynamic driving force is zero

Bioinorganic Chemistry Prof. Dr. Thomas Jüstel Slide 61

Chelating Ligands Form Extremely Stable Complexes

Bi-dental ligands are also called chelating ligands (Greek: *chele* = claw, "chelicerata").

The ligand takes the metal in its "claws". If thereby (chelated) rings with 5 or 6 members are formed, they are more stable than complexes formed by mono-dental ligands, because they are favoured by enthalpy. Furthermore during the chelating process, non-chelating ligands are set free, thus increasing entropy.

 \Rightarrow The chelating effect is thus also an entropic effect!

Chelating Ligands vs. Non-chelating Ligands

Complex formation by chelating ligands results in more stable complexes as in the case with mono-dental ligands

 $[Ni(H_2O)_6]^{2+} + 6 NH_3 \leftrightarrows [Ni(NH_3)_6]^{2+} + 6 H_2O \qquad K_K = 2.0 \cdot 10^9 \qquad \Delta N = 0 \\ [Ni(H_2O)_6]^{2+} + 3 en \leftrightarrows [Ni(en)_3]^{2+} + 6 H_2O \qquad K_K = 3.8 \cdot 10^{17} \qquad \Delta N = 3$

Formation of $[Ni(NH_3)_6]^{2+}$ -complex \Rightarrow particle number remains the same Formation of $[Ni(en)_3]^{2+}$ -complex \Rightarrow particle number increases $\Rightarrow \Delta S^0 > 0$

Complex formation with a chelating ligand leads to increased entropy!

 ΔH is comparable for both cases

```
\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} \text{ and } \Delta G^{\circ} = -RT \cdot lnK_{K} \qquad \text{with } K_{K} = \text{complex formation constant} \\ (\Delta \Delta G^{\circ} = 0 - T\Delta \Delta S^{\circ})
```

```
Formation of [Ni(en)_3]^{2+} \Rightarrow more negative \Delta G^{\circ} \Rightarrow larger K_K
```

Macrocyclic Ligands (suitable for model complexes!)

Cyclic chelating ligands, that form highly stable complexes, due to their rigidity and dentality

Dependence of Stability Constants of Metal Complexes

1. Central atoms

 $Ba^{2+} < Sr^{2+} < Ca^{2+} < Mg^{2+} < Mn^{2+} < Fe^{2+} < Co^{2+} < Ni^{2+} < Cu^{2+}$

⇒ Correlates with decreasing cation radius / increasing ionic charge density (Irving-Williams stability series)

- 2. Ligands
- Chelating effect, macrocyclic effect
- Polarizability (hard vs. soft), backbonding

Hard and Soft Acids and Bases HSAB concept (R.G. Pearson 1963)

- Metal atoms = Acids (electron acceptors)
- Ligands = Bases (electron donators)
- High stability: soft metal atoms soft ligands

hard metal atoms - hard ligands

• Low stability: soft metal atoms - hard ligands hard metal atoms - soft ligands

HSAB Concept: Classification of Metal Atoms (Acids) and Ligands (Bases)

	Bases	Acids
Hard	NH ₃ , R-NH ₂ , N ₂ H ₄ , H ₂ O, OH ⁻ , O ²⁻ , R-OH, RO ⁻ , R ₂ O, CO ₃ ²⁻ , R-COO ⁻ , NO ₃ ⁻ , PO ₄ ⁻³⁻ , SO ₄ ²⁻ , ClO ₄ ⁻ , F ⁻ , Cl ⁻ poorly deformable electron shells	H ⁺ , Li ⁺ , Na ⁺ , K ⁺ , Ba ²⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ti ³⁺ , Ti ⁴⁺ , Zr ⁴⁺ , VO ³⁺ , Cr ³⁺ , Cr ⁶⁺ , Mn ²⁺ , Mn ⁴⁺ , Mn ⁷⁺ , Fe ³⁺ , Co ³⁺ , Al ³⁺ , Ga ³⁺ , In ³⁺ <i>are highly polarizing</i>
Intermediates	N ₃ ⁻ , N ₂ , Ph-NH ₂ , NO ₂ ^{-,} Br ⁻ C ₅ H ₅ N, SO ₃ ²⁻ , imidazole, aniline	Fe ²⁺ , Co ²⁺ , Ni ²⁺ , Cu ²⁺ , Zn ²⁺ , Rh ³⁺ , Ir ³⁺ , Ru ³⁺ , Sn ²⁺ , Pb ²⁺
Soft	H ⁻ , R ⁻ , CN ⁻ , CO, SCN ⁻ , R ₃ P, RSH, R ₂ S, RS ⁻ , S ₂ O ₃ ⁻ , I ⁻ , RNC, (RS) ₂ PO ₂ ⁻ <i>easily deformable electron shells</i>	Pd ²⁺ , Pt ²⁺ , Cu ⁺ , Ag ⁺ , Au ⁺ , Hg ⁺ , Hg ²⁺ , Tl ⁺ , Me ⁰ , Cd ²⁺ <i>are weakly polarizing</i>

Dependence of Stability Constants of Metal Complexes

- 4. Coordination geometry
- CN = 4: Tetrahedral coordination is favoured by d^0 , d^5 , d^7 and d^{10} Square-planar coordination is favoured by d^8 and $d^9 \rightarrow cis/trans-isomerism$

CN = 6: Octahedral more stable than trigonal-prismatic coordination

Crystal Field Stabilisation Energy (CFSE)

Crystal field stabilisation energy in octahedral crystal field

 $CFSE = x(-4 Dq_0) + y(+6 Dq_0) + P \quad \text{with} \quad P = \text{spin-pairing energy} \\ x = \text{number of electrons in } t_{2g} \\ y = \text{number of electrons in } e_g^*$

d ¹	n CFSE <u>high-spi</u>	n CFSE <u>low-spin</u>	ΔCFSE	Examples				
0	0 Dq _o	0 Dq _o	-	Sc ³⁺ , Y ³⁺ , Ln ³⁺ , Ti ⁴⁺				
1	-4 Dq _o	-4 Dq _o	-	Ti ³⁺				
2	-8 Dq _o	-8 Dq _o	-	V ³⁺				
3	-12 Dq _o	-12 Dq _o	-	Cr ³⁺ , Mo ³⁺ , W ³⁺				
4	-6 Dq _o	$-16 \text{ Dq}_{0} + 1 \text{ P}$	-10 Dq _o + 1 P	Mn ³⁺				
5	0 Dq _o	$-20 \text{ Dq}_{0} + 2 \text{ P}$	$-20 \text{ Dq}_{0} + 2 \text{ P}$	Mn ²⁺ , Fe ³⁺ , Ru ³⁺				
6	$-4 Dq_0 + 1 P$	$-24 \text{ Dq}_{0} + 3 \text{ P}$	$-20 \text{ Dq}_{0} + 2 \text{ P}$	Fe ²⁺ , Co ³⁺ ,Ru ²⁺ ,Ir ³⁺				
7	-8 Dq _o + 2 P	-18 Dq _o + 3 P	-10 Dq _o + 1 P	Co ²⁺				
8	$-12 Dq_0 + 3 P$	$-12 \text{ Dq}_{0} + 3 \text{ P}$	-	Ni ²⁺				
9	$-6 Dq_0 + 4 P$	-6 Dq ₀ + 4 P	-	Cu ²⁺				
1	$0 Dq_0 + 5 P$	$0 Dq_{0} + 5 P$	-	Cu^+, Zn^{2+}				
Low-spin complexes are favoured if 10 Dq > P $\Rightarrow \Delta_0$ total is always negative!								
	Bioinorganic Chemistry			Slide 70				
	Prof. Dr. Thomas Jüstel							

Spin-Pairing Energy (P)

 $P_{total} = P_c + P_e$ with $P_c = Coulomb's$ repulsive energy **Electronic repulsion in an orbital** 3d > 4d > 5d, since orbitals become ever more diffuse $P_e = Loss$ of exchange energy (quantum mechanical part) ~ number of possibilities n to arrange electrons with parallel spin in pairs $P_{e} = [n(n-1)/2] * E_{ex}$ with $E_{ex} = average exchange energy$ $\underline{P_{e} \text{ low-spin } [E_{ex}] \quad \Delta P_{e} [E_{ex}] \Delta CFSE \quad \Delta P_{e} \text{ per 10 } Dq_{o} [E_{ex}]}$ <u>dn</u> <u>P_e high-spin [E_{ex}]</u> 4 3(3-1)/2 = 34(4-1)/2 = 63 -10 Dq_o 3 5 $\overline{3(3-1)/2 + 2(2-1)/2} = 4$ 5(5-1)/2 = 106 3 -20 Dq_{0} 6 $\overline{3(3-1)/2 + 3(3-1)/2} = 6$ 2 5(5-1)/2 = 104 -20 Dq_o 7 $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$ $\overline{5(5-1)/2 + 2(2-1)/2} = 11 \ \overline{4(4-1)/2 + 3(3-1)/2} = 9$ 2 -10 Dq_o 2 **Bioinorganic Chemistry** Slide 71 **Prof. Dr. Thomas Jüstel**

Spin-Pairing Energy – Relevance for Biochemically Important TM-Cations

- For ions with d⁴- or d⁵-configuration the loss of exchange energy with regard to 10 Dq is most pronounced
- Ions with d⁶- or d⁷-configuration form low-spin complexes even for weak ligand field: P_{ges} for d⁶ < d⁷ < d⁴ < d⁵
- P_{ges}^{-} for d⁷-ions is somewhat higher than for d⁶-ions, since P_c is greater

<u>d</u> ⁿ	Free Ion	<u>P_c [cm⁻¹]</u>	$\underline{P}_{ex} [cm^{-1}]$	<u> </u>	<u>1⁻¹]</u>
4	Cr ²⁺	5950	14475	20425	Numbers according to L.E. Orgel
	Mn^{3+}	7350	17865	25125	J. Phys. Chem. 23 (1955) 1819
5	Mn^{2+}	7610	16215	23825	J. Inorg. Nucl. Chem. 2 (1956) 229
	Fe³⁺	10050	19825	29875	
6	Fe ²⁺	7460	11690	19150	Numbers for complexed ions are
	C0 ³⁺	9450	14175	23625	15-30% smaller due to the
7	C0 ²⁺	8400	12400	20800	nephelauxetic effect of the ligands!

Fe²⁺ forms low-spin complexes, even in weak crystal fields, whereas Fe³⁺ often forms high-spin complexes despite its higher ionic charge!
Crystal Field Splitting in Octahedral Field

Cause: Degeneracy of electronic states

Jahn-Teller-Theorem (Hermann Arthur Jahn and Edward Teller, 1937)

"Every non-linear molecule, which is in an electronically degenerate state, is prone to distortion lowering the symmetry and thus counteracting the electronic degeneracy" \Rightarrow Additional energy gain for d⁴(h.s.), d⁷(l.s.), and d⁹-configurations

Crystal Field Splitting in Tetragonally Distorted Octahedral Field

Tetragonally distorted octahedral crystal field as a consequence of the Jahn-Teller effect

Static vs. Dynamic Jahn-Teller-Effect in Octahedral Field

Static Jahn-Teller-Effect

Prerequisite:	Electronic degeneracy in eg*-level					
Detection:	RSA, IR, UV/V	is	0			
Example:	K ₂ Na[MnF ₆]	Mn ^{III} :	[Ar]3d ⁴ h.s.	elongated octahedron		
	$[Cu(NH_3)_6]^{2+}$	Cu ^{II} :	[Ar]3d ⁹	elongated octahedron		

Dynamic Jahn-Teller-Effect

Prerequisite:	Electronic degeneracy in t _{2g} -level						
Detection:	Difficult at room	Difficult at room temperature, since δ is in the range of k _B T (~ 200 cm ⁻¹)					
Example:	K ₂ Na[TiF ₆] Ti ^{III} : [Ar]3d ¹ regular octahedron						
	crystallises at room temperature in cubic structure						
	\Rightarrow Jahn-Teller polarons in BaTiO ₃ !						

Crystal Field Splitting in Tetrahedral Field

<u>Tetrahedral Crystal Field</u>

The energy gap between the t_2 and the e-orbitals Δ_t is only 4/9 of Δ_o , because only four instead of six ligands are present and those are not situated on the axes of the d-orbitals.

Bioinorganic Chemistry Prof. Dr. Thomas Jüstel Slide 76

CFSE in Octahedral and Tetrahedral Field

<u>Crystal field stabilisation energy in tetrahedral vs. octahedral crystal field</u> Calculation with $\Delta_t = 4/9\Delta_0$

"site preference"

<u>d</u> n	CFSE(tetrahed	ral) CFSE(octahedral) /	<u> \CFSE(octahedr. – tetrahedr.)</u>
1	-2.67 Dq _o	-4 Dq _o	-1.33 Dq _o
2	-5.33 Dq _o	-8 Dq _o	-2.67 Dq _o
3	-3.55 Dq _o	-12 Dq _o	-8.45 Dq _o
4	-1.78 Dq _o	-6 Dq _o (h.s.)	-4.22 Dq _o
		-16 Dq ₀ + 1 P (l.s.)	-14.22 Dq _o + 1 P
5	0 Dq _o	0 Dq _o (h.s.)	0 Dq _o
		-20 Dq _o + 2 P (l.s.)	-20 Dq _o + 2 P
6	-2.67 Dq _o	-4 Dq _o (h.s.)	-1.33 Dq _o
		-24 Dq _o + 2 P (l.s.)	-21.33 Dq _o + 2 P
7	-5.33 Dq _o	-8 Dq _o (h.s.)	-2.67 Dq _o
		-18 Dq ₀ + 1 P (l.s.)	-12.67 Dq _o + 1 P
8	-3.55 Dq _o	-12 Dq _o	-8.45 Dq _o
9	-1.78 Dq _o	-6 Dq _o	-4.22 Dq _o
10) 0 Dq _o	0 Dq _o	0 Dq _o
	Bioinorganic Chemistry Prof. Dr. Thomas Jüstel		Slide 77

CFSE in Tetrahedral Field

Some general rules

The magnitude of the CFSE in the tetrahedral field is only 4/9 of that in the octahedral field!

