General Chemistry - Inorganic Chemistry

Contents

1. Introduction
2. Substances and Separation of Substances
3. Atoms and Molecules
4. Atomic Structure
5. Hydrogen
6. Noble Gases
7. Oxygen
8. Water and Hydrogen Peroxide
9. Ionic Bond and Salts
10. Covalent Bond
11. Metallic Bond
12. The Chemical Equilibrium
13. Acids and Bases
14. Redox Reactions

References

Basics

- E. Riedel, Allgemeine und anorganische Chemie deGruyter, 7. Auflage 1999
- C.E. Mortimer, U. Müller, Chemie

Thieme, 8. Auflage 2003

- P.W. Atkins, J.A. Beran, Chemie - einfach alles Wiley-VCH, 2. Auflage 1998
- M. Binnewies, M. Jäckel, H. Willner, G. Rayner-Canham, Allgemeine und Anorganische Chemie, Spektrum, 1. Auflage 2004
- A. Arni: Grundkurs Chemie I + II, Verlag Wiley-VCH, 4./3. Auflage, 2003

Advanced

- E. Riedel, Anorganische Chemie deGruyter, 6. Auflage 2004
- A.F. Hollemann, N. Wiberg, Lehrbuch der anorganischen Chemie deGruyter, 102. Auflage 2007
- J.E. Huheey, E.A. Keiter, R. Keiter, Anorganische Chemie deGruyter, 3. Auflage 2003

1. Introduction

What is Chemistry?

"Chemistry is the science of substances, their structure, their properties, and their conversion, which results in the formation of other substances" (Linus Carl Pauling 1956, Nobel prizes: Chemistry 1954, Peace 1962)

Example
$\mathrm{SiO}_{2}+2 \mathrm{Mg} \longrightarrow 2 \mathrm{MgO}+\mathrm{Si}$ (Powder)

Chemical process

Native quartz crystals
 (e.g. reduction)

Physical process (e.g. recrystallization and laser cutting)

1. Introduction

Chemistry has been exponentially growing for the last 200 years

Number of original publications traceable in Chemical Abstracts (CA) up to 2016
~ 42 mill. abstracts

Development of the number of publications per year
1830400
193055000

1985460000
1995700000
2001755000

More than $\mathbf{1 0 0}$ Mill. compounds and bio-sequences in CA database are registered today (2017):
Bio sequences
41\%
Polymers 3\%
Alloys
2\%
Organics $\quad \mathbf{4 7 \%}$
Inorganic $\quad \mathbf{2 \%}$
Coordination compounds $\mathbf{5 \%}$
Historical development of the CA database 1957
1990
2008
2009
2012
2015
2024

Start of database 10 Mill. compounds 40 Mill. compounds
50 Mill. compounds
70 Mill. compounds
100 Mill. compounds
193 Mill. compounds

2. Substances and Separation

Substances are Compounds, which chemical and physical Properties are independent of Size and Shape

Example: Stainless steel \rightarrow driller, knife, frames, scissors, screws...

Homogeneous substance
(uniform on a microscopic level)
Alloys (brass)
Solutions (NaCl-solution)
(Nanoscopic) Aerosols
Liquid solutions (ethanol in water)
Gas solutions (oxygen in water)
Pure substances

2. Substances and Separation

Physical Methods for Separation of Heterogeneous Substances

1. Differences in density

Solid-Solid
Solid-Liquid

Liquid-Liquid
2. Differences in particle size

Solid-Solid
Solid-Liquid
Solid-Gaseous

Re-slurry (washing of gold) sedimentation (1 G) centrifugation (up to $10^{4} \mathrm{G}$) separation (separating funnel)

2. Substances and Separation

Separation of Homogeneous Systems

1. Physical methods

Vaporising and condensation:
Cooling:
Condensation and vaporising:
Adsorption and desorption
Gas chromatography
Liquid chromatography
Paper chromatography
Centrifugation (gases)
seawater \rightarrow rainwater
salt solutions \rightarrow salt crystals
air $\rightarrow \mathrm{N}_{2}, \mathrm{O}_{\mathbf{2}}$, noble gases
dissolution of vaporisable substances
dissolution of solid substances
dissolution of solid substances (β-carotine)
${ }^{235 / 238} \mathrm{UF}_{6} \rightarrow{ }^{235} \mathrm{UF}_{6}+{ }^{238} \mathrm{UF}_{6}$
$\mathbf{M g}^{2+}, \mathbf{H g}^{2+}(\mathrm{aq})+\mathrm{S}^{\mathbf{2 -}} \rightarrow \mathbf{H g S} \downarrow+\mathbf{M g}^{2+}(\mathrm{aq})$ drying of noble gases or N_{2} via:
$\mathrm{P}_{4} \mathrm{O}_{10}+\mathbf{6} \mathrm{H}_{2} \mathrm{O} \rightarrow \mathbf{4} \mathrm{H}_{\mathbf{3}} \mathrm{PO}_{4}$

2. Substances and Separation

Classification of Substances

Heterogeneous substances
Homogeneous substances

1. Solutions
2. Pure substances
a. Compounds
b. Elements
system consists of different phases system consists of only one phase phases consists of different types of molecules phase consists of a single type of molecules mol. structure based on different types of atoms mol. structure based on a single type of atoms

All substances can be cleaved into the corresponding elements through dissociation processes at sufficiently high temperatures:
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \xrightarrow{\mathbf{0}^{\circ} \mathrm{C}} \mathbf{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \xrightarrow{\mathbf{1 0 0}}{ }^{\circ} \mathbf{C} \mathbf{C} \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \xrightarrow{\mathbf{2 5 0 0}}{ }^{\circ}{ }_{2}^{\mathrm{C}} \mathrm{H}_{\mathbf{2}}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{>10000}{ }^{\circ}{ }^{\circ} \mathrm{C} \mathrm{H}^{+}+2 \mathrm{O}^{8+}+20 \mathrm{e}^{-}$(Plasma)

3. Atoms and Molecules

Contents	
3.1	Law of mass preservation
3.2	Law of constant proportions
3.3	Law of multiple proportions
3.4	Law of equivalent proportions
3.5	Dalton's atom hypothesis
3.6	Volume ratio during chemical reactions
3.7	Relative mass of atoms
3.8	Molar masses
3.9	Absolute atomic masses

3.1 Law of Mass Preservation

During all Chemical Reactions the Total Mass of the Reactants Remains Constant (Antoine Lavoisier 1774)

Experimental confirmation by thorough determination of the mass of the educts and products (Hans Landolt 1908)
\Rightarrow change of mass $<10^{-5} \%$

But: chemical reactions are subject to energy conversion $\Delta \mathbf{E}$

Energy/mass equivalent:

$$
\mathbf{E}=\mathbf{m c}^{2} \quad(\text { Albert Einstein 1915) }
$$

Highly exothermic reaction: $\Delta \mathrm{E}=500 \mathrm{~kJ} \Rightarrow$ change of mass $\sim \mathbf{1 0}^{-9} \%$
\Rightarrow Change of mass during chemical reactions is beyond weighing accuracy (analytical balance $\sim 0.1 \mathbf{~ m g}$)

3.2 Law of Constant Proportions

3.3 Law of Multiple Proportions

The Mass Ratios of two Chemical Elements Reacting to one Compound are Related by an Integer Number (John Dalton 1803)

Examples for multiple mass ratios

Nitrogen oxides from $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO} \rightarrow \mathrm{NO}_{2} \ldots$

- $\mathrm{N} / \mathrm{O} \quad=\quad 1: 0.571=1: 1 \times 0.571$
- $\mathrm{N} / \mathrm{O} \quad=\quad 1: 1.142=1: 2 \times 0.571$
- $\mathrm{N} / \mathrm{O} \quad=\quad 1: 1.713=1: 3 \times 0.571$
- $\mathrm{N} / \mathrm{O} \quad=\quad 1: 2.284=1: 4 \times 0.571$
- $\mathrm{N} / \mathrm{O} \quad=\quad 1: 2.855=1: 5 \times 0.571$
$\mathrm{N}_{2} \mathrm{O}_{5} \quad$ Dinitrogen pentoxide

Carbon oxides

$-\mathrm{C} / \mathrm{O}$	$=$	$1: 1.333=1: 1 \times 1.333$		
-	C / O	$=$	$\quad 1: 2.666=1: 2 \times 1.333 \quad \mathrm{CO} \quad$	Carbon monoxide
:---				
CO_{2}	Carbon dioxide			

3.4 Law of Equivalent Proportions

Elements are United to Chemical Compounds with Respect to Certain Masses or integer Multiples thereof (Jeremia Benjamin Richter 1791)

