7. Luminescent Materials

Contents

_5μm

Cd(S,Se) Quantum dots

7.1 History

7.2 Definition and Working Principle

7.3 Luminescence Mechanisms

7.4 Chemical Composition

7.5 Composition and Function

7.6 Application Areas

7.7 Band Emitting Phosphors

7.8 Line Emitting Phosphors

7.9 UV-A Phosphors

7.10 UV-B Phosphors

7.11 UV-C Phosphors

7.12 IR-A Phosphors

7.13 Future Trends

Incoherent Light Sources Prof. Dr. T. Jüstel

7.1 History

Some milestones

- Stone of Bologna: Barit (Galilei 1600)
- Discovery of phosphors (phosphorescence) (Brand 1669)
- First phosphor by reaction of shells with sulfur (Canton 1768)

- Application of a phosphor in combination with a Hg-discharge (Becquerel 1859)
- Patent on the use of CaWO₄ in fluorescent lamps (Edison 1896)
- Fluorescent lamps with MgWO₄ + (Zn,Be)₂SiO₄:Mn (GE 1938)
- Development of Ca₅(PO₄)₃(F,Cl):Sb,Mn (McKeag 1942)
- ZnS:Ag, (Zn,Be)₂SiO₄:Mn and Zn₃(PO₄)₂:Mn for first color CRT (1958)
- Fluorescent lamps with Eu- and Tb- phosphors (Verstegen 1974)
- First oxidic afterglow pigment SrAl₂O₄:Eu,Dy (Nemoto 1993)
- Nitride phosphors (Schnick 1995)
- K₂SiF₆:Mn⁴⁺ as red line emitter for LEDs (GE 2006)
- Transparent ceramics converter for LEDs (Philips 2007)
- Narrow band red nitride phosphor Sr[LiAl₃N₄]:Eu (Schnick 2014)

Incoherent Light Sources Prof. Dr. T. Jüstel

7.2 Definition and Working Principle

Definition

A phosphor is a micro-or nanoscale (in)organic pigment, that after excitation by radiation (NIR-,VIS-, UV-, X-ray-, gamma-), high-energy particles or matter vibrations (phonons), emits electromagnetic radiation beyond thermal equilibrium.

Under daylight

Upon excitation by electrons or UV radiation

Incoherent Light Sources Prof. Dr. T. Jüstel

7.2 Definition and Working Principle

Working principle

- **Excitation:** 1.
- Absorption of energy from an external source **Energy transfer (ET): To activator ions (luminescence) or defects (storage)** 2.
- **Relaxation :** 3.

Radiative: Emission (luminescence) \rightarrow Luminescent pigm. Non-radiative: Heat (phonons) \rightarrow Pigment

SEM image of (Y,Gd)BO₃:Eu

Typical particle size 1 - 10 µm

7.3 Luminescence Mechanisms

Type

Fluorescence Phosphorescence Afterglow (pers. luminescence)

Туре

Photoluminescence Radioluminescence Cathodoluminescence Electroluminescence Thermoluminescence Chemiluminescence Bioluminescence Sonoluminescence Mechanoluminescence **Physical process (time scale)** Spin-allowed transition (ns - μs) Spin-forbidden transition (ms) Thermal activation of charge carriers (s)

Excitation source UV photons x- and γ -rays, e⁻, e⁺, α Electrons **Electric field** Heat **Chemical reaction Biochemical reaction** Ultrasound **Mechanical energy Free radicals**

Applications

Fluorescent lamps x-ray imaging, CT, PET TVs, monitors LEDs, EL displays Age determination Emergency signals Fireflies, jellyfish

-

-

Organic phosphors (dyes or pigments)

Requirements and properties

- usually aromatic compounds: No C-H, N-H, or O-H bonds as v > 2900 cm⁻¹ yields MPR
- low energy $\pi \rightarrow \pi^*$ transitions
- quantum yield increases with number of aromatic rings and degree of condensation
- fluorescence especially favored for rigid structures
- fluorescence increase for bounding to a metal \rightarrow complex formation

Examples of selected efficient fluorescent compounds

Perylenes

[Al(8-hydroxyquinolinate)₃

[Ir(phenylpyridine)₃]

Chapter Luminescent Materials Slide 6

Inorganic phosphors (Luminescent pigments)