- Only high-spin complexes
- Ions with electronic configurations, leading to high CFSE, e.g. with [Ar]3d³-, [Ar]3d⁵(low-spin)- or [Ar]3d⁶(low-spin)-configuration, favour, if possible, octahedral coordination polyhedra
 - \Rightarrow aqua complexes

Tetrahedral coordination polyhedra are observed for:

- Bulky ligands, i.e. proteins
- Ligands with double or triple bonds to the metal centre, e.g. oxy- and nitride ligands
- Rule: There is no electron configuration where the electronic stabilisation is higher for the tetrahedral than for the octahedral coordination (site preference) ⇒ Octahedral geometry is preferred

Exception: d⁵ (high-spin) and d¹⁰, because CFSE in both octahedron and tetrahedron are zero

Crystal Field Splitting in Different Symmetries

FIGURE 4.5. Splitting of *d* orbital energy levels in ligand fields of different symmetries. In MX_5Y and MX_4Y_2 complexes the splitting of the T_{2g} and E_g terms can be inverted depending on the ratio of field strengths X/Y. (After Schmidtke [4.12].)

7. Principals in Coordination Chemistry **Description of Electronic States in Multiple-Electron-Atoms** Method of the strong field: LS-coupling is considerably smaller than crystal field splitting \Rightarrow true for elements of the 3d-series up to bromine **Octahedral field** $\frac{\uparrow}{\mathbf{d}_{\mathbf{x}}^{2} \mathbf{d}_{\mathbf{z}}^{2}} \mathbf{d}_{\mathbf{z}}^{2}$ $d_{x - v}^{2} d_{z}^{2}$ Energy **1-electron excitation** \mathbf{d}_{xv} \mathbf{d}_{xz} \mathbf{d}_{vz} d_{xy} d_{zz} d_{vz} 1^{st} excited state \Rightarrow six-fold degenerate Ground state weak e⁻-interactions strong e⁻-interactions dz^2 dxy dz^2 dxz dz^2 dx^2-v^2 dxzdyz dx^2-y^2 dyz dx^2-y^2 dxy $\Rightarrow {}^{3}T_{1g}$ $\Rightarrow {}^{3}T_{2g}$ three-fold degenerate \Rightarrow ³T_{1g}

Description of Electronic States in Multiple-Electron-Atoms

Method of the strong field: LS-coupling is considerably smaller than crystal field splitting \Rightarrow true for elements of the 3d-series up to bromine

Description of Electronic States in Multiple-Electron-Atoms

Method of the weak field: LS-coupling is notably stronger than the crystal field splitting \Rightarrow true from bromine on, thus for the elements of the 4d- and 5d-series as well as the lanthanides (\rightarrow Dieke-diagram) and the actinides

Quantum Mechanical Micro States

Number #	= <u>n!</u> e!h!	with	<pre>n = maximal number of electro (sum of e + h) e = number of electrons of corr configuration h = number of holes of corresp configuration</pre>			ons in sub-shell responding onding		
p-shell ⇒	n = 6 e		1	2	3	4	5	6
_		#	6	15	20	15	6	1
Discussion	of three elec	tron con	figurat	<u>ions</u>				
1. Eleme	ntal carbon		[He]2	$2s^22p^2$				
2. 3d-transition metal ions		[Ar]3d ⁿ						
3. Lanth	anide ions L	n ³⁺	[Xe]4	4f ⁿ				
Bioinorganic C Prof. Dr. Thom	hemistry as Jüstel						S	lide 84

RS-Terms for the 2p²-Configuration

L = 2	$M_L = -2, -1, 0, 1, 2$
S = 1	$M_{s} = -1, 0, 1$

Hund's rules (3 different ones) ⇒ Energetic order for 2p ² config.:	1^{st} S as high as possible 2^{nd} L as high as possible ${}^{3}P < {}^{1}D < {}^{1}S$		3 rd H J = L shells	und's rule 2 - S most 5 filled less	e for J: stable for s than half	
$M_L = 0$ and $M_S = 0 \implies {}^1S$	L = S = 0	0 X				
	S = 0 $S = -1$	X X	X X	X X		
$M_L = 1$ and $M_S = 1 \implies {}^{3}P$	L = S = +1	+1 X	0 X	-1 X		
$M_L - 2$ and $M_S - 0 \rightarrow D$	$\mathbf{S} = 0$	X	X	X	X	X
$M_r = 2$ and $M_q = 0 \implies {}^1D$	$\mathbf{L} =$	+2	+1	0	-1	-2

RS-Terms for the dⁿ-Configurations								$^{2S+1}L_{J}$
dn	-2	-1	0	1	2	L	S	Ground term h.s. (l. s.)
\mathbf{d}^1	Ť					2	1/2	$^{2}\mathbf{D}$
d ²	↑	↑				3	1	³ F
d ³	↑	\uparrow	↑			3	3/2	4F
d^4	\uparrow	\uparrow	\uparrow	\uparrow		2	2	⁵ D (³ H)
d ⁵	\uparrow	\uparrow	\uparrow	\uparrow	↑	0	5/2	⁶ S (² I)
d ⁶	$\uparrow \downarrow$	Ť	↑	\uparrow	↑	2	2	⁵ D (¹ I)
d ⁷	$\uparrow \downarrow$	$\uparrow \downarrow$	↑	\uparrow	↑	3	3/2	⁴ F (² H)
d ⁸	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	↑	1	3	1	³ F
d ⁹	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	↑↓	\uparrow	2	1/2	² D
Bioinorg Prof. Dr.	anic Chemistry Thomas Jüstel							Slide 87

RS-Terms for all dⁿ-Configurations

All	All Russell Saunders terms for 3d ⁿ free ion configurations						
Configuration	# Micro- states	# Energy levels	Ground state terms	Excited energy terms			
d ¹ , d ⁹	10	1	$^{2}\mathbf{D}$	-			
d ² , d ⁸	45	5	³ F	³ P, ¹ G, ¹ D, ¹ S			
d ³ , d ⁷	120	8	⁴ F	⁴ P, ² H, ² G, ² F, 2x ² D, ² P			
d ⁴ , d ⁶	210	16	⁵ D	³ H, ³ G, 2x ³ F, ³ D, 2x ³ P, ¹ I, 2x ¹ G, ¹ F, 2x ¹ D, 2x ¹ S			
d ⁵	252	16	⁶ S	⁴ G, ⁴ F, ⁴ D, ⁴ P, ² I, ² H, 2x ² G, 2x ² F, 3x ² D, ² P, ² S			
$\mathbf{d^{10}}$	1	1	¹ S	-			

Splitting of RS-Terms in Crystal Field ⇒ **Splitting Terms**

Splitting of RS-Terms in Crystal Field \Rightarrow Calculation of 10 Dq

Octahedron	d ¹ , d ⁴ , d ⁶ and d ⁹
1 band	$10 \mathbf{Dq} = \mathbf{v}$

Octahedron	d ²
3 bands	10 Dq = $v_2 - v_1$ and B by calculation

Octahedron d^7 3 bands $10 Dq = v_2 - v_1$ and B by calculation

Octahedron	d^3 and d^8	$\frac{B}{\mathrm{Dq}} = \frac{(\frac{\Delta E}{\mathrm{Dq}})^2 - 10\frac{\Delta E}{\mathrm{Dq}}}{15(\frac{\Delta E}{\mathrm{Dq}} - 8)}$	Dq = $E({}^{4}T_{2}) / 10$
3 bands	10 Dq = v_1 and B by calculation		$\Delta E = E({}^{4}T_{1}) - E({}^{4}T_{2})$

Interelectronic Repulsion: Racah-Parameter A, B, and C (Giulio Racah 1909 - 1965)

Means to describe the Interelectronic repulsion or Coulomb-repulsion between the terms, with B being the most important Racah-parameter, because it directly describes the splitting between the RS-terms.

Free Mⁿ⁺-ion

B ~
$$500 - 1100 \text{ cm}^{-1}$$

C ~ 4 B (approximation!)

 $\beta = B'/B$

$$\begin{split} \mathbf{A} &= \mathbf{F}_0 - 49 \ \mathbf{F}_4 \\ \mathbf{B} &= \mathbf{F}_2 - 5 \ \mathbf{F}_4 \\ \mathbf{C} &= 35 \ \mathbf{F}_4 \\ \text{(with } \mathbf{F}_{0,2,4} = \text{Slater-integrals)} \end{split}$$

Complexed Mⁿ⁺-ion

B is ca. 30% smaller due to the nephelauxetic effect,

i.e. the delocalisation of metal-centred electrons to the ligands \Rightarrow B'

Nephelauxetic ratio

```
with (1-\beta) = h_L * k_M
```

 h_L = nephelauxetic parameter of ligands

 \mathbf{k}_{M} = nephelauxetic parameter of the metals

Nephelauxetic Effect ~ Electron Density Between Metal Ions and Ligands

- Quantification of effect by parameter $\beta = B'/B$
- Ionic charge density and polarizability of the ligands by parameter h_L

Ligand	<u>h</u> L
F -	0.8
H ₂ O	1.0
DMF	1.2
$(NH_2)_2CO$	1.2
NH ₃	1.4
en	1.5
$C_2 O_4^{2-}$	1.5
Cl-	2.0
CN-	2.1
Br ⁻	2.3
N ₃ -	2.4
Ī.	2.7

Energies of Splitting Terms as Function of the Field Strength \Rightarrow **Orgel-Diagram**

Low-spin configurations are not taken into account (weak crystal field!) Only terms with same spin multiplicity as the ground state

"1 electron configuration"

 d^1 and d^6

are considered

"1 hole configuration" d⁴ and d⁹

Energies of Splitting Terms as Function of the Field Strength \Rightarrow **Orgel-Diagram**

Low-spin configurations are not taken into account (weak crystal field!)

Only terms with same spin multiplicity as the ground state are considered

"2 electron configuration" d² and d⁷

"2 hole configuration" d³ and d⁸

Tanabe-Sugano-Diagram (Term Correlations)

d³ Tanabe-Sugano Diagram

- Also low-spin terms and other spin multiplicities are taken into account
- The abscissa equals the energy of the ground term
- The energy of the crystal field terms is normalised by B
- The magnitude of B depends on the ion

Configuration		Ion	1	B [cm ⁻¹]	C [cm ⁻¹]
3 d ³		Cr ³⁺		918	3850
		Mr	1 ⁴⁺	1064	
30	d ⁴	Cr	2+	830	3430
		Mr	1 ³⁺	1140	3675
3d ⁵		Mr	h ²⁺	960	3325
3d ⁶		Fe ²	2+	1058	3901
		Co	3+	1100	
	Bioinorganic Chemistry Prof. Dr. Thomas Jüstel	7			

Optical Spectra of 3d-Ions

Energetic positions of terms

- Coulomb-interaction ~ 10000 cm⁻¹
- Spin-orbit-coupling ~ 100 cm⁻¹
- Crystal field splitting ~ 1000 cm⁻¹

Shape of optical transitions

- Parallel terms: Sharp lines
- Terms with different slopes: Broad bands

Selection rules

- All $d^n \rightarrow d^n$ transitions are parity-forbidden $(g \leftrightarrow g)$
- Transitions between different spins are also spin-forbidden
- Specific symmetric selection rules according to group theory (Ref.: F.A. Cotton, "Chemical Applications of Group Theory")

 $^{3}H_{I}$

Lit.: LaOF-Pr MW hydrothermal synthesis for photocatalytic N fixation, Front Mater Science 14 (2020) 43

Back-binding to ligands

- Typical for CO, NO, O₂, CN⁻, some biochemically important molecules!
- Formally, metals have low oxidation state or high electron density, respectively which is spread over the ligands through back-transfer of charge

From Crystal to Ligand Field

Explanation of ligand ordering in the spectrochemical series

 $CO > CN^{-} > NO_2^{-} > en > NH_3 > H_2O > OH^{-} > F^{-} > NO_3^{-} > Cl^{-} > SCN^{-} > S^{2-} > Br^{-} > I^{-}$ Strong ligandsWeak ligands π -back bindingno π -back binding

The spectrochemical series does not correlate with the charge of the ligands but with the ability of the ligands to delocalise electron density from the metal atom and thus to enhance the positive charge density or the effective field strength at the metal atom.