By comparison of the mass ratios of nitrogen and oxygen in known nitrogen oxides with the corresponding ratios for the reaction of oxygen or nitrogen with hydrogen, it became clear that they only can be synthesized in certain integer ratios

Nitrogen oxides, again

$$
\mathrm{NH}_{3}: \mathbf{H}_{2} \mathrm{O}
$$

1. N/O	$=$	$1: 0.571$	$=$	$(3 \times 4.632):(1 \times 7.936) \sim 1.0 \mathrm{~N}: 0.5 \mathrm{O}$
2. N/O	$=$	$1: 1.142$	$=$	$(3 \times 4.632):(2 \times 7.936) \sim 1.0 \mathrm{~N}: 1.0 \mathrm{O}$
3. N/O	$=$	$1: 1.713$	$=$	$(3 \times 4.632):(3 \times 7.936) \sim 1.0 \mathrm{~N}: 1.5 \mathrm{O}$
4. N/O	$=$	$1: 2.284$	$=$	$(3 \times 4.632):(4 \times 7.936) \sim 1.0 \mathrm{~N}: 2.0 \mathrm{O}$
5. N/O	$=$	$1: 2.855$	$=$	$(3 \times 4.632):(5 \times 7.936) \sim 1.0 \mathrm{~N}: 2.5 \mathrm{O}$

\Rightarrow Concept of equivalent masses
\Rightarrow Atomic masses and oxidation values

3.5 Dalton's Atom Hypothesis

Atoms as elemental Structures of Matter (John Dalton 1808)

1. Elements cannot be split indefinitely, since they consist of tiny non-cleavable particles, the so-called atoms
2. All atoms of an element are of one sort (mass and shape)
3. Atoms of different elements possess different properties

$2 \mathrm{~A}+\mathrm{B}$	$\rightarrow \mathrm{A}_{2} \mathrm{~B}$
$\mathrm{~A}+\mathrm{B}$	$\rightarrow \mathrm{AB}$
$2 \mathrm{~A}+3 \mathrm{~B}$	$\rightarrow \mathrm{~A}_{2} \mathrm{~B}_{3}$
$\mathrm{~A}+2 \mathrm{~B}$	$\rightarrow \mathrm{AB}_{2}$
$2 \mathrm{~A}+5 \mathrm{~B}$	$\rightarrow \mathrm{~A}_{2} \mathrm{~B}_{5}$

etc.

Relative atom masses cannot be measured directly as long as the exact ratio of the atoms in the newly formed compound is not know

3.6 Volume Ratios During Chemical Reactions

Observations Regarding Gases (Joseph Louis Gay-Lussac 1808)

Every quantity of a substance equals a certain gas volume at a certain pressure and temperature, if that quantity is gaseous or can be vaporized

Stoichiometric law of mass \Rightarrow law of volume
\Rightarrow The volume ratio of two gaseous elements reacting to one chemical compound is constant and can be expressed by simple integer numbers

Examples

2 volumes of hydrogen +1 volume of oxygen $\rightarrow 2$ volumes of water vapour
1 volume of hydrogen +1 volume of chlorine $\rightarrow 2$ volumes of hydrogen chloride

3.7 Relative Atom Masses

Relative Atom Masses Can Be Derived by Experimentally Determined Mass Ratios During Chemical Reactions (See Chapter 3.2)

Mass ratios in water:
Ratio of atomic numbers in water:

$$
\mathrm{H} / \mathrm{O}=1: 7.936
$$

$$
\mathrm{H}_{2} \mathrm{O} \quad \Rightarrow 1 \mathrm{O}=15.872 \mathrm{H}
$$

Definition of a point of reference needed:
The carbon isotope ${ }^{12} \mathrm{C}$ was chosen by IUPAC in 1961 to be the reference point and exhibits a relative atom mass $A_{r}=12.000$

Element	Rel. atom mass $\mathbf{A}_{\underline{r}}$	
Hydrogen	1.008 u	Definition of the atomic mass unit:
Chlorine	35.453 u	$1 \mathrm{u}=1 / 12 \mathrm{~m}$ (${ }^{\mathbf{1 2}} \mathrm{C}$-atom)
Oxygen	15.999 u	
Nitrogen	14.007 u	Carbon for example also contains ${ }^{13} \mathrm{C}$ and ${ }^{14} \mathrm{C}$
Carbon	12.011 u	$\mathrm{A}_{\mathrm{r}}(\mathrm{C})>12$

3.8 Molar Masses

The Amount of an Element in Gram, which equals to the numerical Value of the relative Atom, always contains the same Number of Atoms, i.e. \mathbf{N}_{A} Atoms

The mass of one mole of a substance is called the molar mass, M. The amount of that substance is thus given by:

$$
\mathbf{n}=\mathbf{m} / \mathbf{M}
$$

The corresponding particle count is:

$$
\mathbf{N}=\mathbf{n} \cdot \mathbf{N}_{\mathbf{A}}
$$

$$
\begin{aligned}
& M=\text { Molar mass }[\mathrm{g} / \mathrm{mol}] \\
& \mathbf{m}=\text { Mass }[\mathrm{g}] \\
& \mathbf{n}=\text { Amount of substance [mol] } \\
& \mathbf{N}_{\mathrm{A}} \text { = Avogadro-constant [particles/mol] } \\
& \mathbf{N} \text { = Particle count }
\end{aligned}
$$

Calculation of molar masses:
$\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)=2 \mathrm{M}(\mathrm{H})+\mathrm{M}(\mathrm{O})=2 * 1.008 \mathrm{~g} / \mathrm{mol}+15.999 \mathrm{~g} / \mathrm{mol}=18.015 \mathrm{~g} / \mathrm{mol}$
$M\left(\mathrm{CO}_{2}\right)=\mathrm{M}(\mathrm{C})+2 \mathrm{M}(\mathrm{O})=12.011 \mathrm{~g} / \mathrm{mol}+2 * 15.999 \mathrm{~g} / \mathrm{mol}=44.009 \mathrm{~g} / \mathrm{mol}$

3.9 Absolute Atom Masses

The absolute Atom Masses are given by the Division of the Molar Mass by the Avogadro Constant, \mathbf{N}_{A}

Determination of the Avogadro-constant necessary Unit cell of copper (cubic-face-centered)
Density $\rho=\frac{m}{V}=\frac{4 M(C u)}{N_{A} a^{3}}=8.93 \mathrm{gcm}^{-3}$
$\Rightarrow \quad \mathrm{N}_{\mathrm{A}}=\frac{4 \mathrm{M}(\mathrm{Cu})}{\rho \mathrm{a}^{3}}=6.02214 \cdot 10^{23} \mathrm{~mol}^{-1}$
$\mathrm{a}=$ lattice constant of $\mathrm{Cu}=3.62 \cdot 10^{-8} \mathrm{~cm}=3.62 \AA$

Example

$$
\begin{aligned}
\mathrm{m}\left({ }^{12} \mathrm{C}\right) & =\mathrm{M}\left({ }^{12} \mathrm{C}\right) / \mathrm{N}_{\mathrm{A}} \\
& =12.0 \mathrm{~g}^{*} \mathrm{~mol}^{-1} / \mathrm{N}_{\mathrm{A}} \\
& =1.99269 * 10^{-23} \mathrm{~g}
\end{aligned}
$$

3.9 Absolute Atom Masses

The Absolute Atom Masses can be Calculated by Means of the Atomic Mass Unit, u

Atomic mass unit

$$
1 \mathrm{u}=1 / 12 \cdot \mathrm{~m}\left({ }^{12} \mathrm{C}\right)=1.66054 \cdot 10^{-24} \mathrm{~g}
$$

Element	Rel. atom mass A $_{r}$ Molar mass [g/mol] Abs. atom mass [$\left.10^{-24} \mathrm{~g}\right]$		
Hydrogen	1.008 u	1.008	1.678
Chlorine	35.453 u	35.453	58.871
Oxygen	15.999 u	15.999	26.567
Nitrogen	14.007 u	14.007	23.259
Carbon	12.011 u	12.011	19.945

In day-to-day life only relative atom and molecule masses or atom and molecule weights are used. Strictly speaking, the term weight is inadmissible, because weight is dependent on the gravitational field, in contrary to mass.