- Host material + Dopants + Defects
- Dopants = Activators + Sensitizers + Impurities
- Defects = 0-D (vacancies), 1-D (dislocations), 2-D (boundaries, surfaces), 3-D (pores)

Example, writings: $La_{1-x-y}Ce_{x}Tb_{y}(PO_{4}) = (La,Ce,Tb)PO_{4} = LaPO_{4}:Ce,Tb = Ce,Tb:LaPO_{4}$

Composition \Rightarrow Inorganic host + Dopants + Impurities + Defects																		
_1	E)opa	nts =	Acti	ivato	r/Se	nsitiz	ers (Impi	aritie	es) =	RE-,	, TM	-, an	d s ² -i	ions	18	
1 H	2								_			13	14	15	16	17	2 He	1
3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne	2
11 Na	12 Mg	3	4	5	6	7	8	9	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar	3
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	4
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe	5
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 KC	76 S	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn	6
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	Ds	nn Rg								7
				58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	6
				90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	7
Inc	Incoherent Light Sources Prof. Dr. T. Jüstel Chapter Luminescent Materials Slide 8																	

Luminescent pigment = Inorganic host + Dopants (Impurities) + Defects

Inorganic Host

 Selection in accordance to requirements defined by the application area: Excitation energy, absorption strength, chemical environment, temperature, pressure and so on

Dopants (Impurities)

- Selection and concentration depends on host lattice and application: Solubility, mobility, oxidation state stability, CT state location
- Co-dopants to enhance absorption

Defects

- Afterglow (persistent luminescence)
- Luminescence quenching (conc. and temperature dependent)
- Stability reduction

Luminescent pigment = Inorganic host + Dopants (s²⁻, TM, or RE ions) + Defects

Inorganic host

- Oxides Y_2O_3 , $Y_3Al_5O_{12}$, YBO_3 , YVO_4 , YPO_4 , $LaPO_4$, $BaMgAl_{10}O_{17}$, ...
- Sulfides ZnS, MgS, CaS, SrS, SrGa₂S₄, SrIn₂S₄, Y_2O_2S , Gd_2O_2S , ...
- Fluorides CaF₂, LiYF₄, K₂SiF₆, KYF₄, KY₃F₁₀, YOF, K₂NbF₇, ...
- Nitrides CaSiN₂, CaAlSiN₃, $Sr_2Si_5N_8$, La₃Si₆N₁₁, $SrSi_2N_2O_2$, $SrLiAl_3N_4$, ...

Dopants (impurities)

• $s^2 Ions$ $Sn^{2+}, Sb^{3+}, Tl^+, Pb^{2+}, Bi^{3+}$

V_C

V_A

Ι

F

- TM Ions Ti³⁺, V^{2+/3+}, Cr^{3+/4+}, Mn^{2+/4+}, Fe³⁺, Co²⁺, Ni²⁺, Cu^{+/2+}, Ag⁺, Au⁺
- **RE Ions** Ce³⁺, Pr³⁺, Nd³⁺, Sm^{2+/3+}, Eu^{2+/3+}, Gd³⁺, Tb³⁺, Dy³⁺, Er³⁺, Tm³⁺, Yb^{2+/3+}

Defects

- Cation vacancy
- Anion vacancy
- Interstitials
- Colour centers

Incoherent Light Sources Prof. Dr. T. Jüstel

Luminescent pigment = Inorganic host + Dopants (impurities) + Defects

Inorganic Host

- Coordination number and geometry
- Symmetry of activator sites
- Optical band gap
- Phonon spectrum

Dopants (impurities) and defects

- Concentration
- Phase diagram and miscibility gaps

Particle surface

- Zeta-potential
- Surface area, defects, and energy
- Coatings → Light in- and outcoupling

Particle morphology

- Shape
- Particle size distribution
- Agglomeration

Incoherent Light Sources Prof. Dr. T. Jüstel

Slide 11

7.5 Composition and Function

Most relevant physical properties

Photoluminescence (PL) spectra

Absorption and reflection spectra

Quantum yield (QY) (internal and external)

Stability and colour point consistency

Decay curves and afterglow (T-dependent)

Thermal quenching

Linearity (saturation)

Incoherent Light Sources Prof. Dr. T. Jüstel

7.5 Composition and Function

Composition: Listed by the activator (transition metal ions and s²-ions)