 π -acceptor-ligands:Stabilise metals in low oxidations states \Rightarrow CO, NO, CN^{-} , CN_{2}^{2-} (back-binding) O_{2}, N_{2}

π-donor-ligands: Stabilise metals in high oxidation states ⇒ O²⁻, N³⁻ (Metal-ligand-multiple bonds)

Molecular Orbital (MO) Theory

- \Rightarrow Overlap of metal and ligand orbitals leads to formation molecular orbitals
- \Rightarrow Example: octahedral complex built up by 6 σ -donor ligands and 3d-metal atom

Energy

Molecular Orbital (MO) Theory

Effects of π -back binding

- Strengthening of metal-ligand-bond
- Enhanced crystal field splitting by lowering the energy of the t_{2g}-orbitals
- Weakening of intra-ligand bonding through transfer of electron density into anti-bonding molecular orbitals of the ligand

⇒ decreased vibrational frequencies
⇒ increased reactivity of the ligands
(activation)

 \Rightarrow catalytic and enzymatic reactions

Molecular Orbital (MO) Theory

Explanation of ligand ordering in the spectrochemical series

Type of ligand	Effect on metal-ligand-bond	Cristal field splitting
π-acceptor	highly stabilizing	high
σ-donor	stabilizing	intermediate
π-donor	destabilizing	small

8. Properties of Biomolecules

Biological Molecules – Overview and Quantities in a Typical Eukaryotic Cell

•	Water				70%	
•	Proteins	\rightarrow	Polypeptides → Amino acids		15%	
	 Structural protein 	ns				
	– Transportational	proteins				
	– Storage proteins					
	– Sphere proteins (enzymes)				
•	Nucleic acids	\rightarrow	Polynucleotides → Phosphate + H	Bases + Deso	xyribose	
	– DNA				1%	
	– RNA				6%	
•	Starch/cellulose	\rightarrow	Polysaccharides \rightarrow aldoses/ketos	25	3%	
•	(Phospho)lipids	\rightarrow	Glycerine + fatty acids (+ phospha	ites)	2%	
•	"Monomers"	\rightarrow	Prosthetic groups, Co-factors		2%	
•	• Inorganic ions \rightarrow		Na ⁺ , K ⁺ , Mg ²⁺ , Ca ²⁺ , Fe ⁿ⁺ , Mn ⁿ⁺ , Co ⁿ⁺ , Cu ⁿ⁺ ,			
			Zn ²⁺ , F ⁻ , Cl ⁻ , HCO ₃ ⁻ , PO ₄ ⁻³⁻ , MoO ₄ ⁻²	²⁻ , WO ₄ ²⁻	1%	
•	Other "inorganics"		O_2 , CO_2 , CO , NO , CN^- , OCN^- , H_2C) ₂ ,	ppm-ppb	
	Bioinorganic Chemistry Prof. Dr. Thomas Jüstel			Slide 1 ⁴	08	
Water \rightarrow Solvents \Rightarrow Biochemistry = "Aqueous Chemistry"

- Auto-proteolysis: $2 H_2 O \rightleftharpoons H_3 O^+ + OH^- pK_a (25 \circ C) = 14.0$
- High dipole moment: μ = q ⋅ d = 1.85 Debye [Cm]
 ⇒ High polarity and strong H-bridges
- Optical transparency about 200 800 nm
 ⇒ absorption in the IR- as well as VUV/EUV-range
- Metal cations increase acidity of water $M^{n+} + 6 H_2O \rightleftharpoons [M(H_2O)_6]^{n+}$ $[M(H_2O)_6]^{n+} + H_2O \rightleftharpoons [M(H_2O)_5(OH)]^{(n-1)+} + H_3O^+$

Metal cation	<u>рК_а (25 °С, 0.1 М)</u>
Ca ²⁺	13.4
Mn^{2+}	11.1
Cu ²⁺	10.7
Zn^{2+}	10.0
Fe ³⁺	2.2

Bioinorganic Chemistry Prof. Dr. Thomas Jüstel

Proteins: Structure

Proteins are built up from one or multiple polypeptide sequences, which, themselves, are formed by the combination of amino acids.

The reaction leads to acid amides and is called peptide bond.

```
Amino acids (AS) <sup>-</sup>OOC-CH(R)-NH<sub>3</sub><sup>+</sup>
Polypeptides (100 - 100000 \text{ AS}, \text{M} = 10^5 - 10^8 \text{ g/mol})
                                                                                                      plane
                                                                                      trans-Pentide gro
Proteins (one or multiple polypeptide chains) — Metal proteins
Holo protein (= protein + prosthetic group) _____ Metal holo proteins
   Bioinorganic Chemistry
                                                                                                  Slide 110
   Prof. Dr. Thomas Jüstel
```

Proteins: Formation and Structure

Linkage of amino acids to polypeptides (primary structure) 1. The synthesis takes place in the ribosomes (AS-sequence is determined by m-RNA)

- Folding of polypeptides to 3-dimensional constructions (secondary and tertiary structure) 2.
- by van-der-Waals interactions (steric) ٠
- by ionic interactions (electrostatic) \Rightarrow stabilisation via metal cations •

- by hydrogen bonds (weak bonding) .
- by disulphide bridges R-S-S-R (strong bonding) •

Proteins: Secondary Structure

Hydrogen bridges and other interactions lead to secondary structures

<u>α-Helices</u> 0.54 nm .15 nm A. a-Helix

Collagens (triple helix) α-keratins (2 x double helix)

Bioinorganic Chemistry Prof. Dr. Thomas Jüstel

Slide 112

Proteins: Disulphide Bridges R-S-S-R'

Proteins: Tertiary and Quaternary Structure

Tertiary structure:three dimensional structure of a single polypeptide chainQuaternary structure:arrangement of multiple polypeptide chains in a protein

Proteins: Properties

after Wetlaufer, Ad. Prot. Chem. 17:303 (1962) 50,000 30,000

Physical

- **Stability: low (enzymes) till high (horn)** •
- Temperature sensitivity \Rightarrow denaturation upon heating .
- Some proteins are insoluble, • some give colloidal solutions

Solutions of proteins are optically active

Absorption in UV-range

Aliphatic < 240 nm Aromatic < 320 nm

Chemical

- Hydrolysis upon heating in combination with acids or bases: Polypeptide \rightarrow amino acids
- **Cleavage by proteases (at defined interfaces)** •

\Rightarrow sequence analysis

Bioinorganic Chemistry Prof. Dr. Thomas Jüstel

Proteins: Functions

Structural proteins

- Collagen
- α-keratins, β-keratins

Transportation and storage proteins

- Oxygen transport: heme- and myoglobin
- Storage of iron: ferritin and ferredoxine

Sphere proteins (enzymes)

- Oxidoreductases → redox reactions (e.g. catalysis)
- Transferases → transfer of small molecular groups (e.g. hexokinases)
- Hydrolases → hydrolysis of proteins, sugars and lipids (e.g. amylases, ureases, trypsin)
- Lyases → addition reactions of small molecules at double bonds (e.g. citrate synthase)
- Ligases → linkage of small molecules to bigger units (e.g. DNA ligase)
- Isomerases → alteration of molecular constitution (e.g. phosphoglucose isomerase)

Bioinorganic Chemistry Prof. Dr. Thomas Jüstel TEM-images of collagen fibres

Proteins: Function of the Zn²⁺-Enzyme, Carbonic Anhydrase

A lot of other Zn-enzymes also catalyse hydrolysis of polar bonds, such as proteases and esterases

Bioinorganic Chemistry Prof. Dr. Thomas Jüstel

Single-stranded protein consisting of 260 amino acids

Nucleic Acids: Building Blocks

During hydrolysis of a nucleic acid sugar, phosphate and amine-bases are formed:

DNA: Primary Structure (Sequence)

A polymer chain is formed through the continuous linkage of phosphate ester bridges between the C5 of the sugar unit from one nucleotide to the C3 of another sugar

One end of the polymer chain possesses a free hydroxyl group at the C3' (3'-end) and the other possesses another phosphate unit at C5 (5'-end)

DNA and RNA: Chemical Properties

DNA: Secondary Structure Suggested in 1953 by James D. Watson & Francis Crick

- DNA is a double helical structure, consisting of two strands with complimentary base sequences
- The ratio of A to T and G to C is always one to one
- The bases A and T as well as the bases G and C are linked via hydrogen bonds

DNA: Secondary Structure Is a Double Helix Due to structural reasons, the arrangement, where hydrogen bonds are optimally formed and sterical hindrance is minimized, is a double helix

Bioinorganic Chemistry Prof. Dr. Thomas Jüstel

DNA: Secondary Structure A-, B-, and Z-DNA

						2. DNA	
Parameter		A-DNA		B-	DNA		Z-DNA
Form		broad		in	termediate		narrow
Increase per	Bp [nm]	0.23		0.	34		0.38
Helix diamete	er [nm]	2.6		2.4	4		1.8
Sense of rotat	tion	right		ri	ght		left
Bp per helica	l turn	11		10).4		12
Pitch [nm]		2.5		3.	5		4.7
Angle Bp tow	ards helical a	xis 19°		1 °			9 °
		Source: Neidle, S	Stephen, <i>Nuclei</i>	c Acid Structure	and Recognition, O	xford University I	Press, 2002, p. 36
Bioinorganic Prof. Dr. Thor	Chemistry nas Jüstel					Slide	127

Spectroscopic Properties of Nucleo Bases

Absorption bands at 265 nm (A, T, C, G) and at 240 nm (G)

Other biomolecules, that are absorbing even in the near-UV or blue spectral range are

Spectroscopic Properties of Nucleo Bases

Species	λ_{max} [nm]	ε [lmol ⁻¹ cm ⁻¹]	Transition
Adenine	260	13400	n-π*, π-π*
Guanine	275	8100	n-π*, π-π*
Cytosine	267	6100	n-π*, π-π*
Thymine	264	7900	n-π*, π-π*
AMP	260	15500	n-π*, π-π*
ss-poly-AMP	260	10600	n-π*, π-π*
ds-poly-AMP	258	9600	n-π*, π-π*

Information from the UV-absorption spectrum

- AT- and GC-content
- Single or double helix
- Thermal stability of DNA
- Melting point of DNA (temperature when double helix is cleaved)

Chargaff's DNA Data Base Composition in Various Species (%)

Species	Α	Т	G	С
Homo sapiens	31.0	31.5	19.1	18.4
Drosophila melanogaster	27.3	27.6	22.5	22.5
Zea mays	25.6	25.3	24.5	24.6
Neurospora crassa	23.0	23.3	27.1	26.6
Escherichia coli	24.6	24.3	25.5	25.6
Bacillus subtilis	28.4	29.0	21.0	21.6

Bioinorganic Chemistry Prof. Dr. Thomas Jüstel

Spectroscopic Properties of Nucleo Bases

(64PP) 20-30% [2+6]-cyclo addition + ether cleavage

Slide 131

Carbohydrates: Definition and Nomenclature

Carbohydrates include are huge group of natural substances, such as sugars, starch and celluloses. The name can be derived formally from the general formula $C_x(H_2O)_n$.

Depending on the chain length the following is discriminated: trioses (x = 3), tetroses (x = 4), pentoses (x = 5) and hexoses (x = 6), also called monosaccharides.

Monosaccharides	-H ₂ O	Disaccharides	-H ₂ O	Polysaccharides
(glucose)		cane sugar (sacchar	ide)	starch (amylose)
Fruit sugar (fructose)		malt sugar (maltose) milk sugar (lactose)		pulp (cellulose)

More Biomolecules: Overview

<u>Class</u>	Example	Function	
Lipids	Fat	(Cell)membranes	
Phospholipids	Lecithin	(Cell)membranes	
Terpenes	Isoprene	Phytonutrients, vitamins, hormone	e, pigments
Steroids	Sterane	Vitamins, hormones	
Heterocycles	Biotin	Vitamins, co-factors	
Porphyrins	Heme	Vitamins, pigments, enzymes, tran	spo <u>rt proteins</u>
Complexes	cis-platinum	Therapy	<u> </u>
	[Gd(dota)]	Diagnostics	
H ₃ C CH ₃ CH=C CH ₃	CH ₃ I H — C == CH — CH == Axerophthol (Vitan	CH_{3} $CH_{-}C = CH - CH_{2}OH$ $hin A_{1}$ CH_{1} $CH_{2}OH_{2}OH_{2}OH_{2}OH_{3}$ H_{1} $CH_{2}OH_{2}OH_{3}$ H_{1} $CH_{2}OH_{2}OH_{3}$ H_{1} $CH_{2}OH_{2}OH_{3}$ H_{1} H_{1} $Steran (Gonan)$	5 Biotin (Vitamin H)
Bioinorganic Chemistr Prof. Dr. Thomas Jüste	ry el		Slide 136

More Biomolecules: cis-Platinum

Cis-diamine-dichloro-platinum(II) (Peyrone's salt)

 $\begin{bmatrix} CI & NH_3 \\ Pt & NH_3 \end{bmatrix}^0$

The square-planar cis-platinum disturbs the structure of DNA and leads to the dying of rapidly growing tumour cells

⇒ Chemotherapeutic agent for bronchial carcinoma and tumours in the genitourinary system

More Biomolecules: Vitamin D

More Biomolecules: Luciferine (D-LH₂)

Oxidation is catalysed by Luciferase, which is Mg²⁺ dependent

Firefly luciferine is found in Lampyridae species

Benefits

- Attraction
- Communication
- Defence

Application: Luciferine assays for ATP analysis

Bioinorganic Chemistry Prof. Dr. Thomas Jüstel

The Alkali Metal Cations

Ion	CN	Ionic radius [pm]	Geometry	Ligan	ds CFSE
Li+	4 - 8	73 – 106	variable	0	0
Na+	4 – 12	113 – 153	variable	0	0
\mathbf{K}^+	4 – 12	151 – 178	variable	0	0
Rb+	6 – 12	166 – 186	variable	0	0
Cs+	6 – 12	181 – 202	variable	0	0
Fr ⁺	6 – 12	194 (CN = 6)	(radioactive)	0	0
Bioinoi Prof. D	Bioinorganic Chemistry Slide 140 Prof. Dr. Thomas Jüstel Slide 140				

The Alkali Metal Cations

Functions

- Osmotic control
- Electrolytic equilibria
- Ionic current
- Control of ionic channels ("gating")
- Structural stabilisation, e.g. of enzymes like pyruvate kinase

Typical mammal cell: ~100 mV along 5 nm thick membrane \Rightarrow 200000 Vcm⁻¹

Ion	Extracellular [mM]	Intracellular [mN	[] Membrane-potential [mV]
Na ⁺	150	12	+68
K +	4	140	-99
Bioinor; Prof. Di	ganic Chemistry r. Thomas Jüstel		Slide 141

The Alkali Metal Cations

Transportation

The Alkali Metal Cations

Transportation

b) Ion channels

• Integral membrane proteins of high selectivity

- Form pores in membranes, which allow the transportation of ions along electrochemical potentials
- Can be opened or closed, e.g.

through neurotransmitters (ligands or Ca²⁺)

Example: KcsA K⁺ ion channel 10000fold selectivity for K⁺ vs. Na⁺ homotetramer, i.e. <u>four identical protein units</u>

© 2008 John Wiley & Sons, Inc. All rights reserved.