4. The Atomic Structure

Contents
 4.1 Fundamental Particles
 4.2 Atomic Nuclei and Chemical Elements
 4.3 Isotopes
 4.4 Mass Defect - Stability of Matter
 4.5 Radioactive Decay
 4.6 Nuclear Reactions
 4.7 Origin and Abundance of the Elements
 4.8 Quantum Theory according to Planck
 4.9 Atomic Spectra
 4.10 Bohr's Atomic Model
 4.11 The Wave Character of Electrons
 4.12 Eigen Functions of the Schrödinger-Equation
 4.13 Quantum Numbers
 4.14 Energies of the Orbitals
 4.15 Structure of the Periodic Table

4.1 Fundamental Particles

Fundamental Particles are the smallest Building Blocks of Matter, which cannot be disassempled into smaller Components

Some historical discoveries of particle physics
1808 J. Dalton Atomic hypothesis
1897 J.J. Thomson Electrons + ions

1909 R.A. Millikan Determination of unit charge
1913 E. Rutherford Proton
1932 J. Chadwick Neutron
1934 W. Pauli Neutrino-Postulate (B-decay)
1940

1970
1964 M. Gell-Mann
Mesons, baryons (cosmic radiation + particle accelerator)

1995 Fermi-Lab Quark-postulate

2013 CERN/LHC Detection of Top-quark Exp. proof of Higgs-Boson

4.1 Fundamental Particles

Structure of Matter

Properties of atomic building blocks

Particle	Electron	Proton	Neutron
Symbol	e	p	n
Mass	$\mathbf{0 . 9 1 0 9 \cdot 1 0 ^ { - 2 7 } \mathrm { g }}$	$1.6725 \cdot 10^{-24} \mathrm{~g}$ $\mathbf{9 3 8 . 2 7} \mathrm{MeV}$	$1.6725 \cdot 10^{-24} \mathrm{~g}$ 939.55 MeV
Charge	-e	+e	$\mathbf{0}$
	$-1.602 \cdot 10^{-19} \mathrm{C}$	$1.602 \cdot 10^{-19} \mathrm{C}$	0

Unit charge $\mathrm{e}=1.602 \cdot 10^{-19} \mathrm{C}$
Mass can also be expressed in terms of energy by $\mathrm{E}=\mathrm{mc}^{2}$ with $1 \mathrm{eV}=1.602 \cdot 10^{-19} \mathrm{~J}$
or $1 \mathrm{MeV}=1.602 \cdot 10^{-13} \mathrm{~J}$

4.1 Fundamental Particles

Standard Model of Particle Physics (Charge) (Spin)					Fermions $=$ Leptons + anti-leptons
$\begin{aligned} & \text { Electron e } \\ & 0.511 \mathrm{MeV} \text {, -e, } 1 / 2 \end{aligned}$		$\begin{aligned} & \text { Myon } \mu \\ & \text { 105.7 MeV, -e, } 1 / 2 \end{aligned}$	$\begin{aligned} & \text { Tau } \tau \\ & 1777 \mathrm{MeV} \text {, -e, } 1 / 2 \end{aligned}$		
$\begin{aligned} & \text { Electron-Neutrino } v_{\mathrm{e}} \\ & <2.2 \mathrm{eV}, 0,1 / 2 \end{aligned}$		$\begin{aligned} & \text { Myon-Neutrino } v_{\mu} \\ & <0.17 \mathrm{MeV}, 0,1 / 2 \end{aligned}$	$\begin{aligned} & \text { Tau-Neutrino } v_{\tau} \\ & <15.5 \mathrm{MeV}, 0,1 / 2 \end{aligned}$		
$\begin{aligned} & \text { Up u } \\ & 2.4 \mathrm{MeV},+2 / 3 \mathrm{e}, 1 / 2 \end{aligned}$		$\begin{aligned} & \text { Charme c } \\ & 1270 \mathrm{MeV},+2 / 3 \mathrm{e}, 1 / 2 \end{aligned}$	Top t $171200 \mathrm{MeV},+2 / 3 \mathrm{e}, 1 / 2$		Quarks + anti-quarks
Down d4.8 MeV, -1/3 e, ½		Strange s $104 \text { MeV, -1/3 e, ½ }$	$\begin{aligned} & \text { Bottom b } \\ & \mathbf{4 2 0 0} \mathrm{MeV},-1 / 3 \mathrm{e}, 1 / 2 \end{aligned}$		
Power	Strong nuclear power	Electromagnetism		Weak nuclear power	Gravitation
Carrier	Gluon	Photon		W- and Z-Boson	Graviton
Effect on	Quark	Quarks and charged leptons		Quarks and leptons	All particles
Responsible for	Cohesion of nucleons	Chemistry, electricity, magnetism		Radioactivity, nuclear fusion	Planetary systems, galaxy(cluster)
General Chemistry Prof. Dr. T. Jüstel					Slide 23

4.2 Atomic Cores and Chemical Elements

A Chemical Element is Made up from Atomic Nuclei with the Same Number of Protons (Proton Number or Atomic Number Z)

Nomenclature

${ }_{1} \mathrm{H}$	1 Proton
${ }_{2} \mathrm{He}$	2 Protons
${ }_{3} \mathrm{Li}$	3 Protons

Sorts of atoms that can be exactly characterized by the number of protons and neutrons are called nuclides
${ }^{1} \mathrm{H}=1$ Proton
${ }^{2} \mathrm{H}=1$ Proton +1 Neutron (deuterium)
${ }^{3} \mathrm{H}=1$ Proton +2 Neutrons (tritium)
${ }^{4} \mathrm{He}=2$ Protons +2 Neutrons
The charge of the atoms is defined by the number of electrons
Hydrogenium cation
$\mathrm{H}^{+}=1$ Proton
Hydrogen atom $\quad \mathbf{H}=\quad 1$ Proton +1 electron
Hydride anion $\quad \mathbf{H}^{-}=\quad 1$ Proton +2 electrons

4.3 Isotopes

Nuclides with the Same Number of Protons but Different Number of Neutrons are called Isotopes

Atomic number	Element	Nuclide symbol	Number of protons	Number of neutrons	Nuclide mass	Fraction of atomic number
1	Hydrogen H	$\begin{aligned} & { }^{1} \mathrm{H} \\ & { }^{2} \mathrm{H} \\ & { }^{3} \mathrm{H} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1.0078 \\ & 2.0141 \end{aligned}$	$\begin{aligned} & 99.985 \\ & 0.015 \\ & \text { Traces } \end{aligned}$
2	Helium He	$\begin{aligned} & { }^{3} \mathrm{He} \\ & { }^{4} \mathrm{He} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 3.0160 \\ & 4.0026 \end{aligned}$	$\begin{aligned} & 0.00013 \\ & 99.99987 \end{aligned}$
3	Lithium Li	$\begin{gathered} { }^{6} \mathrm{Li} \\ { }^{7} \mathrm{Li} \end{gathered}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 6.0151 \\ & 7.0160 \end{aligned}$	$\begin{aligned} & 7.42 \\ & 92.58 \end{aligned}$
4	Beryllium Be	${ }^{9}$ Be (Pure element)	4	5	9.0122	100.0
5	Boron B	$\begin{gathered} { }^{10} \mathrm{~B} \\ { }^{11} \mathrm{~B} \end{gathered}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 10.0129 \\ & 11.0093 \end{aligned}$	$\begin{aligned} & 19.78 \\ & 80.22 \end{aligned}$
6	Carbon C	$\begin{aligned} & { }^{12} \mathrm{C} \\ & { }^{13} \mathrm{C} \\ & { }^{14} \mathrm{C} \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 6 \\ & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & 12.0000 \\ & 13.0034 \end{aligned}$	$\begin{aligned} & 98.89 \\ & 1.11 \\ & \text { Traces } \end{aligned}$
General Chemistry Prof. Dr. T. Jüstel						Slide 25

4.3 Isotopes

The average atomic Mass of an Element can be Derived from the Atomic Masses of the Isotopes weighted by the natural Isotope Distribution
$A_{r}(E)=X_{1} \cdot A_{r}\left(N_{1}\right)+X_{2} \cdot A_{r}\left(N_{2}\right)+\ldots . .+X_{n} \cdot A_{r}\left(N_{n}\right) X_{1}+X_{2}+\ldots .+X_{n}=1$
$X_{n}=$ Atomic number fraction of nuclides \mathbf{N}_{n}
For carbon one derives:
$\mathrm{A}_{\mathrm{r}}(\mathrm{C})=(98.89 \cdot 12.000 \mathrm{u}+1.11 \cdot 13.0034 \mathrm{u}) / 100=12.011 \mathbf{u}$
Most elements are mixed elements, whereas cores with 2, 8, $20,28,50$, and 82 protons are particularly stable
\Rightarrow High number of stable isotopes
$\Rightarrow{ }_{50} \mathrm{Sn}$ Isotope: ${ }^{112} \mathrm{Sn},{ }^{114} \mathrm{Sn},{ }^{115} \mathrm{Sn},{ }^{116} \mathrm{Sn},{ }^{117} \mathrm{Sn}$, ${ }^{118} \mathrm{Sn},{ }^{119} \mathrm{Sn},{ }^{120} \mathrm{Sn},{ }^{122} \mathrm{Sn},{ }^{124} \mathrm{Sn}$