Activator	Host material	Emission at [nm]	Color	Applications
Cr ³⁺	Al ₂ O ₃ (Ruby) Ga ₃ Ga ₅ O ₁₂ (Garnet)	694	Red IR-A	Solid State Laser NIR LEDs
Mn ²⁺	Zn₂SiO₄ (Willemite) BaMgAl ₁₀ O ₁₇ (ß-Alumina)	525 515	Green Green	PDPs, CRTs PDPs, FLs
Mn ⁴⁺	Mg₄GeO _{5.5} F K₂SiF ₆	655 630	Deep Red Red	Hg high-pressure lamps LEDs
Fe ³⁺	LiAlO ₂	735	Red	FLs
Cu+	ZnS	530	Green	CRTs
Ag⁺	ZnS	450	Blue	CRTs
Sn ²⁺	(Sr,Mg) ₃ (PO ₄) ₂	630	Red	Hg high-pressure lamps
Sb ³⁺	(Sr,Ca) ₅ (PO ₄) ₃ (Cl,F)	480	Blue-Green	FLs
TI+	Nal Csl	415 560	Blue Yellow	x/γ-ray detectors x/γ-ray detectors
Pb ²⁺	BaSi ₂ O ₅ (Sanbornite) Sr ₂ MgSi ₂ O ₇ (Akermanite)	350 365	UV-A UV-A	FLs for tanning
Bi ³⁺	Bi ₄ Ge ₃ O ₁₂	480	Blue-Green	x/γ-ray detectors

Incoherent Light Sources Prof. Dr. T. Jüstel

7.5 Composition and Function

Composition: Listed by the activator (rare earth ions: Ce ... Yb)

Activator	Host material	Emission at (nm)	Color	Applications
	LaPO₄	320	UV-B	FLs for tanning
Ce ³⁺	YPO ₄	335, 355	UV-A	FLs for tanning
	Y ₃ Al ₅ O ₁₂ (Garnet)	560	Yellow	FLs, LEDs
D#3+	Gd ₂ O ₂ S	510	Green	Computer Tomography (CT)
PI	CaTiO ₃	610	Red	Field Emission Displays (FEDs)
Nd ³⁺	Y ₃ Al ₅ O ₁₂ (Garnet)	1064	IR-A	Solid State Laser
	SrB ₄ O ₇	368	UV-A	FLs for tanning
Eu ²⁺	BaMgAl ₁₀ O ₁₇	453	Blue	FLs, PDPs
	Sr ₄ Al ₁₄ O ₂₅	490	Blue-green	FLs, LEDs
E 113+	Y ₂ O ₃	611	Red	FLs
Eu	YVO ₄	615	Red	Hg high-pressure lamps
	(La,Bi)B ₃ O ₆	311	UV-B	FLs for photochemistry and
Gue	Lu ₃ Al ₅ O ₁₂ (Garnet)	314	UV-B	photomedicine
Th 3+	LaPO₄	544	Green	FLs
TD°.	CeMgAI ₁₁ O ₁₉	544	Green	FLs
	(Gd,Ce)MgB ₅ O ₁₀	544	Green	FLs
Yb ³⁺	Y ₃ Al ₅ O ₁₂ (Garnet)	980	IR-A	Solid State Laser

7.6 Application Areas

Application in

Excitation source

Scintillator crystals	Lu ₃ Al ₅ O ₁₂ :Pr (EOT)	γ-rays, particles		↑
X-rays intensifier		X-rays	Ho	
Cathode ray tubes		electrons	st n	Ex
Plasma screens		147, 172 nm	nate	cita
Xe-discharge lamps		172 nm	ria	tio
Hg-high pressure discharge	lamps	200 – 350 nm	_	n er
Hg-low pressure discharge la	amps (FLs)	185, 254 nm	Act	lerg
Emissive LCDs		370 – 400 nm	ivat	Sy
Phosphor converted light em	nitting diodes (pcLEDs)	370 – 480 nm	or	
Solid State Laser (SSL)		300 – 1000 nm		