Bioinorganic Chemistry Prof. Dr. Thomas Jüstel

The Alkali Metal Cations

The Alkali Metal Cations

Transportation

- c) Ion pumps $\rightarrow Na^+/K^+$ -pump (ATPase)
- Maintenance of resting potential
- Regulation of cellular volume
- Signal transduction and integration

The Alkali Metal Cations

Transportation

c) Ion pumps \rightarrow Na⁺/K⁺-pump (ATPase) \rightarrow uptake of glucose in small intestine

The Alkaline Earth Metal Cations

Ion	CN	Ionic radius [pm]	Geometry	Ligan	ds CFSE
Be ²⁺	3 - 6	30 - 59	variable	0	0
Mg ²⁺	4 – 8	71 - 103	variable	N, O	0
Ca ²⁺	6 – 12	114 - 148	variable	0	0
Sr ²⁺	6 – 12	132 - 158	variable	0	0
Ba ²⁺	6 – 12	149 - 175	variable	0	0
Ra ²⁺	8-12	162 – 184	(radioactive)	0	0
Bioinor Prof. Di	ganic Chemistı : Thomas Jüste	ry el			Slide 147

The Alkaline Earth Metal Cations

Overview of functions

- Mg²⁺ Phosphate metabolism Protein-/ nucleic acid structure Central atom in chlorophyll
- Ca²⁺ Muscle contraction Cellular signals
 - **Enzyme activation**
 - **Blood coagulation**
 - Mineralisation (endoskeleton)
 - Morphogenesis Genetic regulation

Demineralised bones possess collagen, wherein the crystals are embedded

I	0 n	Extracellula	r [mM]	Intracellular [mM]	
N	dg^{2+}	1.5		2.5	
0	a^{2+}	2.5		0.1	
	Bioinorg	anic Chemistry			Slide 148
	Prof. Dr.	Thomas Jüstel			

The Alkaline Earth Metal Cations

 Mg^{2+} is very hard and shows high affinity to phosphate $\rightarrow Mg(NH_4)PO_4 / MgKPO_4$

Functions in detail

- Charge compensation, e.g. for ATP (reduction of negative charge density)
- Polarisation to enhance nucleophilic character: $Mg^{2+} + H_2O \rightarrow [Mg^{\bullet \bullet \bullet}OH]^+ + H^+$
- Stereo chemical fixation of reactants during phosphate cleavage \rightarrow ATP/ADP
- Catalyst for polyphosphate decomposition?

The Alkaline Earth Metal Cations

The Alkaline Earth Metal Cations

Ca²⁺ exhibits a broad variety of functions

- Structural functions: protein folding and build-up of skeleton
 - Exoskeleton
 - Mollusca (mussels, snails)
 - Cnidaria (corals)
 - Arthropods (insects, spiders, scorpions, crayfish...)
 - Endoskeletons
 - Vertebrates (bones and teeth)
 - Cephalopods (cuttlebones)
- Trigger and activation functions
 - Bonding to µ₂-carboxylates of proteins
 - Labile complexes allow fast changes of structure (muscle contraction)
- Electrolyte transportation

Cuttlebones of *Sepia officinalis*, (Source: Wikipedia)

The Alkaline Earth Metal Cations

Activation

- Calmodulin = calcium modulating protein
- Conformational changes of apo-Calmodulin upon calcium uptake
- Recognition and activation of enzymes

- Depolarisation of cell membrane by opening of Na-ion channels
- Liberation of Ca²⁺ from acidic storage protein: calsequestrin
- Calsequestrin contains up to 50 Ca²⁺-binding sites, i.e. carboxylate groups: Glu, Asp
- Uptake of Ca²⁺ by troponin C, which is coupled with the ATP-hydrolyses

Active enzyme

Substrate

The Alkaline Earth Metal Cations

SEM morphologies of $CaCO_3$ crystals precipitated in the solution, collagen concentration: 0.1 g/l. (a) Irregular rhombohedral calcite crystal grown in the solution without magnesium. (b) Irregular lumpish crystals with lamellar growth structure (Mg/Ca:1). (c, d, e) Discoid and dumbbell calcium carbonate crystals. (f) Spherical aragonite crystals at higher Mg2+ concentration (Mg/Ca:5). (g) Spherical aragonite crystals with more regular shape (Mg/Ca:5, collagen concentration:0.4 g/l). (h) Aragonite crystals with needlelike shape without collagen (Mg/Ca:5) (Lit.: Jiao et al. 2006)

Biomineralisation (CaCO₃)

- In mussels, snails, otoliths, ...
- Morphological control and orientation by organic ligands
 - Carboxyl groups (glu, asp, ...)
 - Oxidised carbohydrates
 - Collagene
- Lab examples

Modification

- Spindle-shaped calcite crystals in presence of malonic acid

CaCO₃ (aragonite)

- Disc-shaped vaterite crystals through stearic acid

	Crystal system	Orthorhombic	Trigonal	Hexagonal	
Space group		Pnma (#62)	R-3ch (#167)	P63/mmc (#	[!] 194
	Coordination number	9	6	8	
	Formula unit/unit cell	4	6	2	
	Bioinorganic Chemistry Prof. Dr. Thomas Jüstel			Slide	2 155

The Alkaline Earth Metal Cations

Biomineralisation of $Ca_{5}[PO_{4}]_{3}X$ with X = OH

- In bones of vertebra and cephalopods
- Collagen serves as template, i.e. it defines the orientation of the apatite crystals
- Binding of Ca²⁺ via carboxylates groups of osteocalcin and via phosphoproteins

Hydroxyapatite Ca ₅ [PO ₄] ₃ OH		
Crystal system	Trigonal	
Space group	Pnma (#176)	
Coordination number	8 and 9	
Formula unit per unit cell	2	
Disingunania Chamistary		Slide 157

The Alkaline Earth Metal Cations

Biomineralisation of $Ca_5[PO_4]_3X$ with X = F

- In teeth (enamel) of vertebrates and cephalopods
- Is formed by fluorination of hydroxyapatite (toothpaste contains Na_2PO_3F) $Ca_5[PO_4]_3OH + F^- \rightarrow Ca_5[PO_4]_3F + OH^-$

Fluoroapatite Ca₅[PO₄]₃F

Crystal system	Trigonal
Space group	Pnma (#176)
Coordination number	7 and 9
Formula unit per unit cell	2
Pyrophosphates α-Ca₂P	207 and B-Ca2P207

Crystal-induced arthropathy

The Alkaline Earth Metal Cations

Osteocalcin

Fixates apatite

<u>Collagen</u>

- Three left-handed helices, combined to a right-handed super-helix
- Composite material without binding sites for Ca²⁺
- Apatite crystals are incorporated parallel to the collagen helix

The Alkaline Earth Metal Cations

Calciumpyrophosphates

Formula	$Ca_2P_2O_7.2H_2O(CPPD)$
Crystal system	triclinic
Space group	P1
Z	2
CN	

Causes "Crowned Dens Syndrome": Severe neck pain

Literature

- Acta Cryst. B31 (1975) 1730
- J. Bone Joint Surg. Am. 89 (2007) 2732
- Acta Cryst. C70 (2014) 862

Titanium Group

Hafnium Hf⁴⁺ [X

[Xe] Hafnium is scarce in the earth's crust and HfO₂ is also poorly soluble, which is why hafnium is of no importance for the biosphere

B

The Vanadium Group

Enrichment

- Amavadin
 In fly agarics (amanita muscaria), V⁴⁺
 is accumulated in the bottom of the toadstool
- Storage protein vanabin is responsible for the enrichment of VO²⁺ in vanadocytes of sea squirts (ascidia gemmata) → accumulation

The Vanadium Group

Oxygen control?

 Tunicates comprise vanadocytes, in which V³⁺ is enriched for oxygen storage/transport? Today: ~ 35 nmol/l VO₄³⁻ in seawater

 Insulin mimetics VOSO₄ [VO(acac)₂] Bis(maltolato)oxovanadium

The Vanadium Group

Metal enzymes

• Haloperoxidases (e.g. in knotted wrack, ascophyllum nodosum) contain in their activated form vanadin(V)ions in trigonal-bipyramidal coordination $H_2O_2 + Br^- + H^+ \rightarrow HOBr + H_2O$ $HOBr + R-H \rightarrow 2 R-Br + H_2O$ $HBrO + H_2O_2 \rightarrow {}^1O_2 + H_2O + Br^- + H^+$

The Vanadium Group

Metal enzymes

- Nitrogenases
 - e.g. from azotobacter chroococcum and azotobacter vinelandii

some mutants contain Fe-V-cluster

Mo can be replaced by V

 \rightarrow diagonal relationship V/Mo

- $N_2 + 14 H^+ + 12 e^- + 40 MgATP \rightarrow 2 NH_4^+ + 3 H_2 + 40 MgADP + 40 HPO_4^{2-}$
- Model complexes for fixation of nitrogen $[V(N(CH_2CH_2S)_3] + N_2 + 4 H^+ + 4 e^- \rightarrow V(N(CH_2CH_2S)_3(N_2H_4)]$ $[V(O(CH_2CH_2S)_2]$

The Chromium Group

Chromium

• Chromium(VI) is carcinogenic, because it can oxidize the OH-groups of deoxyribose of DNA and also proteins Physiological pH: $CrO_4^{2^-} + 4H_2O + 3e^- \rightarrow Cr(OH)_3 + 5OH^- E^0 = +0.6V$ Sulphuric solution: $Cr_2O_7^{2^-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O E^0 = +1.33V$

- Chromium(III) regulates the blood sugar level glucose-tolerance factor together with insulin and glucagon
- Cr³⁺ is transported by transferrin (Fe-transporter)
- Chromium deprivation may foster high blood pressure

Sources:

Wikipedia

The Chromium Group

Molybdenum

- Only element of 2nd transition metal series of biological importance
- As molybdate MoO₄²⁻ readily soluble and available through sea water
- Forms polyoxymolybdates $\rightarrow Mo_7O_{24}^{6-}, Mo_8O_{26}^{-4-}, Mo_{36}O_{112}^{-8-}$, and so on
- Biochemically relevant oxidation states: IV, V, VI
 ⇒ 1- or 2-elctron-transfer-reactions
- Take part in nitrogen fixation
- Coordination by O-, S- and N-ligands
- Relevant enzymes
 - Nitrogenases
 - Nitrate reductases
 - Aldehyde oxidases
 - Oxytransferases

Slide 169

The Chromium Group

The Chromium Group

Oxytransferases with molybdenum (molybdopterines) Substrate-H + O₂ + H⁺ + 2 e⁻ \leftrightarrows substrate-O + H₂O

The Chromium Group

<u>Tungsten</u>

- Sole element of 3rd transition metal series (5d) of biological importance
- Metal enzymes in hyper thermal archaebacteria are stable up to 110 °C, since the strong metal-ligand-interactions stabilise these enzymes
- Stability of W-O-bonds \rightarrow see tungstates
- Example: Acetylene hydratase $C_2H_2 + H_2O \rightarrow CH_3CHO$ (acetaldehyde)

Literature

- Coord. Chem. Rev. 255 (2011) 1039
- J. Mol. Microbiol. Biotechnol. 26 (2016) 119