The distribution of isotopes in a mixed element strongly depends on the origin (location), since physical and geological processes can cause enrichment of isotopes \Rightarrow Age determination, e.g. with help of amount of ${ }^{14} \mathrm{C}$)

4.4 Mass Defect - Stability of Matter

The Mass of the Atomic Nuclei of all Nuclides is smaller than the Sum of the Masses of the individual Core Units (Mass Defect = Nuclear Binding Energy)

Example: ${ }^{4} \mathrm{He}$-cores
Calculated Mass $=2 \mathrm{p}+2 \mathrm{n}=4.0319 \mathrm{u}$ Experimentally found =
Mass defect =
Difference $=\mathbf{E}=\mathbf{m c}{ }^{2}$
\Rightarrow The formation of 4.0015 g He-cores from protons and neutrons yields ca. $2.7 \cdot 10^{9} \mathrm{~kJ}$

For comparison

$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+393.77 \mathrm{~kJ} / \mathrm{mol}$
\Rightarrow For the production of $\mathbf{2 . 7} \cdot \mathbf{1 0}^{\mathbf{9}} \mathbf{~ k J}$ of energy 82.2 t of C must be burnt!

Fusion of core particles to atomic nucleus \Rightarrow nuclear fusion

4.4 Mass Defect - Stability of Matter

An increasing Number of Nucleons Leads to stronger Core Forces acting between Adjacent Nucleons

Light atom cores N / Z ~ 1.0

Heavy atom cores N/Z ~ 1.6

An increasing number of protons, which repulsive interactions are fa-reaching and have an effect on all core protons, leads to a less strong cohesion of the nuclear building blocks. Above a certain number of protons atomic nuclei are thus not stable any more
\Rightarrow Irradiation of core particles (e.g. He-cores) \Rightarrow Radioactivity

4.4 Mass Defect - Stability of Matter

The Stability of the atomic Nucleus and Nucleons is due to the strong Nuclear Power, which counteracts the Repulsive Coulomb Power between the Protons

Range of the strong nuclear power $\sim \mathbf{1 0}^{\mathbf{- 1 5}} \mathrm{m}>$ repulsive Coulomb-power

Particle	Half-life period $\mathbf{t}_{1 / 2}$	Decay product	Core binding energy / Nucleon	Consequence
Electron	stable	-	-	elemental
Proton	$>10^{31} \mathrm{a}$	γ-radiation	-	Non-elemental
Neutron	10.4 min	$\mathrm{p}+\mathrm{e}+\mathrm{v}_{\mathrm{e}}$	-	free neutrons do not exist
${ }^{56} \mathrm{Fe}-\mathrm{core}$	stable	-	8.8 MeV $=$ maximum	Nuclear fusion till Fe yields energy
${ }^{238} \mathrm{U}$-core	$4.5-10^{9} \mathrm{a}$	${ }^{234} \mathrm{Th}+{ }^{4} \mathrm{He}$ $(\alpha-\mathrm{radiation})$	7.5 MeV	Nuclear fission yields energy

4.5 Radioactive Decay

Radioactive Decay Processes obey first order Kinetics, i.e. the Number of Disintegrated Nuclei per Time Slot, dN/dt, is Proportional to the total Number of Nuclei Present, N
$\mathbf{d N} / \mathbf{d t}=-k \cdot N \quad$ with $k=$ decay constant
$\Rightarrow \mathrm{dN} / \mathrm{N}=-\mathrm{k} \cdot \mathrm{dt}$ and $\mathrm{t}=$ time

Integration yields:
$\ln N-\ln N_{0}=-k \cdot t$
$\Rightarrow \ln \left(\mathbf{N}_{\mathbf{0}} / \mathrm{N}\right)=\mathbf{k} \cdot \mathbf{t}$

Half-life time $\mathrm{t}_{1 / 2}: \mathbf{N}=\mathrm{N}_{0} / 2$
$\ln 2=k \cdot t_{1 / 2}$
$\mathrm{t}_{1 / 2}=(\ln 2) / \mathrm{k}=0.693 / \mathrm{k}$

4.6 Nuclear Reactions

Nuclear Reactions Represent the Primary Energy Source in the Cosmos and are Responsible for the Formation of the Elements

Nuclear fusion

- Stellar energy production ${ }^{1} \mathrm{H} \rightarrow{ }^{4} \mathrm{He} \rightarrow{ }^{12} \mathrm{C} \rightarrow{ }^{56} \mathrm{Fe}$ Sun converts 4 mill. t mass/s into energy $\sim \mathbf{m}$ (Cheops)
- Supernova explosions

$$
\text { r-Prozess } \rightarrow{ }^{256} \mathbf{L r}
$$

Song „Stardust" von Crosby, Stills, Nash \& Young: „We
 are stardust, we are golden, we are billion year old carbon"

- Thermonuclear weapons ${ }^{2} \mathrm{H}+{ }^{3} \mathrm{H} \rightarrow{ }^{4} \mathrm{He}+\mathrm{n}$ Test on Bikini atoll (H-Bomb Bravo 1954)

4.6 Nuclear Reactions

Nuclear Reactions as Fission are used for electrical Energy Production

Nuclear Fission

- Earth's warmth ($\left.{ }^{238} \mathbf{U},{ }^{232} \mathbf{T h},{ }^{40} \mathrm{~K}\right) \rightarrow$ geothermal energy, plate tectonics, Argon release, and volcanism

- Nuclear weapons $\left({ }^{235} \mathbf{U},{ }^{239} \mathbf{P u}\right)$
- Nuclear power stations ($\left.{ }^{235} \mathbf{U},{ }^{239} \mathbf{P u}\right)$ ${ }^{235} \mathrm{U}+\mathrm{n} \rightarrow{ }^{\mathbf{9 0}} \mathrm{Kr}+{ }^{144} \mathbf{B a}+\mathbf{2 n}$
$1 \mathrm{~g}{ }^{235} \mathrm{U}$ yields $8.1 \cdot 10^{7} \mathrm{~kJ}$, which equals to the energy released by combustion of 2.4 t Carbon

4.7 Origin and Abundance of the Elements

All Elements heavier than Hydrogen are formed due to Nuclear Fusion

Big Bang
$>10^{10} \mathrm{~K} \Rightarrow \mathbf{9 0 \%} \mathrm{H}, \mathbf{1 0 \%} \mathrm{He}$

Stars
$>1 \cdot 10^{7} \mathrm{~K} \Rightarrow \quad$ Fusion of hydrogen
$4{ }^{1} \mathrm{H} \rightarrow{ }^{4} \mathrm{He}+2 \mathrm{e}^{+}+\mathrm{v}_{\mathrm{e}}+26.72 \mathrm{MeV}$
$>1 \cdot 10^{8} \mathrm{~K} \Rightarrow \quad$ Fusion of helium
$>5 \cdot 10^{8} \mathrm{~K} \Rightarrow \quad$ Fusion of carbon
$3{ }^{4} \mathrm{He} \rightarrow{ }^{12} \mathrm{C}+\gamma \quad+7.28 \mathrm{MeV}$
${ }^{12} \mathrm{C}+{ }^{4} \mathrm{He} \rightarrow{ }^{16} \mathrm{O}+\gamma \quad+7.15 \mathrm{MeV}$
${ }^{16} \mathrm{O}+{ }^{4} \mathrm{He} \rightarrow{ }^{20} \mathrm{Ne}+\gamma \quad+4.75 \mathrm{MeV}$
..... till ${ }^{56} \mathrm{Fe}$ (nucleus of lowest energy)
Supernovae
$>3 \cdot 10^{9} \mathrm{~K} \Rightarrow \quad$ Formation of heavier elements until ${ }^{256} \mathrm{Lr}$
(Observed at 1054 by Chinese, 1572 by Tycho Brahe, 1604 by Johannes Kepler)

Today: Distribution of the elements in cosmos is $\mathbf{8 8 . 6 \%} \mathbf{H , 1 1 . 3 \%} \mathbf{H e}, \mathbf{0 . 1 \%}$ "metals"

4.7 Origin and Abundance of the Elements

The Probability Distribution of the Elements in terrestrial Atmos-, Bio-, Hydro-, Kryo- and Lithosphere is completely different to that in the Universe