Main application areas: Lighting, imaging, projection, detection, and sensing

7.6 Application Areas

Fluorescent lamps

Tomography

screens

Incoherent Light Sources Prof. Dr. T. Jüstel

7.6 Application Areas

Function	Application field				
Optical brighteners	Paint, paper, pulp, clothing, detergent				
Copy protection	Banknotes, stamps, credit cards, certificates, tickets				
Product protection	Pharmaceuticals, plastics				
Security labeling	Emergency exit lighting, emergency exits				
Advertising / visualization	Decoration, advertisement, logos				
Conversion of high-energy radiation or particles	X-ray films, CT, SPECT, positron emission tomography, EUV-amplifier				
Cosmetics	Dental ceramics, tanning lamps				
Marker for the analysis	Detection of nucleic acids + proteins				
Lithographie	Photocopier				
Photochemistry and biology	Water purification, disinfection, breeding boxes and cabinets, air pollution control				
Medicine	Diagnostics, photodynamic therapy				
ncoherent Light Sources	Chapter Luminescent Materials				

Prof. Dr. T. Jüstel

7.7 Band Emitting Phosphors

FWHM

Optical transitions (mostly interconfigurational)

- Charge-Transfer (LMCT or MLCT) †
- 5s²-5s¹⁵p¹, 6s²-6s¹6p¹
- 4fⁿ-4fⁿ⁻¹5d¹
- 3dⁿ-3dⁿ

Suitable activator ions/moieties

- VO_4^{3-}, WO_4^{2-}
- Sn²⁺, Sb³⁺, Tl⁺, Pb²⁺, Bi³⁺
- Ce³⁺, Eu²⁺, Yb²⁺
- Mn^{2+}, Cu^{2+}

Examples

- $(Zn,Be)_2SiO_4:Mn$
- CaWO₄
- MgWO₄
- $Ca_5(PO_4)_3(F,Cl):Sb,Mn$

Mineral type Willemite Scheelite Wolframite Apatite

7.8 Line Emitting Phosphors

7.9 UV-A Phosphors

Optical transitions BaSi₂O₅:Pb 1,0 -SrB₄O₇:Eu $4f^{n}-4f^{n-1}5d^{1}$ LaMgAl₁₁O₁₉:Ce Emission intensity [a.u.] 6s²-6s¹6p¹ • YPO :C Suitable activators Sr₂MgSi₂O₇:Pb Eu^{2+} >365 nm, 1 band Ce³⁺ **2** overlapping bands 0,2 **Pb**²⁺ 1 very broad band 0.0 300 360 380 320 340 400 420 440 280 460 Wavelength [nm] **Emission at Mineral type Commercial materials Application area** Magnetoplumbite LaMgAl₁₁O₁₉:Ce 345 nm **Tanning lamps** YPO₄:Ce 335, 355 nm **Xenotime Tanning lamps** ٠ BaSi₂O₅:Pb **Tanning lamps** 350 nm Sanbornit Sr₂MgSi₂O₇:Pb **Tanning lamps** Akermanite 365 nm SrB₄O₇:Eu 368 nm Borax **Black light lamps Incoherent Light Sources Chapter Luminescent Materials** Prof. Dr. T. Jüstel Slide 21

7.10 UV-B Phosphors

7.11 UV-C Phosphors

E	xamples	Emission at Mineral type			Application area			
•	YBO ₃ :Pr	265 nm	Vaterite	Di	sinfection			
•	YAlO ₃ :Pr	245 nm	Perovskite	Di	sinfection			
•	YPO ₄ :Bi	240 nm	Xenotime	Di	sinfection			
•	CaSO ₄ :Pb	230 nm	Anhydrite	Di	sinfection			
	Incoherent Light Sources Prof. Dr. T. Jüstel				Chapter Luminescent Materials Slide 23			

7.13 Future Trends

Efficiency: Light sources & displays

 \rightarrow External quantum yield (EQY)

 $\rightarrow \mu$ -particles \rightarrow ceramics \rightarrow single crystals

Lifetime/stability: Light sources & displays → Defect density↓ and particle coatings

Miniaturisation: μ-LED (displays) → PSD↓: Nanocrystals & Quantum Dots → Stability↑: Core-shell particles

Power density: HP LEDs & laser diodes → Decay time & ESA↓ redox stability↑ → Density of optical center N_{activator} [cm⁻³]↑

Novel spectra: NUV, NIR, human centric lighting → UV: (Al,Ga)N LED / Xe excimer lamps → NIR: (In,Ga)N LED + deep red/NIR emitter

Ref.: Brils Modell, A. Bril, Physica 15 (1949) 361