The Manganese Group

Manganese

Mn ²⁺	[Ar]3d ⁵	pale-rose
Mn ³⁺	[Ar]3d ⁴	red
MnO ₄ ⁴⁻	[Ar]3d ³	brown
MnO_4^{3-}	[Ar]3d ²	blue
MnO_4^{2-}	[Ar]3d ¹	green
MnO ₄ -	[Ar]	violet

most stable (in the acidic pH range) tends to disproportionate does not disproportionate tends to disproportionate tends to disproportionate strong oxidizing agent

Technetium

Radioactive and extremely scarce

 TcO_4 [Kr]colourlessactivity ~ 30 millicuries ^{99m}Tc ($t_{1/2} = 6$ h) in coordinated form is used in diagnostic nuclear medicine, as citrate or
diphosphonato methane complex: Single Photon Emission Computed Tomography (SPECT)

<u>Rhenium</u>

Re⁺

ReO¹

Rhenium is extremely scarce and rhenium oxide is poorly soluble

colourless

[Xe]4f¹⁴5d⁶ l.s. yellow to red

CO₂ activation, marker X: Br> weakly oxidizing

Bioinorganic Chemistry Prof. Dr. Thomas Jüstel

[Xe]4f¹⁴

Slide 173

The Manganese Group

Manganese redox chemistry

Metallic manganese tends to be oxidised Mn rightarrow Mn²⁺ + 2 e⁻

$$\mathbf{E}^{\circ} = -1.19 \ \mathbf{V}$$

In acidic solution Mn^{2+} is the most stable oxidation state •

5

In alkaline solution Mn⁴⁺ is the most stable species but Mn²⁺ and Mn³⁺ possess similar stability MnO₄

3 3- $\Delta z \cdot E^0 (V)$ **Frost diagram for** 2- $\Delta z \cdot E^0 (V)$ manganese in acidic (right) Mn and alkaline (left) solution MnO Mn 0 $^{-1}$ Mn³⁺ -1-2-2 Mn -3-3-III VI VII Oxidationsstufe z

The Manganese Group

Oxidation state +II ([Ar]3d⁵)

- Mn²⁺ is relatively stable in comparison to other divalent TM-ions and not a reducing agent in acidic solution: E⁰ [V] at pH 0
 - $\begin{array}{rcl} Mn^{2+} (d^5) \leftrightarrows Mn^{3+} (d^4) + e^{-} & 1.5 \\ Fe^{2+} (d^6) \leftrightarrows Fe^{3+} (d^5) + e^{-} & 0.75 \\ Cr^{2+} (d^4) \leftrightarrows Cr^{3+} (d^3) + e^{-} & -0.41 \end{array}$
- Manganese(II)-salts or solutions are only weakly coloured since the absorption in the visible range is only possible via spin-forbidden 3d-3d-transitions (d⁵, high-spin)

MnSO ₄ ·7H ₂ O	rose
MnCl ₂ ·4H ₂ O	rose
$[Mn(H_2O)_6]^{2+}$	pale rose

 Strongly coloured low-spin complexes are formed only with very strong ligands, e.g. [Mn(CN)₆]⁴⁻ [Mn(CN)₅(NO)]³⁻

The Manganese Group

Oxidation state +III ([Ar]3d⁴)

- Dissolution of braunite Mn₂O₃ in conc. H₂SO₄ Mn₂O₃ + 6 H⁺ + 9 H₂O ≒ 2 [Mn(H₂O)₆]³⁺ results in a solution of the garnet red hexaaquamanganese(III)-ions
- Manganese(III)-ions tend to disproportionation $2 Mn^{3+} + 2 H_2O \Leftrightarrow Mn^{2+} + MnO_2 + 4 H^+$ if no reducing agent is present
- The stable, dark red manganese(III)-acetate is formed upon exposure of permanganate to manganese(II)-acetate in glacial acetic acid:
 3 KMnO₄ + 12 Mn(OAc)₂ + 11 HOAc + 3 H⁺ → 5 [Mn₃O(OAc)₆]OAc↓ + 7 H₂O + 3 K⁺ (HOAc = CH₃-COOH)
- Mixed-valent compounds are strongly coloured \rightarrow MMCT (Intervalence compounds) $[L_2Mn^{II}Mn^{III}(\mu-OH)_3]^{2+}$ with L = 1,4,7,-Trimethyl-1,4,7-triaza cyclononane $[L_2Mn^{III}Mn^{IV}(\mu-O)_2(\mu-OH)]^{2+}$

The Manganese Group

Oxidation state +VII ([Ar]3d⁰)

The violet permanganate ion MnO_4^- is a strong oxidizing agent in acidic solution

Permanganate can be formed through oxidation of Mn^{2+} with PbO_2 in acidic environment $2 Mn^{2+} + 5 PbO_2 + 4 H^+ \iff 2 MnO_4^- + 5 Pb^{2+} + 2 H_2O$

The Manganese Group

Manganese in the biosphere

 Manganese is the key element in the light reaction of photosynthesis, i.e. it is needed to cleave water in the oxygen-evolving cluster: Mn^{III}₄ ≒ Mn^{III}₃Mn^{IV} ≒ Mn^{III}₂Mn^{IV}₂ ≒ Mn^{III}Mn^{IV}₃ ≒ Mn^{IV}₄ The manganese cycle Mn^{IV}₄ + 2 H₂O → Mn^{III}₄ + 4 H⁺ + O₂ 2 H₂O → 4 H⁺ + 4 e⁻ + O₂↑ → Photosystem II (light reaction)

- Arginase
 Nitrogen-containing metabolite
 → urea synthesis H₂N-CO-NH₂
- Superoxide dismutase Decomposition of superoxide radical $O_2^ 4 O_2^- + 4 H^+ \rightarrow 3 O_2^- + 2 H_2O$ Mn besides Zn, Cu, Fe and Se is a co-factor for anti-oxidative acting enzymes
- Pyruvate carboxylase Conversion of pyruvate in oxaloacetate by activation of HCO₃⁻ HCO₃⁻ + ATP → HOCO₂-PO₃²⁻ + ADP Enzyme-biotin-CO₂ + pyruvate → enzyme-biotin + oxaloacetate
 Bioinorganic Chemistry Prof. Dr. Thomas Jüstel

Photosynthesis: The Energetic Base of the Biosphere (Mn Catalysed H₂O Cleavage)

Venus

2.61 kW/m² Albedo = 0.76 \rightarrow T_e = 232 K 96% CO₂ + 3% N₂ + SO₂ + H₂O + Ar (ppm) 93 bar \rightarrow T_{eff} = 740 K

Earth

1.37 kW/m² = $1.56 \cdot 10^{18}$ kWh/a Albedo = 0.30 $\rightarrow T_e = 255$ K 78% N₂ + 21% O₂ + 0.9% Ar + CO₂ + H₂O + CH₄ (ppm) 1 bar $\rightarrow T_{eff} = 288$ K Life = aqueous chemistry Water \rightarrow H₂ and O₂ \rightarrow energy! 3 O₂ \rightarrow 2 O₃ by VUV photolysis Mars

0.59 kW/m² Albedo = 0.15 $\rightarrow T_e = 213 \text{ K}$ 95% CO₂ + 3% N₂ + 1.5% Ar + H₂O (ppm) 5.6 mbar $\rightarrow T_{eff} = 225 \text{ K}$

Remark: O₂ converted to Ca(ClO₄)₂ by radiolysis

Bioinorganic Chemistry Prof. Dr. Thomas Jüstel Slide 179

Photosynthesis: Possible on surface of Mars?

No, since the ground layer is full of perchlorates due to mineralisation of $HClO_4$ formed by radiolysis of chlorine doped water ice $\rightarrow Ca(ClO_4)_2$

Lit.: Perchlorate formation on Mars through surface radiolysis, J. Geophys. Res. Planets 121 (2016) 1472
Photosynthesis: Almost All Energy Consumed by Living Organisms Stems from Solar Energy (Exception: Thermophiles in the Deep Sea)

Energy source in solar system: The sun
Luminosity (radiation flux) $3.8 \cdot 10^{26} \, \mathrm{W}$ Annual radiation power $1.24 \cdot 10^{34} \, \mathrm{J}$ (presently!)Habitable zoneVenus (early stage of solar system), earth (today), mars (late phase...)

Venus transit

Planet	Perihelion- and aphelion-distance in astronomic units	Sola: maximum un	r radiation d minimum (W/m²)
Mercury	0.3075 - 0.4667	0.3075 - 0.4667 14,446 - 6,272	
Venus	0.7184 - 0.7282	2,64	47 – 2,576
Earth	0.9833 - 1.017	1,42	13 – 1,321
Mars	1.382 - 1.666	7	15 – 492
Jupiter	4.950 - 5.458	55	.8 – 45.9
Saturn	9.048 - 10.12	16	.7 – 13.4
Uranus	18.38 - 20.08	4.0)4 – 3.39
Neptune	29.77 - 30.44	1.4	54 – 1.47
Bioinorganic Chemistr Prof. Dr. Thomas Jüst	'Y el		Slide 181

Photosynthesis: Almost All Energy Consumed by Living Organisms Stems from Solar Energy (Exception: Thermophiles in the Deep Sea)

Photosynthesis: Solar Irradiation on Earth

Extraterrestrial solar constant $I_{\rm C} = 1367 \ {\rm W/m^2}$ ٠ $I_{CG} = (1-a_g) \cdot 1/4 \cdot I_C = 239 \text{ W/m}^2 \text{ (absorbed)}$ **Global extraterrestrial irradiation** ٠ 510.10¹² m² (510 Mill. km²) **Earth's surface** ٠ $3.86 \cdot 10^{24} \text{ J} \Rightarrow 1.2 \cdot 10^5 \text{ TJ/s} (\text{TW})$ Global absorbed solar energy per year ٠ $1.7 \cdot 10^{14} \text{ kg}$ **Annual biomass production** ٠ $\Rightarrow \sim 1.0 \cdot 10^{17} \text{ kJ} (\Delta G^0(\text{hexose}) = 2872 \text{ kJ/mol})$ **Primary energy consumption (1998)** 14 TW ($\cong 1.2 \cdot 10^{10}$ t coal) $\Rightarrow \sim 4.4 \cdot 10^{17}$ kJ (2016: 16 TW $\Rightarrow \sim 5.2 \cdot 10^{17}$ kJ) World USA **3 TW** 0.5 TW FRG • Photovoltaics (energy efficiency ~ 15%) ۲ 510 x 10^{12} m² · (14 TW/1.2·10⁵ TW)/ 0.15 = 4 x 10^{11} m² \approx 0.4 Mill. km² \approx 0.08% of Earth s. **Fossil fuels** $m_{O_2} = 10^{15} \text{ t} (O_2 \text{ in atmosphere}) \rightarrow 400.10^{12} \text{ t C}$ **Global resources** 10.4·10¹² t C (~2.5%) **Known resources** Slide 183 **Bioinorganic Chemistry** Prof. Dr. Thomas Jüstel

Photosynthesis: Spectral Distribution of Radiation upon Earth's Surface

Photosynthesis: Absorption of Irradiated Solar Energy

A + R + T = 1 with A = Absorption, R = Reflectance (albedo), T = Transmission

Irradiation of earth

 $\mathbf{T} = \mathbf{0} \implies \mathbf{A} = \mathbf{1} \cdot \mathbf{R}$

Surface of	R (albedo)	Solar energy use	Absorber	Absorption process
Earth	10 - 25%	Si-solar cells	Silicon	VB – CB transitions
Sand	25-40%	Grätzel-solar cells	Ru ²⁺ complexes	Metal-to-Ligand-Charge-
Grass	15 - 25%			Transfer (MLCT)
Forrest	10 - 20%	Chloroplasts	Chlorophyll	π - π*, n - π*
Snow	75-95%		ß-carotin & other	
Sea	10%		accessory pigments	
Earth (global)	30%	High absorption str	ength only by allowed	optical transitions
Bioinorganic Chemist	trv			Slide 185

Photosynthesis: Applications of Irradiated Solar Energy

1. Absorption	Energy transfer via excitons	Excited species	
2. Light reaction	Energy uptake	Formation of H ₂ and ATP	
3. Dark reaction	Energy storage	Biomass, batteries, etc.	
Technical and biological a	pplications		
Solarthermics	Light \rightarrow thermal energy	Solar collectors	
Photovoltaics	Light \rightarrow electrical energy	Solar cells	
		1. Semiconductor (Si, Ge)	
		2. Liquids (Grätzel)	
Photosynthesis	Light \rightarrow chemical energy	Algae, plants	
$n CO_2 + n H_2O$ <u>Phot</u>	osynthesis $n O_2 \uparrow + (CH_2O)_n$	Mineralisation n C	
	hv (biomass)	-n H ₂ O (fossil fuels)	
Bioinorganic Chemistry Prof. Dr. Thomas Jüstel		Slide 186	

Photosynthesis: Energy Production in Autotrophic Organisms

- Light reaction photolysis of a hydrogen donor (energy uptake) $H_2O \rightarrow \frac{1}{2}O_2\uparrow + 2H^+ + 2e^-$ (higher plants) $H_2S \rightarrow 2S + 2H^+ + 2e^-$ (green sulphur bacteria) ATP NADPH **Photosynthetic Active Radiation** (PAR) = 400 - 700 nm (170 - 300 kJ/mol)
- Dark reaction Synthesis of carbohydrates (energy storage) $CO_2 + 2 H^+ + 2 \text{ NADPH} \rightarrow (CH_2O)_x + H_2O + 2 \text{ NADP}^+$ via ATP Photosynthetic CO₂ fixation in glucose requires about 470 kJ/mol per C-Atom

Photochemical work

$$\mathbf{W} = \mathbf{I} \cdot \mathbf{A} \cdot \boldsymbol{\Phi}$$

with I = Irradiance [W/m²]

A = Absorption [0.0 ... 1.0]

 Φ = Quantum yield [0.0 ... 1.0]

Photosynthesis: Oxygen production as a side effect \rightarrow O₃ layer formation

Photosynthesis: Location and Structure of Chloroplasts

Photosynthetic activity takes place in thylakoid membranes

- Membrane potential ~ 0.2 V
- Lipid/protein-ratio ~ 1:1

=CH-

H₃C

Photosynthesis: Antenna Dyes

<u>Dye</u>

Substances absorbing light selectively, resulting in a subtractive colour spectrum

Chlorophyll a, b

HC =CH₂

0=C

H₃C

H₃C

Green dye, present in all photosynthetically active cells, and absorbing in the blue and red spectral range

-СН2 — СН2

Chlorophyll a

Photosynthesis: Antenna Dyes

Accessory pigments

CH.