Cause: Process of differentiation

1. Formation of planetary systems

Centre: sun with H and He
Periphery: planets and moons with H, He and "metallic dust"
2. Formation of planets
inner planets: small with low gravity \Rightarrow elements $>\mathrm{Li}$
Core: heavy elements $\Rightarrow \mathrm{Fe}$, Ni and other metals
Crust: light elements \Rightarrow silicates, aluminosilicates outer planets: large with high gravity \Rightarrow light elements: $\mathbf{H}, \mathbf{H e}, \mathrm{CH}_{4}, \mathrm{NH}_{3} \ldots$
3. Evolution of planetary atmosphere (primordial \rightarrow todays atmosphere)

Venus:	$\mathrm{CO}_{2} / \mathrm{N}_{2} / \mathrm{H}_{2} \mathrm{O}$	$\mathrm{CO}_{2} / \mathrm{N}_{2}$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow 2 \mathrm{H} \uparrow+\mathrm{O} \uparrow$
Earth:	$\mathrm{CO}_{2} / \mathrm{N}_{2} / \mathrm{H}_{2} \mathrm{O}$	$\mathrm{N}_{2} / \mathrm{O}_{2} / \mathrm{Ar}$	$\mathrm{CO}_{2} \rightarrow$ carbonates \downarrow
			$\mathrm{CO}_{2} \rightarrow \mathrm{C}+\mathrm{O}_{2}$ (biol. active)
			$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{O}$ (l) (oceans)
Mars:	$\mathrm{CO}_{2} / \mathrm{N}_{2} / \mathrm{H}_{2} \mathrm{O}$	$\mathrm{CO}_{2} / \mathrm{N}_{2}$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \downarrow$

4.7 Origin and Abundance of the Elements

Abundance of Elements in Earth's Shell (Atmos-, Bio-, Hydro-, Kryo- and Lithosphere) in Weight Percentage

Abundance [\%]	Element(s)
48.9	O
26.3	Si
10-1	Al, Fe, Ca, Na, K, Mg
1-0.1 (1\%)	H, Ti, Cl, P
0.1-0.01	Mn, F, Ba, Sr, S, C, N, Zr, Cr
0.01-10-3	Rb, Ni, Zn, Ce, Cu, Y, La, Nd, Co, Sc, Li, Nb, Ga, Pb, Th, B
$10^{-3}-10^{-4}(1 \mathrm{ppm})$	Pr, Br, Sm, Gd, Ar, Yb, Cs, Dy, Hf, Er, Be, Xe, Ta, Sn, U, As, W, Mo, Ge, Ho , Eu
$10^{-4}-10^{-5}$	Tb, I, Tl, Tm, Lu, Sb, Cd, Bi, In
$<10^{-5}$	Hg, Ag, Se, Ru, Te, Pd, Pt, Rh, Os, Ne, He, Au, Re, Ir, Kr....

From left to right with decreasing probability (A.F. Hollemann, N. Wiberg)

4.8 Quantum Theory According to Planck

Electromagnetic Radiation is Described as a Particle Flux, whereby the Energy of a Particle cannot be arbitrary, but must be a Multiple of a Quantum (Smallest Energy Value) (Max Planck 1900)

$$
\begin{array}{l|l}
\mathrm{E}=\mathrm{h} \nu & \text { with } \mathrm{h}=6.626 \cdot 10^{-34} \mathrm{Js} \text { (Planck's constant) }
\end{array}
$$ and $v=$ frequency $\left[\mathrm{s}^{-1}\right]$

$$
\mathbf{E}=\mathrm{hc} / \lambda
$$

Speed of light: $c=\lambda \nu=2.9979 \cdot 10^{8} \mathrm{~ms}^{-1}$

$$
\left(1 \mathrm{~s} \sim 30 \mathrm{~cm}, 1 \mathrm{y} \sim 1 \cdot 10^{13} \mathrm{~km}, 13.8 \mathrm{~Gy} \sim 13.8 \cdot 10^{22} \mathrm{~km}\right)
$$

The energy of a light quantum (photons) is proportional to the frequency or antiproportional to the wavelength

Calculation of the number of photons for $1 \mathrm{~W}\left(1 \mathrm{Js}^{-1}\right)$ optical photons at 550 nm Energy of a photon: $\quad E=h c / \lambda=h c / 550 \cdot 10^{-9} \mathrm{~m}=4^{*} 10^{-19} \mathrm{~J}$ per photon
\Rightarrow Number of photons: Total energy/energy of a photon

$$
=1 \mathrm{Js}^{-1} / 4^{*} 10^{-19} \mathrm{~J}=2.5^{*} 10^{18} \text { photons } \mathrm{s}^{-1} \sim 4.2 \mu \mathrm{~mol} \text { photons }
$$

4.9 Atomic Spectra

During the Splitting of Light discrete Absorption and Emission Lines occur in the Spectrum (characteristic Lines for every Elements)

Solar or stellar light $\quad \Rightarrow$ Fraunhofer-Lines (Joseph von Fraunhofer 1820)

4.10 Bohr's Atomic Model

First Attempt to describe the Electronic Shell of Atoms (Niels Bohr 1913)

Bohr's Model for the H-atom

- Nucleus much more heavy than electron (\Rightarrow at rest)
- Electron ($\mathbf{m}_{\mathbf{e}}, \mathbf{e}$) circles around nucleus with an orbit radius, r, and an orbit velocity, v
- Electron obeys centrifugal force: $\mathbf{F}_{\mathbf{Z}}=\mathbf{m}_{e} \mathbf{v}^{\mathbf{2}} / \mathbf{r}$
- Electron is attracted by nucleus: $\mathbf{F}_{\mathrm{el}}=\mathbf{e}^{\mathbf{2}} / 4 \pi \varepsilon_{0} \mathbf{r}^{\mathbf{2}}$
- For stable orbits: $\mathbf{F}_{\mathbf{Z}}=-\mathrm{F}_{\text {el }}$
- Radius of first orbit K: $\mathbf{a}_{\mathbf{0}}=\mathbf{5 2 . 7} \mathbf{~ p m}$

Bohr's postulate

Not every orbit is allowed. Only orbits which orbital angular momentum, $L=m \cdot r v$, is a multiple, n, of the quantized angular momentum, $h / 2 \pi$, are stable

$$
\begin{aligned}
& \text { Energy of the electron } \\
& \begin{aligned}
& E_{n}=-\frac{m e^{4}}{8 \varepsilon_{0} h^{2}} \cdot \frac{1}{n^{2}} \\
&=-2.179 \cdot 10^{-18} / n^{2} J \\
& \text { with } n=1,2,3, \ldots . .
\end{aligned}
\end{aligned}
$$

4.10 Bohr's Atomic Model

Explanation of Line Spectrum of the H-Atom

By Bohr's model solely atoms

$$
\begin{aligned}
\Delta \mathrm{E}=\mathrm{h} v & =\mathrm{E}_{2}-\mathrm{E}_{1} \\
& =-2.179 \cdot 10^{-18} \cdot\left(\frac{1}{\mathrm{n}_{2}^{2}}-\frac{1}{\mathrm{n}_{1}^{2}}\right)[\mathrm{J}] \\
\Rightarrow v & =-\frac{2.179 \cdot 10^{-18}}{\mathrm{~h}} \cdot\left(\frac{1}{\mathrm{n}_{2}^{2}}-\frac{1}{\mathrm{n}_{1}^{2}}\right)\left[\mathrm{s}^{-1}\right] \\
= & 3.289 \cdot 10^{15 \cdot} \cdot\left(\frac{1}{\mathrm{n}_{2}^{2}}-\frac{1}{\mathrm{n}_{1}^{2}}\right)\left[\mathrm{s}^{-1}\right]
\end{aligned}
$$

$$
\text { with a single electron can be described properly, i.e. } \mathrm{H}, \mathrm{He}^{+}, \mathrm{Li}^{2+}, \mathrm{Be}^{3+} \text {, and so on }
$$

4.11 The Wave Character of Electrons

Any moving Particle exhibits Properties of a Wave Function (Louis deBroglie 1924)

Linking $E=h c / \lambda$ with $E=m c^{\mathbf{2}}$ leads to

$$
\lambda=\frac{\mathbf{h}}{\mathrm{mc}}
$$

deBroglie wavelength

Electrons on an orbit around the nucleus behave like a stationary wave (timely unchanged wave)

Prerequisites for a stationary wave Orbit: $\mathrm{n} \lambda=\mathbf{2 \pi r}$

$$
\Rightarrow \quad \frac{\mathbf{n h}}{2 \pi}=\mathbf{m v r}
$$

(Quantization of angular momentum)

4.11 The Wave Character of Electrons

Electron Clouds are Three-Dimensional vibrating Systems with the possible vibrational States being represented by Three-Dimensional Stationary Waves