H-C

(a)

(b)

Dyes which completes the absorption spectrum of chlorophyll in the visible range:

B-Carotin, lycopene, phycocyanin, phycoerythrin, ...

Xanthophyll

Bioinorganic Chemistry Prof. Dr. Thomas Jüstel

HaC, CH.

Slide 191

H₅C

Phycocyanin

Phycoerythrin

N-H

N-H

N-H

Photosynthesis: Antenna Dyes

Energy transfer (ET) to reaction centre Photosystem II (PS II)

Problem: Formation of singlet Oxygen, which may destroy proteins

- ${}^{1}Chl + h\nu \rightarrow {}^{1}Chl^{*}$
- ${}^{1}Chl^{*} \rightarrow {}^{3}Chl^{*}$
- ${}^{3}Chl^{*} + {}^{3}O_{2} \rightarrow {}^{1}Chl + {}^{1}O_{2}$

Solution: Mg²⁺ incorporation prevents formation of ³Chl* due its weak spin-orbit coupling

Photosynthesis: Time scales

•	Absorption photon: ground-state \rightarrow singlet state	10 ⁻¹⁵ s
•	Higher singlet-state \rightarrow singlet state	$10^{-14} - 10^{-13}$ s
•	Lowest singlet state \rightarrow ground state	$10^{-11} - 10^{-9}$ s
•	Lifetime triplet state	10 ⁻⁴ - 10 ⁻² s
		(not relevant)
•	Transfer of energy between adjacent molecules	10 ⁻¹⁰ s
•	Transfer of energy to trigger chemical reactions	10 ms
	(ET to reaction centre)	

Photosynthesis: Fluorescence of Chlorophyll

- Pure chlorophyll + blue light

 → intensive red fluorescence
 → no energy migration
- Chlorophyll in chloroplast + light
 → weak fluorescence
 - \rightarrow Energy transfer to PSI/II

Photosynthesis: Action Spectra

Absorbed energy in PSI and II

- 1. Heat dissipation80%
- 2. Luminescence3-7%
- 3. Chemical reactions 10-15% e.g. chlorophyll and sugar synthesis

Action spectra

Relative activity of different photon energies to achieve a measurable effect

 \rightarrow Similar absorption spectrum compared to that of chlorophyll

Taken from DIN 5031-10

Photosynthesis: Emerson-Experiment

 \Rightarrow The light reaction consists of coupled photo systems: photosystem I and II

Photosystem II:Absorption up to 680 nm (P 680)Photosystem I:Absorption up to 700 nm (P 700)

 $H_2O \rightarrow \frac{1}{2}O_2\uparrow + 2H^+ + 2e^-$ NADP⁺ + 2e⁻ + 2H⁺ \rightarrow NADPH + H⁺ ADP + P_i \rightarrow ATP

Photosystem I and II: Electron Flux

Photosynthesis: Structure of Photosystems II (Dimer), M = 350 kDa (cyanobacteria)

Electron density on the surface of PS II: (cyanobacterium: synechococcus elongatus)

- Central Mn-cluster contains four Mn-ions, Ca²⁺ and Cl⁻
- 2 Mn-Mn distances of 2.7 Å
- 1 Mn-Mn distances of 3.3 Å

Photosynthesis: Structure of Photosystem II – Spectroscopic Analysis

a) Extended X-ray Absorption at Fine Structure (EXAFS)

→ determination of distances between heavy atoms (Mn- and Ca-ions)

- b) EPR-spectroscopy \rightarrow oxidation state of the manganese atoms
- c) T-dependent magnetic susceptibility \rightarrow magnetic coupling (super-exchange)

Bioinorganic Chemistry Prof. Dr. Thomas Jüstel Slide 200

Photosynthesis: Oxidation State of Mn-Cluster (Oxygen Evolving Center OEC)

d) Photolysis experiments

Findings:

- Oxygen evolution is oscillating (S0 S4)
- Oxidation occurs upon excitation of P680 to P680*
- P680* oxidises the OEC (via a Tyr-side chain)
- Mn²⁺ is gradually oxidised to Mn⁵⁺
- O₂ is probably released from an in-situ formed peroxy-unit

(hints from structures of model complexes)

Photosynthesis: Mechanism of Water Cleavage in the Mn-Cluster

 \rightarrow The Mn-cluster acts as a "homogeneous catalyst": Models exist for oxo-bridged Mn⁴⁺ ions

Photosynthesis: Formation of the Biochemical Energy Source ATP by a Electrochemical Gradient

Photosynthesis: Summary of All Relevant Processes

Photosynthesis: The Dark Reaction (Calvin-Cycle)

- Takes place in the stroma of the chloroplasts
- CO₂-fixation by
 - C₃-plants (90%)

Ribulose-1,5-biphosphate → 2 Glycerat-3-phosphate

- C₄-plants, e.g. corn (2%)

Phosphoenolpyruvate → **Oxalacetate**

- CAM-plants, e.g. succulents (8%)

Phosphoenolpyruvat \rightarrow **Oxalacetat**

(CAM = Crassulacean Acid Metabolism)

Follows different biochemical synthesis routes!

Photosynthesis: The Dark Reaction (Calvin-Cycle)

RuBisCo – The Most Important Enzyme

Photorespiration

- RuBisCo catalyses two enzymatic reactions
 - Carboxylation
 - Addition of CO₂ to RuBP
 - Preferred under normal conditions
 - Photorespiration
 - Oxidation of RuBP by addition of O₂
 - Preferred when stoma is closed
 - Takes place when CO₂-partial pressure is low and that of O₂ is high
- CO₂ and O₂ compete for the binding to RuBP!

The Iron Group		R = F = F $R = F = F$ $R = V = V$ $R = V = V$ $R = V = V$
Iron		
Fe ²⁺	[Ar]3d ⁶	moderately reductive agent
Fe ³⁺	[Ar]3d ⁵	relatively redox stable but kinetically labile
Fe ⁴⁺	[Ar]3d ⁴	[L ₂ Fe ₂ (cat) ₂ (µ-N)] ⁺ are strong oxidising agents
Fe ⁵⁺	[Ar]3d ³	$[Fe^{III}(porphyrin)N_3] \rightarrow [Fe^V(porphyrin)N] + N_2$
Fe ⁶⁺	[Ar]3d ²	Na ₂ FeO ₄ , K ₂ FeO ₄ , BaFeO ₄ are strong oxidising agents
		$Fe^{3+} + 12 H_2O \rightleftharpoons FeO_4^{2-} + 8 H_3O^+ + 3 e^- E^0 = +2.20 V$
<u>Ruthenium</u> Very scarce		
Ru ²⁺	[Kr]4d ⁶ l.s.	Ruthenium(II)-complexes as antenna in Grätzel cells
Ru ³⁺	[Kr]4d ⁵ l.s.	Ruthenium(II/III)-complexes as cancerostatics
Ru ⁴⁺	[Kr]4d ⁴ l.s.	RuO ₂
Ru ⁸⁺	[Kr]	RuO₄ yellow, strongly oxidising
<u>Osmium</u> Very scarce		
Os ⁸⁺	[Xe]4f ¹⁴	OsO₄ yellow, extremely toxic (oxidises 1,2-dioles)
Bioinorganic Chemistry Prof. Dr. Thomas Jüstel	y l	Slide 210

The Iron Group

Bioinorganic Chemistry of Iron

Iron is essential for the oxygen transport and for many electron transfer reactions

Fe-proteins: From Oxygen Transport to the Respiratory Chain

The adult human contains about 4 g Fe, with 75% thereof being bound in erythrocytes of the hemoglobin (as in other vertebrates)

O₂-Transport-Fe-Proteins: Hemoglobin and Myoglobin

In vertebrates and some arthropods

Tetramers (Hb) and monomers (Mb) with a single Fe²⁺ ion per moiety

Structure of myoglobin (Mb) and hemoglobin (Hb)

Bioinorganic Chemistry Prof. Dr. Thomas Jüstel Erythrocytes ~ 3·10⁸ hemoglobin molecules

Sickle cell anaemia (gene defect)

O₂-Transport-Fe-Proteins: Hemoglobin

$$[Fe^{II}-Hem] \stackrel{+O_2}{\rightleftharpoons} [O_2-Fe^{II}-Hem] \stackrel{|C=O|}{\rightarrow} [|O=C-Fe^{II}-Hem] \quad NO-bond \text{ analogue}$$

Bioinorganic Chemistry Prof. Dr. Thomas Jüstel Hemoglobin is a tetramer (M = 65 kD)

Slide 215

O₂-Transport-Fe-Proteins: Hemerythrin

In sipunculidae (marine worms)

Octamers with two Fe^{2+/3+} per sub-unit (D₄-symmetry)

O₂-Transport-Fe-Proteins: Hemerythrin (Hy)

Structure of O₂-binding unit

O₂-Transport-Fe-Proteins: Oxygen Reduction

Molecule	Bond	d(O-O)	v(O-O)
	order	[pm]	[cm ⁻¹]
0_{2}^{+}	2.5	112	1860
(dioxygen	yl cation)		
${}^{3}O_{2}$	2.0	121	1555
(triplet-ox	xygen)		
O ₂ ⁻	1.5	133	1145
(superoxi	de anion)		
O_2^{2-}	1.0	149	770
(peroxide	anion)		
Mb·O ₂	~2.0	122	1107
(oxygenat	ed myoglo	bin)	

Upon bonding of O_2 to Hb or Mb the O_2 -bond is only slightly weakened, which means O_2 is not being reduced during its transport

O₂-Transport-Fe-Proteins:	Table 13.2 Mössbauer spectra for haemoglobin derivatives [10				
Electronic configuration of Iron in haemoglobin (Hb) and oxidised	Compound*	S	T/K	∆ ∕(mm s ^{- 1})	δ (Fe) /(mm s ⁻¹)
haemoglobin (Hi)	НЬСО	0	195 4	0·36 0·36	0·18 0·26
Determination by Mössbauer	Hb reduced	2	195 4	2·40 2·40	0·90 0·91
and EPR Spectroscopy with	HbNO	?	195–1•2	magnetical	ly broadened
S = Total spin	HbO ₂	0	195 77 1·2	1·89 2·19 2·24	0·20 0·26 0·24
	HiF	<u>5</u> 2	195-1-2	magnetical	ly broadened
δ [mms ⁻¹] = Isomerie shift	HiH ₂ O	<u>5</u> 2	195	2.00	0-20
	HiOH	$\frac{1}{2}?$	195 77	1∙57 1∙9	0·18 0·2
Δ [mms ⁻¹] = Quadrupol splitting	HiN ₃	$\frac{1}{2}$	195	2.30	0.15
	HiCN	$\frac{1}{2}$	195	1.39	0.17
	* The abbre compound and	viation I I Hi for a	Ib is used fo Fe(III) haem	r a Fe(II) ha oglobin comp	emOglObin ound.