Description of wave properties of electrons by Erwin Schrödinger 1927

$$
\frac{\delta \Psi}{\delta x^{2}}+\frac{\delta \Psi}{\delta y^{2}}+\frac{\delta \Psi}{\delta z^{2}}+\frac{8 \pi^{2} m}{h^{2}}[E-V(x, y, z)] \cdot \Psi(x, y, z)=0
$$

- Homogeneous differential equation of second order
- Solutions of wave functions $\psi(x, y, z)$ are analogous to amplitude functions for the vibrating string
$\mathrm{E}=$ energy, $\mathrm{V}=$ potential energy,
$\mathbf{m}=$ mass of electron, $h=$ Planck's quantum
- Wave functions are $\psi(\mathbf{x}, \mathbf{y}, \mathbf{z})$ e-functions

4.12 Eigen-Functions of the Schrödinger-Equation

The Solutions of a Differential Equation are so-called Eigen-Functions (in Case of the Schrödinger-Equations they are called Wave Functions)

Representation of polar coordinates \mathbf{r}, θ and φ (analogous to longitude (φ) and latitude (θ) in case of the globe)

$\psi_{\mathrm{n}, \mathrm{l}, \mathrm{m}}(\mathbf{r}, \varphi, \theta)=\mathbf{R}_{\mathrm{n}, \mathrm{l}}(\mathbf{r}) \cdot \Theta_{\mathrm{l}, \mathrm{m}}(\theta) \cdot \Phi_{\mathrm{m}}(\varphi) \quad$| n, l, m are indices |
| :--- |
| for the wave |
| functions |

- The square of these functions describes the probability of an electron to be in a certain spot in a potential field, e.g. around an atomic nucleus
- $\psi_{\mathrm{n}, 1, \mathrm{~m}}^{2}=$ relative probability that the electron can be found at location (r, φ, θ)
- Prerequisite: $\Psi^{2}{ }_{\mathrm{n}, 1, \mathrm{~m}}$ should be steady, unambiguously and finite
- Total probability: $\psi_{\mathrm{n}, \mathrm{l}, \mathrm{m}}^{2} \mathrm{dv} f 1$ (with $\mathrm{v}=$ volumes)
- The volume element, where the probability of presence of an electron is $\mathbf{9 5 \%}$ is called atomic orbital

4.12 Eigen-Functions of the Schrödinger-Equation

s-Functions (s-Orbitals) $\mathbf{n}=1,2,3, \ldots$ and $1, m=0\left(a_{0}=\right.$ Bohr Radius)

$$
\Psi_{1 s}=\Psi_{1,0,0}=\frac{1}{\sqrt{\pi}}\left(\frac{1}{a_{0}}\right)^{3 / 2} \cdot e^{-r / a_{0}}
$$

$$
\Psi_{2 s}=\Psi_{2,0,0}=\frac{1}{4 \sqrt{2 \pi}}\left(\frac{1}{a_{0}}\right)^{3 / 2} \cdot\left(1-r / a_{0}\right) e^{-r / 2 a_{0}}
$$

- No angle-dependent part \Rightarrow rotationally symmetric
- No change of sign \Rightarrow no nodal plane

4.12 Eigen-Functions of the Schrödinger-Equation

p-Functions (p-Orbitals) $n=2,3, \ldots$ and $\mathrm{l}=1, \mathrm{~m}=-1,0,1\left(\mathrm{a}_{0}=\right.$ Bohr Radius)

$$
\Psi_{2 p_{x}}=\Psi_{2,1,1}=\frac{2}{\sqrt{3}}\left[\left(\frac{1}{2 a_{0}}\right)^{3 / 2} \cdot\left(r / 2 a_{0}\right) e^{-r / 2 a_{0}}\right]\left[\frac{3}{2 \sqrt{\pi}} \sin \theta \cos \varphi\right]
$$

- Angle-dependent part \Rightarrow not rotationally symmetric
- Change of sign \Rightarrow one nodal plane

Shape of orbitals with I = 1 and all allowed n

During the transition to probability ranges the spheres are deformed to culls

4.12 Eigen-Functions of the Schrödinger-Equation

d-Functions (d-Orbitals) $n=3,4, \ldots$ and $l=2, m=-2,-1,0,1,2$

- Angle-dependent part in two spatial dimensions
\Rightarrow more complex spatial distribution
- Two changes of sign \Rightarrow two nodal planes

$$
\mathbf{m}=\mathbf{1}
$$

During the transition to probability ranges the spheres are deformed again but the symmetry remains the same

4.12 Eigen-Functions of the Schrödinger-Equation

f -Functions (f-Orbitals) $\mathrm{n}=4,5, \ldots$ and $\mathrm{l}=3, \mathrm{~m}=-3,-2,-1,0,1,2,3$

- Angle-dependent part in three spatial dimensions
\Rightarrow even more complex spatial distribution
- Three changes of sign \Rightarrow three nodal planes

$\mathrm{m}=0$ and $\mathrm{m}=1$
$\mathrm{m}=2$ and $\mathrm{m}=3$

4.12 Eigen-Functions of the Schrödinger-Equation

Orbitals are Single Electron Wave Functions

Orbital \# amount of nodal planes s $\quad 1 \quad 0$

	3	$\mathbf{1}$

d
2

7
3

4.13 Quantum Numbers

The three Indices as Solution Functions of the Schrödinger-Equation are called Quantum Numbers

The first quantum number, n, is called principal quantum number and defines the different main energy levels (shells) of the atoms (analogous to the orbits in Bohr's model)

Number	Denomination	Energy
$n=1$	K-shell	$E_{1}($ ground state $)$
$n=2$	L-shell	$1 / 4 E_{1}$
$n=3$	M-shell	$1 / 9 E_{1}+1 / 4 E_{1}$
$n=4$	N-shell	$1 / 16 E_{1}+1 / 9 E_{1}+1 / 4 E_{1}$
$n=5$	O-shell	$1 / 25 E_{1}+1 / 16 E_{1}+1 / 9 E_{1}+1 / 4 E_{1}$

Energy	
	Vacuum
	\uparrow
	\mathbf{E}_{1}
	\downarrow

4.13 Quantum Numbers

The second Quantum Number l is called Azimuthal or Orbital Quantum Number

- It defines the different sub-energy levels (sub-shells) created due to orbital angular momentum
- Measurable through fine-splitting of spectral lines (if atomic emission spectra of high resolution are measured)

Shell	K	L	M	N
n	1	2	3	4
1	0	01	012	$\begin{array}{lllll}0 & 1 & 2 & 3\end{array}$
Term	1s	2s 2p	3s 3p 3d	4s 4p 4d 4f

(Abbreviations are derived from spectroscopy: sharp, principal, diffuse, fundamental)

The following applies: $1=0,1,2, \ldots n-1 \quad$ orbital angular momentum: $L=\sqrt{1(1+1)} \frac{h}{2 \pi}$

4.13 Quantum Numbers

The third Quantum Number, m_{g}, is called Magnetic Quantum Number, because in a Magnetic Field the Sub-Energy Levels can be discriminated

- The orbital angular momentum determined by the Azimuthal quantum number can only be oriented in certain quantized ways with reference to the magnetic field
- In spectroscopy, this splitting of spectral lines in a magnetic field is called Zeemann-effect

1	m_{1}	Number of states
0	0	1 s-state (orbital)
1	-1 $0+1$	3 p-states (orbitals)
2	-2 -1 $0+1+2$	5 d-states (orbitals)
3	-3-2-1 $0+1+2+3$	7 f-states (orbitals)

The following applies: $m_{1}=-1 \ldots+1$

4.13 Quantum Numbers

Die Spin Quantum Number, m_{s}, is the fourth Quantum Number Describing the Intrinsic Angular Momentum of the Electrons, which can Occupy two Orientations in a Magnetic Field

- Both quantum states of the electron (spin orientations), \mathbf{m}_{s}, are indicated by arrows: $\uparrow m_{s}=+1 / 2$ (spin-up) or $\downarrow m_{s}=-1 / 2$ (spin-down)

Shell	n	1	m_{1}	Number of orbitals	$\mathbf{m}_{\text {s }}$	$\begin{aligned} & \text { Number of } \\ & \mathbf{e}^{-} \text {-states } \end{aligned}$	
K	1	0	0	1	$\pm 1 / 2$	2	2
L	2	0	0	1	$\pm 1 / 2$	2	8
		1	-1 0 +1	3	$\pm 1 / 2$	6	
$\overline{\mathbf{M}}$	3	0	0	1	$\pm 1 / 2$	2	
		1	-1 $0+1$	3	$\pm 1 / 2$	6	14
		2	-2-1 $0+1+2$	5	$\pm 1 / 2$	10	
$\overline{\mathbf{N}}$	4	0	0	1	$\pm 1 / 2$	2	
		1	-1 $0+1$	3	$\pm 1 / 2$	6	32
		2	-2 -1 $0+1+2$	5	$\pm 1 / 2$	10	32
		3	-3-2-1 $0+1+2+3$	7	$\pm 1 / 2$	14	

4.14 Energy and Occupation of the Orbitals

Atomic Orbitals of Hydrogen-Like Atoms (1 Electrons)

All orbitals of one shell possess the same energy (are degenerated)

4.14 Energy and Occupation of the Orbitals

Multi-Electron Atoms

Orbitals of one shell do not possess the same energy anymore (suspension of degeneracy through electron-electron interaction)

4.14 Energy and Occupation of the Orbitals

The Scheme for the Occupation of the Sub-Shells can be derived from the Dependencies of the Energy of the Sub-Shells on the Atomic Number

Shell

Q	${ }^{7}$	${ }_{7} 7$		
P	\%s	$\delta_{\text {OR }}$	6d	
0	5	5 R	5 d	50
N	4 s	4 P	48	4 f
M	3	${ }^{3} \mathrm{R}$	3 d	
L	2	${ }_{2}$		
K	1s			
	S	p	d	f

Sub-shell

Examples:
1s 2s 2p 3s 3p
1s 2s 2p 3s 3p 4s 3d 4p 5s

Change of energy of the sub-shell with increasing atomic number

4.14 Energy and Occupation of the Orbitals

The Occupation of States (Orbitals) by Electrons is prone to the Pauli Principle and Hund's Rule

Pauli-principle (W. Pauli, 1925)
In an atom two electrons cannot have the same 4 quantum numbers:

Wolfgang Pauli

Friedrich Hund

Degenerate, i.e. energetically equal, orbitals of the same type are occupied the way that the maximum number of unpaired electrons of the same spin is formed:

p-orbitals

Lower energy

Higher energy $\rightarrow 2^{\text {nd }}$ Hund's rule "state with highest L has lowest energy"

4．15 Structure of the Periodic Table

When the atomic Orbitals are filled with Electrons，periodic Changes are caused by Repetitions of the same electron arrangements on the outermost shell

Atom	Orbital diagram	Electronic	onfiguration	Group
H	\uparrow	1s ${ }^{1}$		
He	围	$1 \mathrm{~s}^{2}$	［He］	Noble gases
Li	畹 \uparrow	1s ${ }^{2} \mathbf{2 s}{ }^{1}$	［ He ］ $2 \mathrm{~s}^{1}$	Alkaline metals
Be	四 四	1s ${ }^{2} \mathbf{2 s}{ }^{2}$	［He］2s ${ }^{2}$	Alkaline earth metals
B	Tv 饹 \uparrow	$1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{1}$	［ $\mathrm{He} \mathbf{2 s}^{\mathbf{2}} \mathbf{2 p}^{1}$	Boron group
C	Tv 敃 \uparrow T \uparrow	$1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} \mathbf{2 p}{ }^{2}$	［ $\mathrm{He} \mathbf{2 s}^{\mathbf{2}} \mathbf{2} \mathrm{p}^{\mathbf{2}}$	Carbon group
N		$1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}$	［ $\mathrm{He} \mathbf{2 s}^{\mathbf{2}}{ }^{2} \mathrm{p}^{3}$	Nitrogen group
O		$1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{4}$	［ $\mathrm{He} \mathbf{2 s}^{\mathbf{2}} \mathbf{2} \mathbf{2} \mathrm{p}^{4}$	Chalcogens
F	T \uparrow 个 $\uparrow \downarrow \uparrow \uparrow \uparrow$	1s ${ }^{2} \mathbf{2 s}{ }^{2} 2 p^{5}$	［He］2s ${ }^{\mathbf{2}} \mathbf{2} \mathrm{p}^{\mathbf{5}}$	Halides
Ne	$\begin{array}{lll} \text { 个ฟ } & \frac{\uparrow \downarrow}{1 s} \frac{\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow}{2 p} \\ \hline \end{array}$	$1 s^{2} 2 s^{2} 2 p^{6}$	［Ne］	Noble gases

4.15 Structure of the Periodic Table

4.15 Structure of the Periodic Table

Periodic Properties: Ionisation Energy

- Ionisation energy, I, of an atom is the energy which is required to remove one electron from the highest occupied state: $\mathbf{A} \rightarrow \mathbf{A + e ^ { - }}:+\mathbf{I}$
- It is negative for all elements, i.e. it always requires energy to remove one electron
- It decreases within one group of the PT from top to bottom (increasing size and shielding)
- It increases within the periods of the PT with increasing ordinal number (but not monotonically)

4.15 Structure of the Periodic Table

Periodic Properties: Affinity to Electrons

- Electron affinity, E_{A}, of an atom is the energy which is released if it takes up a single electron
$\mathrm{A}+\mathrm{e}^{-} \rightarrow \mathrm{A}^{-}:-\mathrm{E}_{\mathrm{A}}$
- In most cases, energy is released during the addition of one electron
- It's quantity depends on the attraction of the nucleus and on the electron-electron repulsion
- For the addition of a second electron the required energy is always higher, i.e. E_{A} is positive (Repulsion of e^{-}and A^{-})

5. Hydrogen

Contents

5.1 Isotopes and Physical Properties
5.2 Synthesis and Reactivity
5.3 Technical Application
5.4 ${ }^{1} \mathrm{H}$-NMR Spectroscopy
5.5 Hydrogen Technology

5.1 Isotopes and Physical Properties

Hydrogen is the most common Element in the Universe and the basic Fuel of the Stellar Energy Production (and of the Future Energy Cycle?)

5.2 Synthesis and Reactivity

Synthesis

a) In the lab $\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathbf{H}_{2}$
$\left(2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}\right)$
$\mathrm{CaH}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{H}_{2}$
$\left(2 \mathrm{H}^{-} \rightarrow \mathrm{H}_{2}+2 \mathrm{e}^{-}\right)$
b) Technical $2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$

$$
\begin{aligned}
& \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{H}_{2}+\mathrm{CO} \\
& \mathrm{C}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}+\mathrm{CO} \\
& \mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2} \rightarrow \mathrm{C}_{\mathrm{n}-1} \mathrm{H}_{2 \mathrm{n}}+\mathrm{H}_{2}+\mathrm{C}
\end{aligned}
$$

(Water electrolysis)
(Steam reforming)
(Coal hydrogenation)
(Cracking of carbohydrates)

Reactivity

- Molecular Hydrogen is rather inert at RT: $\Delta H_{\text {dissociation }}=436 \mathrm{~kJ} / \mathrm{mol}$
- Strongly exothermic oxyhydrogen gas reaction $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ has to be activated $\Rightarrow \mathrm{T}>400^{\circ} \mathrm{C}$, UV radiation, sparks, Pt-catalyst, flash
- Atomic Hydrogen is highly reactive and reduces the oxides "of the half-noble" metals, such as $\mathrm{CuO}, \mathrm{SnO}_{2}, \mathrm{PbO}$ and $\mathrm{Bi}_{2} \mathrm{O}_{3}$ to the metals
- Formation of H-Atoms by microwaves, discharge, VUV radiation, or high temperature (9% of H_{2} dissociated at $3000{ }^{\circ} \mathrm{C}$)

5.3 Technical Application

Hydrogenation, Reductive Agent, Fuel, Ammonia Synthesis, Energy Storage

1. Hydrogenation of $\mathrm{C}=\mathrm{C}$ bonds \Rightarrow hardening of plant oils (margarine) $\mathrm{R}-\mathrm{CH}=\mathrm{CH}-\mathrm{R}+\mathrm{H}_{2} \rightarrow \mathrm{R}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{R}$
2. Reductive agent \Rightarrow synthesis of metals $\mathrm{WO}_{3}+\mathbf{3} \mathrm{H}_{2} \rightarrow \mathrm{~W}+\mathbf{3} \mathrm{H}_{2} \mathrm{O}$
3. Ammonia synthesis \Rightarrow Haber-Bosch process $\mathbf{N}_{\mathbf{2}}+\mathbf{3} \mathrm{H}_{\mathbf{2}} \rightarrow \mathbf{2} \mathbf{N H}_{\mathbf{3}}$
4. Fuel for space \Rightarrow space shuttle

"Liquid" rockets
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ "Solid" rockets $8 \mathrm{Al}+3 \mathrm{NH}_{4} \mathrm{ClO}_{4} \rightarrow 4 \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{NH}_{3}+3 \mathrm{HCl}$ Control rockets

$$
2 \mathrm{NO}_{2}+\mathrm{CH}_{3} \mathrm{~N}_{2} \mathrm{H}_{3} \rightarrow 2 \mathrm{~N}_{2}+\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2}
$$