Fe-Sulphur Proteins

Cluster with 1, 2, 3 or 4 iron atoms as well as cys- and/or his-ligands

Fe-Redox Proteins: Mitochondrial Respiratory Chain

Balance: $O_2 + 2 \text{ NADH} + 2 \text{ H}^+ \rightleftharpoons 2 \text{ H}_2 \text{O} + 2 \text{ NAD}^+$ $E^0 = -1.13 \text{ V} \Rightarrow \Delta G = -218 \text{ kJ/mol}$

Mechanism of oxygen reduction in mitochondrial respiratory chain (5 steps)

Fe-Redox Proteins: Mitochondrial Respiratory Chain

Location: Intermembrane space of eukaryotic mitochondria

Prof. Dr. Thomas Jüstel

Fe-Redox Proteins: Mitochondrial Respiratory Chain

4th Step Transfer of electrons from Rieske-protein to cytochrome-b and -c

 $[Fe_2S_2]^{1-} + Cyt-c(Fe^{3+}) \rightleftharpoons [Fe_2S_2]^0 + Cyt-c(Fe^{2+})$

Cytochrom a: R^1 = Vinyl, $R^2 = C_{17}H_{34}OH$, R^3 = Formyl $L^1 = L^2$ = His Cytochrom b: R^1 = R^2 = Vinyl, R^3 = Me L^1 und L^2 frei oder His Cytochrom c: R^1 = R^2 = -CH(Me)-S-CH₂-C(O)NH- R^3 = ; L^1 = His, L^2 = Met Cytochrom P_{450} : R^1 = R^2 = Vinyl, R^3 = Me L^1 = Cys, L^2 = H₂O

Fe-Biomineralisation and Fe-Storage

Formation of mineralised Fe-salts by living creatures

- α-FeO(OH) Goethite
- Fe₃O₄ Magnetite
- Fe_3S_4 G
- FeS₂

Greigite Pyrite limpets (radula) magnetotactic bacteria magnetotactic bacteria sulphate reducing bacteria

Ferritins contain goethite-like material of the following composition

"8 FeO(OH)·FeO(H₂PO₄)"

Fe-Transport: Siderophores

Siderophores are released by many micro organisms and plants into their surrounding aqueous medium in order to mobilise Fe³⁺ by complexation from poorly soluble iron hydroxide deposits in soil

Fe-Transport: Siderophores

Equilibria:	$Fe(OH)_3 + H_3Sid$	\rightleftharpoons [Fe(Sid)] + 3 H ₂	20 Soil
	$[Fe(Sid)] + 3 H^+ +$	$e^{-} \rightleftharpoons Fe^{2+} + H_3Sid$	Plant cell
<u>Siderophor</u>	Log K	E ⁰ [V] at pH 7	Ligand type
Mugenein acid	18.1	-0.102	Carboxylate, Amino-N
Aerobactin	22.5	-0.336	Hydroxamate, Carboxylate
Coprogen	30.2	-0.447	Hydroxamate
Deferrioxamin B	30.5	-0.468	Hydroxamate
Ferrichrom A	32.0	-0.448	Hydroxamate 6.0 -
Enterobactin	~ 49	-0.790	Catecholate $\underline{\mathbf{x}}$
Alterobactin A	~ 51	-0.972	
			Hydroxo
			Carboxylate 0.0 -0.3 -0.5 -0.7 -0.9 -1.1 -1.3 -1 Potential (V)

 \rightarrow Analytical method: Cyclic Voltammetry (CV), which deliver voltage-current diagrams

Bioinorganic Chemistry	Slide 232
Prof. Dr. Thomas Jüstel	

The Cobalt Group

<u>C</u> C C	bobalt bo ⁺ bo ²⁺ bo ³⁺	[A] [A] [A]	r]3d ⁸ r]3d ⁷ r]3d ⁶ l.s.	strong reducing agent, high-spin of weak reducing agent, high-spin or relatively redox stable, very high H l.scomplexes, except [CoF ₆] ³⁻	or low-spin low-spin kinetic stability,
R R R	<u>hodium</u> xtremely scarce h ²⁺ h ³⁺	[K [K	r]4d ⁷ l.s. r]4d ⁶ l.s.	[Rh(bqdi)(NH ₃) ₄] ³⁺ bind to DNA a it through photo activation (with bqdi = benzoquinone diimin	and are able to cleave e or other diimines)
<u>I</u> 1 E I1 I1	ridium xtremely scarce .3+ .4+	[X0 [X0	e]4f ¹⁴ 5d ⁶ l.s. e]4f ¹⁴ 5d ⁵ l.s.	Ir ³⁺ -complexes are kinetically extr IrO ₂	emely stable (OLEDs)
	Bioinorganic Chemistry Prof. Dr. Thomas Jüstel	7			Slide 233

Cobalt Proteins

The adult human contains ~ 2.5 mg of cobalt, primarily bound in the macrocycle complex called cobalamin (vitamin B_{12}). The macrocyle ligand is a corrin ring

Alkyl cobalamins take part in redox reactions, alkylations and rearrangements. Co^{III}-, Co^{II}- and Co^I-species may participate in 1-electron reductions and oxidations

Methylations (even of Hg^{2+}):

$$Hg^{2+} \rightarrow HgCH_{3^+} \rightarrow Hg(CH_3)_2$$

Bioinorganic Chemistry Prof. Dr. Thomas Jüstel

СН ³	:	Methylcobalamin (MeCbl oder MeB ₁₂)
CN	:	Cyanocobalamin (Vitamin B ₁₂)
ОН	:	Hydroxycobalamin (Vitamin B _{12a})
H ₂ O	:	Aquocobalamin
R	: R =	5'-Desoxyadenosyl- cobalamin (Coenzym B ₁₂ oder AdoCbl) 5'-Desoxyadenosyl
		HO OH H ₂ C N N N N NH ₂

Slide 234

Cobalamin: Some Facts

- Cobalt is the most scarce element of the 3d-series, that means it is a trace element (Mn: 1060 ppm; Fe: 62000 ppm; Co: 29 ppm; Ni: 99 ppm; Cu: 68 ppm). Obviously, Co has been "chosen" due to a specific functionality
- The corrin ring (15 atoms) is smaller as the porphyrin ring (16 atoms, i.e. there is one CH₂-unit less in the ring). Co-porphyrin complexes are thus no model complexes for cobalamines. The bonding plane is distorted planar.
- The only known stable metal-organic compound in living creatures is the coenzyme MeB₁₂, with MeB₁₂ being stable in water
- Vitamin B₁₂ was discovered as treatment for pernicious anaemia in the 20's of the 20th century. In the beginning, essences of animal liver was used, which core part is made up of cobalt
- Not until 1948, the synthesis of cyanocobalamin = vitamin B₁₂ was successful (does nit occur naturally in the body but exhibits therapeutic properties)
- Coenzyme B₁₂ is produced by animals and is stored in the liver
- The structure of vitamin B₁₂ and shortly after that of coenzyme B₁₂ was discovered by Dorothy Crowfoot-Hodgkins (Nobel price 1964)

Co-C-Bond Cleavage

Heterolytic cleavage Only in presence of reaction partner

By substitution with for example H_2O to Co(III) and a carbanion R⁻ Formation of a supernucleophil Co(I) and a carbocation R⁺

(EPR inactive)

(EPR inactive)

Homolytic cleavage

Formation of a reactive primary alkyl radical and low-spin [Ar]3d⁷ cobalt(II)

(EPR active)

Homolytic Bond Cleavage

Methylmalonyl-CoA Mutase

Methylmalonyl-CoA Mutase

Source: http://www1.tu-darmstadt.de/fb/ch/akplenio/moproc/metalloproteine/cobalamin/cob3.htm

Bioinorganic Chemistry Prof. Dr. Thomas Jüstel Slide 242

The Nickel Group

<u>Nickel</u> Ni ⁺ Ni ²⁺ Ni ³⁺	[Ar]3d ⁹ [Ar]3d ⁸ l.s. [Ar]3d ⁷ l.s.	strong reducing agent stable strong oxidising agent, low-spin
<u>Palladium</u> Extremely scarce Pd ²⁺ Pd ⁴⁺	[Kr]3d ⁸ l.s. [Kr]3d ⁶ l.s.	
<u>Platinum</u> Extremely scarce Pt ²⁺ Pt ⁴⁺	[Xe]4f ¹⁴ 3d ⁸ l.s. [Xe]4f ¹⁴ 3d ⁶ l.s.	Cis-platinum [PtCl ₂ (NH ₃) ₂] is cancerostatic Pt ⁴⁺ -complexes are kinetically extremely stable (OLEDs)

The Nickel Group

Nickel(II) chemistry

Hydrolysis $Ni^{2+} + 2 OH^{-} \rightarrow Ni(OH)_2 \downarrow (green gel)$ $K_L = 2 \cdot 10^{-16} mol^2/l^2$

Coordination compounds

 $Ni(OH)_2(s) + 6 NH_3(aq) \rightarrow [Ni(NH_3)_6]^{2+}(aq) + 2 OH^{-}(aq)$

 $Ni^{2+}(aq) + 2 H_2 dmg(aq) \rightarrow [Ni(Hdmg)_2](s) + 2 H^+(aq)$

OH H₃C H₂C OH

Dimethylglyoxime (H₂dmg)

Bioinorganic Chemistry Prof. Dr. Thomas Jüstel

Bis(dimethylglyoximato)nickel(II)

Slide 245

The Nickel Group

Nickel(II)-complexes

Typical for Ni²⁺ are octahedral, square-planar and tetrahedral complexes

Octahedral	Square-planar	Tetrahedral
H ₂ O	Strong ligands, such as CN ⁻ or	Cl
NH ₃	Hdmg that force a square-	Br
Ethylendiamine	planar arrangement	I [.]
Green, blue to violet	Yellow, red	Blue
Paramagnetic	Diamagnetic	Paramagnetic
$\frac{\uparrow}{\mathbf{d}_{x}^{2} \cdot \mathbf{y}^{2}} \frac{\uparrow}{\mathbf{d}_{z}^{2}}$ $\frac{\uparrow \downarrow}{\mathbf{d}_{xy}} \frac{\uparrow \downarrow}{\mathbf{d}_{xz}} \frac{\uparrow \downarrow}{\mathbf{d}_{yz}}$	$ \begin{array}{c} $	$\frac{\uparrow\downarrow}{d_{xy}} \stackrel{\uparrow}{\xrightarrow{d_{xz}}} \frac{\uparrow}{d_{yz}}$ $\frac{\uparrow\downarrow}{d_{x}^{2} \cdot v^{2}} \stackrel{\uparrow\downarrow}{\xrightarrow{d_{z}^{2}}}$
Bioinorganic Chemistry Prof. Dr. Thomas Jüstel		Slide 246

Nickel(II)-Proteins

- a) Ureases: Catalyse the decomposition of urea $O=C(NH_2)_2 + H_2O \rightarrow NH_3 + O=C(OH)NH_2 \rightarrow NH_3 + CO_2$ (Carbamic acid: unstable!)
- b) Ni-Fe-CO-hydrogenases: $2 H^+ + 2 e^- \leftrightarrows H_2$ $CO_2 + H_2 \leftrightarrows CO + H_2O$
- c) Acetyl-CoA-synthetases: HS-CoA + CO + methyl-cobalamin
 → MeC(O)S-CoA + H⁺ + cobalamin (Acetyl-CoA)
 ⇒ Acetyl-CoA = Precursor for
 - acetylation reactions
- d) Ni superoxid dismutase \rightarrow decomposition of O₂⁻ Radicals

The Copper Group

Copper			
Cu ⁰	[Ar]3d ¹⁰ 5s ¹	colloidal copper is antiseptic	
Cu ⁺	[Ar]3d ¹⁰	tends to disproportionate, labile c	omplexes
Cu ²⁺	[Ar]3d ⁹	moderate oxidising agents(glucose	e-detection)
Cu ³⁺	[Ar]3d ⁸	strong oxidising agent, stabile l.s	complexes
<u>Silver</u>			
Scarce			
Ag ⁰	[Kr]4d ¹⁰ 5s ¹	colloidal silver acts antimicrobial	
Ag ⁺	[Kr]4d ¹⁰	strong oxidising agent	
Ag^{2+}	[Kr]4d ⁹	very strong oxidising agent	
Gold Extremely scarce			
	[Xe]4f ¹⁴ 5d ¹⁰ 6s ¹	"Beaten gold" is approved for foo	$d \rightarrow E175$
Au ⁺	[Xe]4f ¹⁴ 5d ¹⁰	$Na[Au(CN)_2] \rightarrow Treatment of rhe$	umatoid arthritis
Au^{3+}	[Xe]4f ¹⁴ 5d ⁸	$H[AuCl_4] \rightarrow Extraction of purple$	of Cassius
Bioinorganic Chemisti	ry		Slide 248
Prof. Dr. Thomas Jüst	el		

The Copper Group

Copper Proteins

Some functions

- Electron transport, e.g. in respiratory chain (cytochrome-*c*-oxidase) and in the electron transport chain of PSII to PSI: plastocyanine + azurin
- Oxygen transport: haemocyanines
- Regulation of iron and copper resorption: ceruloplasmin
- One-electron redox processes, e.g. in nitrite reductase: $NO_2^- \rightarrow NO$
- Two-electron redox processes, e.g. in galactose oxidase: $RCH_2OH \rightarrow RCHO$
- Disproportionation: detoxification of superoxide anion radical by CuZn-superoxide dismutase: 2 O₂⁻ + 2 H⁺ → H₂O₂ + O₂
- Oxygenation of organic substrates, e.g. by tyrosinase:
 Tyrosine → dopa → indolquinone → melanin
- Acetyl-coenzym-A-synthetase: $CO + \{CH_3\} + CoA \rightarrow CH_3-C(O)-CoA)$
- As bio mineral: Atacamite = Cu(OH)₂·Cu(OH)Cl, which stem from teeth of marine blood worms (Genus glycera): Cu²⁺ with melanin

Copper Proteins: Type I "Blue Cu-Proteins"

Stru Opt EPH	acture: 5. spectra: R-spectra:	Trigonal coordination geometry; Cys, His and Met as ligands LMCT-bands (Cys ⁻ \rightarrow Cu ²⁺) at 600 nm ($\epsilon \sim 3000 \text{ M}^{-1}\text{cm}^{-1}$) 4 hyper-fine lines by coupling with cores (A = 5 mT) ⁶³ Cu (I = 3/2, N = 70%) ⁶⁵ Cu (I = 3/2, N = 30%)			
Fun	ction:	Mostly electr	on transport		
Exa	mple:	Plastocyanin	e, azurin		
	S(Met)		_0	0 312
	(Cys)S ²¹³ -Cu 20	N(His)	$(Cys)S \xrightarrow{Cu_{12}252} S(Met)$ 315 N(His)	(Cys)S-	204 198 N(His) Cu ²¹² 311 N(His)
	Plastocyanin,	рН са. 7	N(His) Plastocyanin, pH ca. 4.5	Azurin	S(Met) , pH ca. 7
Bio Pro	oinorganic Chemistr of. Dr. Thomas Jüste	y 1			Slide 251

Copper Proteins: Type II

Structure:	Tetragonal coordination g	geometry, i.e.	
	3 His- as well as additiona	al O- and N-functional	ligands
Opt. spectra:	3d-3d absorption bands		
EPR spectra:	4 hyperfine lines by coupl	ing with cores (A = 18	mT)
	63 Cu (I = 3/2, N = 70%)		
	65 Cu (I = 3/2, N = 30%)	O(Tyr) 2.69	HO(Tyr)
Function:	Oxydases and	$(\text{His})N \xrightarrow{\text{II}}_{Cu} 2.15 \xrightarrow{\text{N(His)}} \text{RCH}_2$	OH (His)N II N(His)
	oxygenases	H ₂ O ^{-2.8} 1.940	
Example:	Galactose oxidase:	s-O e	, H_2O CH_2R
	$R-CH_2OH \leftrightarrows$	H_2C	
	$R-CHO + 2 H^+ + 2 e^-$	$H_{20} \rightarrow e^{-}, 2H^{+}$	↓
	CuZn-		HO(Tyr)
	Superoxide dismutase:	(His)N > I > N(His)	(His)N II N(His)
	$2 \operatorname{O}_2^- + 2 \operatorname{H}^+ \rightarrow \operatorname{O}_2 + \operatorname{H}_2\operatorname{O}_2$		
		$\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & H \end{array} $	$\downarrow \bullet H$ (1yr)
		R [∼] `H	КП
Bioinorganic Chemist	ry el		Slide 252
Copper Proteins: Type III (according to Robin and Day)

Structure:Two copper centres of trigonal coordination3 His-ligands, one peroxide bridge and possibly additional oxy
bridges

Opt. spectra: LMCT-bands $(O_2^{2-} \rightarrow Cu^{2+})$ at 600 nm ($\epsilon \sim 1000 \text{ M}^{-1}\text{cm}^{-1}$)

EPR spectra:

Function: Example: EPR-inactive due to anti-ferromagnetic interactions between Cu²⁺-ions

h: O_2 -transport Haemocyanine $2 Cu^+ + O_2 \leftrightarrows$ $2 Cu^{2+} + O_2^{2-}$ "oxidative

addition"

Copper Proteins: Type A

The Zinc Group

Zinc Zn ⁰ Zn ²⁺	[Ar]3d ¹⁰ 5s ² [Ar]3d ¹⁰	strong reducing agents (distorted) tetrahedral labile comp	olexes	
<u>Cadmium</u>				
Scarce				
Cd ⁰	[Kr]4d ¹⁰ 5s ²	inhaled during smoking (20 cigare	ttes ~ 1 µg Cd)	
$\mathbf{C}\mathbf{d}^{2+}$	[Kr]4d ¹⁰	redox-stable, octahedral labile con	nplexes	
<u>Mercury</u>				
Extremely scarce				
Hg ⁰	[Xe]4f ¹⁴ 5d ¹⁰ 6s ²	Uptake via respiratory system (MA	$\mathbf{AK}\text{-value} = 0.1 \text{ mg/m}^3$	
Hg ⁺	[Xe]4f ¹⁴ 5d ¹⁰ 6s ¹	[Hg-Hg] ²⁺ is diamagnetic, Hg ₂ Cl ₂ is white and		
		decomposes upon irradiation \rightarrow 1	Hg (calomel = nicely	
		black), laxative which damages the	e kidneys	
Hg^{2+}	[Xe]4f ¹⁴ 5d ¹⁰	HgS: hexagonal black + cubic red modification		
HgO: amorphous yellow + crystalline red modification				
Bioinorganic Chemistr	v		Slide 255	

Zinc Proteins

Human:	2-2.5 g Zn per 70 kg body weight
Transport:	Resorbed Zn binds to serum albumin and transferrin
Proteins:	Carbonic anhydrase, carboxypeptidase, zinc finger, DNA- repair protein, etc. (several 100 known!)

Some functions

- Catalytic function: hydrolases (peptidases, phosphatases, lipases), synthetases, isomerases, ligases
- Structural functions: stabilisation of tertiary structure of proteins
- Hormonal regulation: the hexameric storage modification of insulin is stabilized by three Zn²⁺- ions coordinated to His, with three aqua ligands completing the coordination sphere of zinc and resulting in a CN of 6
- Ada DNA repair-protein: a zinc centre coordinating to four Cys, demethylises methyl phosphate
- Zinc storage: by thioneines (heavy metal-binding proteins)

Zinc Proteins

Zinc Proteins

Substrate activation

Transfer of methyl groups

e.g. in alcohol dehydrogenase

in Ada DNA repair-protein

Zinc Proteins: Carbonic Anhydrase

Velocity

- Without a catalyst
 k = 8.5 · 10³ M⁻¹s⁻¹, k = 2 · 10⁻⁴ s⁻¹
- Enzymatic
 Equilibrium adjustment ~10⁷ times faster
- Purpose is the transformation of CO₂
 to HCO₃⁻ at place of origin
 H₂CO₃ + Hb·O₂ ≒ HCO₃⁻ + Hb·H⁺ + O₂
- Modell complex: [Zn(tpzb)(OH)] with tpzb = trispyrazolyl borate

Cadmium: Biological Aspects of Cd²⁺

- Relation to zinc \rightarrow deactivation of zinc enzymes through expulsion of Zn²⁺ from the active centre
- Similar ionic radius to Ca²⁺

 → Interference with Ca²⁺-balance,
 e.g. disruption of Ca²⁺-ATPase
 and construction of bones
- Acute Cd-intoxications can be treated by glutathione

Source: P. O'Neill, Environmental Chemistry, 2nd Ed., Chapman & Hall, London 1993

Mercury: Biological Aspects of Hg and Hg²⁺

Lanthanides: MRT contrast enhancement agents – Eu^{2+} and $\underline{Gd^{3+}}$

Gadolinium

Gd³⁺[Xe]4f⁷acutely toxic, only in complexed form quite safe
extremely strong paramagnet, long electronic relaxation time
Reduction of relaxation time of protons of those aqua ligands,
coordinating to Gd³⁺

Gd³⁺⁻complexes as contrast agents for MRI scans

- [Gd(DOTA)]²⁻ "Dotarem" DOTA = 1,4,7,10-tetra azacyclo dodecantetraacetate
- [Gd(DTPA)(H₂O)]²⁻ "Magnevist" DTPA = diethylene triamine pentaacetate
- [Gd(gadoxetic acid)]²⁻ "Primovist"

Lanthanides: Other than Gd³⁺

<u>Trivalent io</u> La ³⁺	<u>ns</u> [Xe]4f ⁰	La-citrate as additive in agriculture to improve feed conversion rate in livestock Phosphate binder in hyperphosphatemia
Sm ³⁺	[Xe]4f ⁵	Antibacterial properties of samarium complexes ß-emitter ¹⁵³ Sm-EDTMP accumulates in bone metastases and has a half-life of 46.3 hours
Tb ³⁺	[Xe]4f ⁸	Luminescent bioassays: Long-lived and bright PL, possibility of multiplexing K ⁺ sensor complexes: Lit.: JACS 131 (2008) 434
Lu ³⁺	[Xe]4f ¹⁴	¹⁷⁷ Lu as emitter of low-energy gamma radiation for imaging and medium energy ß-particles for therapy LuPO ₄ nanoparticles doped with Pr ³⁺ and/or Nd ³⁺ as UV-C scintillator
Bioinorganic Prof. Dr. Thor	Chemistry nas Jüstel	Slide 264

Actinides

<u>Uranium</u>				
$\overline{\mathbf{U}^{0}}$	[Rn]5f ³ 6d ¹ 7s ²	reacts with hot water: U + 2 H ₂ O	$\rightarrow UO_2 + 2 H_2$	
		wide spread, each person comprise	e about 70 µg uranium	
U^{3+}	[Rn]5f ³	reducing		
U ⁴⁺	[R n]5f ²	UO_2^{2+} is the most stable ion in vivo	o or aqueous solution	
U ⁶⁺	[Rn]	Na ₂ U ₂ O ₇ "Yellow cake"		
<u>Plutonium</u>				
Pu ⁰	[Rn]5f ⁶ 7s ²			
Pu ³⁺	[Rn]5f ⁵	$[Pu(H_2O)_n]^{3+}$		
Pu ⁴⁺	[Rn]5f ⁴	[Pu(H ₂ O) _n] ⁴⁺ similar ion charge de	ensity as Fe ³⁺	
		incorporation in iron-containing metalloenzymes		
		PuO₂ in radionuclide batteries		
Pu ⁵⁺	[R n]5f ³	PuO_2^+		
Pu ⁶⁺	[R n]5f ²	PuO_2^{-2+}		
Pu ⁷⁺	[Rn]5f ¹	[PuO ₄] ⁻		
Bioinorganic Chemis Prof. Dr. Thomas Jüs	try itel		Slide 265	

12. Modell Complexes

Structural Models

- Contribution to the structural elucidation of metalloenzymes
- Mimicking optical spectra and magnetic properties

Functional Models

- Elucidation of enzymatic reaction mechanisms
- Investigation of catalytic activity
- Application for lab syntheses of small molecules

COSTA Ligand

13. Analytical Methods

Overview

- **1.** Diffraction methods (\rightarrow clarification of 3D structure)
 - **Problem: Crystallisation of proteins**
 - Complex structures limit the resolution to only ca. 0.2 nm, i.e. identification of hydrogen atoms is impossible
- 2. Electron microscopy (\rightarrow 3D structure with intermediate resolution > 1 nm)
- **3.** NMR-Spectroscopy (\rightarrow local structure and dynamic properties)
 - **Problem: Complexity of proteins**
- 4. X-ray absorption spectroscopy, e.g. EXAFS, XANES (\rightarrow local structure)
- 5. EPR-Spectroscopy (\rightarrow electronic properties of a species unpaired electrons)
- 6. Mößbauer Spectroscopy (→ identification of species with quadrupole moment)
- 7. Optical Spectroscopy (\rightarrow colour and electronic properties)
- 8. SQUID (\rightarrow characterisation of magnetic materials)
- 9. Cyclic voltammetry (→ characterisation of redox processes, e.g. electron transfers)
- 10. Vibrational spectroscopy, e.g. IR-, Raman-, Resonance-Raman-Spectroscopy
 - $(\rightarrow$ detection of functional groups)
 - Problem: Complexity of proteins

- a) Commercial Production and Biotechnology
- Anaerobe bacterial decomposition in sewage treatment plants or sediments: Fe, Ni, Co
- Bacterial leaching (e.g. > 25% of global copper production): Fe, Cu, Au, U

b) Environmental Chemistry

- Agricultural trace element problems: nitrogen fixation (Fe, Mo, V)
- Environmental impact: Pb, Cd, Hg, As, Al, Cr
- Pollutant decomposition and detoxification, e.g. by peroxidases: Fe, Mn, V
- Phytoextraction/-leaching: Cr, Mn, Co, Ni, Cu, Ag, Au, Zn, Cd, Hg, In, Ga, Ge, Sn, As, Eu, Gd, Tb, Lu, ...

c) Pharmacy

- Diagnostics: Fe³⁺, Gd³⁺, Ba²⁺, Tc³⁺, Xe
- Therapeutics: Pt, Au, Li, B, Gd, Bi, As, Hg
- "Cis-platinum", cis-PtCl₂(NH₃)₂, for the treatment of certain types of tumours
- Radio-iodine-therapy, e.g. in case of excessive thyroid function
- Metabolism through P-450-enzymes, metalloenzymes blocker: Fe, Zn

Bioinorganic Chemistry Prof. Dr. Thomas Jüstel Slide 268

d) Biomaterials

- Biocompatible (dental)implants
- Treatment of undesired demineralisation processes such as osteoporosis or caries: Ca²⁺, PO₄³⁻, F⁻
- Biocompatible light guides

e) Inorganic Food Ingredients

- Deficiency symptoms → supplementation: Fe, Co, Zn, Se, ...
- Intoxications → complexation, e.g. during EDTA-therapy
- Precaution \rightarrow iodine blockade through administration of KI, e.g. in case of a potential exposure to ¹³¹I
- Food Design \rightarrow TiO₂ nanoparticles

Phytoextraction/-leaching

Phytoextraction is to extract metal from soil substrates where plants capable of growing in high mineral environments

→ Zn, Cd, Hg, Pb, (Lit.: Chaney et al., 1998)

Phytomining concerns extracting metals from soil substrates by harvesting specially selected hyperaccumulating plants

 \rightarrow Ge, Ga, In, Sn,

(Lit.: Sheoran, S. Sheoran & Poonia, 2013)

Lit.: https://motherboard.vice.com/de/article/phytomining