5. Energy storage \Rightarrow hydrogen technology

5.4 Spectroscopy

Hydrogen as an analyte

- Astronomy
21.11 cm Hydrogen line (1420.4 MHz)

HI-Emission line in radio astronomy:

- Gas temperature
- Magnet field strength
- Structure and kinematik of galaxies/-cluster
- Electrochemistry
- Biology/Chemistry
- Medicine

Normal Hydrogen Electrode (NHE)

- Reference electrode in CV, Coulometrie,
${ }^{1} \mathrm{H}$-NMR Spectroskopy (Nuclear spin $\mathrm{I}= \pm \mathbf{1 / 2}$):
- Structure solution

Nuclear spin resonance (MRT, T1-Relaxation)

- Imaging in medical diagnostics

5.4 ${ }^{1} \mathrm{H}$-NMR Spectroscopy

NMR Spectroscopy (Nuclear Magnetic Resonance) is applied for the Elucidation of Molecular Structures by Monitoring the Spin m_{I} of Nuclei, e.g. of Protons, \mathbf{p}^{+}

Principle

Protons (${ }^{1} \mathrm{H}$ nuclei) have a spin momentum as the electron has
$\Rightarrow \quad \mathrm{I}=\mathbf{1} / \mathbf{2}$
$\Rightarrow 2$ States: $m_{I}=+1 / 2$ and $m_{I}=-1 / 2$
Without magnetic field \Rightarrow degeneration With magnetic field \Rightarrow energy difference ΔE E

Nuclear spin tomography (relaxation time of excited ${ }^{1} \mathrm{H}$ nuclei)

Magnetic field strength B Resonance for $B=11.75$ Tesla at $v=500 \mathrm{MHz}$ (radio waves)

5.4 ${ }^{1} \mathrm{H}$-NMR Spectroscopy

NMR Spectroscopy (Nuclear Magnetic Resonance) is applied for the Elucidation of Molecular Structures by Monitoring the Spin m_{I} of Nuclei, e.g. of Protons, $\mathbf{p}\left({ }^{\mathbf{1}} \mathbf{H}\right)$
${ }^{1} \mathrm{H}$-NMR Spectrum of ethanol at 253 K

${ }^{1} \mathrm{H}$-NMR Spectrum of ethanol at 77 K

1. Each proton type yields an own NMR signal, here 2 or 3
2. NMR signals split by interaction with adjacent protons into M lines: $M=(n+1) *(m+1)$ with $n, m=n u m b e r ~ o f ~ a d j a c e n t ~ p r o t o n s ~$

5.4 ${ }^{1} \mathrm{H}$-NMR Spectroscopy

NMR Spectroscopy: It can be complicated \qquad
${ }^{1} \mathrm{H}$-NMR Spectrum of $\left[(\right.$ tmtacn $) \mathrm{Ru}^{\mathrm{II}}(\mathrm{o}$-benzoquinonediimine $\left.)\left(\mathrm{NCCH}_{3}\right)\right]\left(\mathrm{PF}_{6}\right)$ in acetone at RT

5.5 Hydrogen Technology

H_{2} is Key to the Future Energy Supply to Reduce the Combustion of Fossil Fuels

1. Controlled nuclear fusion in magnetically trapped plasma (KFA Jülich, MPI Garching, ...) ${ }^{2} \mathbf{H}+{ }^{3} \mathrm{H} \rightarrow{ }^{4} \mathrm{He}+\mathbf{n}$
\Rightarrow Central energy generation
2. Combustion cells
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+242 \mathrm{~kJ} / \mathrm{mol}$
Anode: $\quad \mathrm{H}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{e}^{-}$
Cathode: $\quad 1 / 2 \mathrm{O}_{2}+2 \mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{e}^{-} \rightarrow \mathbf{3} \mathrm{H}_{2} \mathrm{O}$
\Rightarrow Non-central energy generation and electric engines
H_{2}-Generation: \quad Electrolysis (solar cells)
H_{2}-Transport: \quad Pipelines, tank ship
\mathbf{H}_{2}-Storage: Liquid reservoirs, hydrides
Simplified sketch of a fusion cell

6. Noble Gases

Contents

6.1 Occurrence and Physical Properties
6.2 Isolation
6.3 Noble Gas Compounds
6.4 VSEPR Model
6.5 Application
6.6 Gas Discharge Lamps
6.7 ${ }^{129} \mathrm{Xe}-\mathrm{NMR}$ Spectroscopy

6.1 Occurrence and Physical Properties

Noble Gases are inert, colour-, odour- and tasteless single Atom Gases, which occur in Stars and in the Atmosphere

He	Helios (sun)
Ne	Neos (new)
Ar	Argos (lazy)
Kr	Kryptos (hidden)
Xe	Xenos (strange)
Rn	Radius (ray)

$$
\begin{aligned}
& \text { nuclear fusion } \\
& \text { nuclear fusion } \\
& { }^{40} \mathrm{~K}+\mathrm{e}^{-}(\mathrm{K} \text {-capture }) \rightarrow{ }^{40} \mathrm{Ar} \\
& { }^{235} \mathrm{U} \rightarrow{ }^{90} \mathrm{Kr}+{ }^{144} \mathrm{Ba}+\mathrm{n} \\
& { }^{235} \mathrm{U}+\mathrm{n} \rightarrow{ }^{101} \mathrm{Zr}+{ }^{133} \mathrm{Te}+2 \mathrm{n} \rightarrow{ }^{133} \mathrm{Xe} \\
& { }^{226} \mathrm{Ra} \rightarrow{ }^{222} \mathrm{Rn}+{ }^{4} \mathrm{He}
\end{aligned}
$$

Element Electron configuration $\left.\left.\quad \mathbf{T}_{\underline{m}} \Gamma^{\circ} \mathbf{C}\right] \mathrm{T}_{\underline{b}} \Gamma^{\circ} \mathrm{C}\right]$ IE $[\mathrm{eV}][\mathrm{kJ} / \mathrm{mol}]$ Vol-\% in air He
$1 \mathrm{~s}^{2}$
$\begin{array}{lllll}-272 & -269 & 24.6 & 2370 & 5 \cdot 10^{-4}\end{array}$
$\mathrm{Ne} \quad[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}$
$\begin{array}{lllll}-248 & -246 & 21.6 & 2080 & 2 \cdot 10^{-3}\end{array}$
$\mathrm{Ar} \quad[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}$
$\begin{array}{lllll}-189 & -186 & 15.8 & 1520 & 0.933 \text { ! }\end{array}$

Kr	[Ar$] 3 \mathrm{~d}{ }^{10} 4 \mathrm{~s}^{\mathbf{2}} \mathbf{4} \mathrm{p}^{6}$	-157	-153	14.0	1350	$1 \cdot 10^{-4}$
Xe	$[\mathrm{Kr}] 4 \mathrm{~d}^{10} 5 \mathrm{~s}^{25} 5{ }^{6}$	-112	-108	12.1	1170	9.10-6
Rn	[Xe]4f ${ }^{145} \mathbf{d}^{\mathbf{1 0}} \mathbf{S S}^{\mathbf{2}} \mathbf{6}{ }^{\mathbf{6}}$	-71	-62	10.7	1040	6.10-18

6.2 Isolation

From Natural Gas and Air

He: From natural gas (up to 7 vol. $\% \Rightarrow$ radioactive decay of U and Th in earth's crust)

Rn: From radioactive decay of Ra salts
$\mathrm{Ne}, \mathrm{Ar}, \mathrm{Kr}$, Xe: By distillation of liquidised air (Linde process)

Procedure

a. Condensation

1. Fraction: $\mathrm{He} / \mathrm{Ne} / \mathrm{N}_{2}$
2. Fraction: $\mathrm{N}_{2} / \mathrm{Ar}$
3. Fraction: $\mathrm{Ar} / \mathrm{O}_{2}$
4. Fraction: $\mathrm{O}_{2} / \mathrm{Kr} / \mathrm{Xe}$
b. Removal of O_{2} and N_{2} by chemical methods

6.3 Noble Gas Compounds

The Assumption that Noble Gases do not Form Compounds is not true for all Noble Gases, i.e. Kr, Xe and Rn (Neil Bartlett, Rudolf Hoppe, 1962)

The ionisation energy of krypton and xenon is sufficiently low to enable reactions with strong oxidisers, e.g. F_{2}
$\mathbf{K r}+\mathbf{F}_{2} \rightarrow \mathrm{KrF}_{2}$ (linear, meta-stable)
$\mathrm{Xe}+\mathrm{F}_{2} \rightarrow \mathrm{XeF}_{2}$ (linear)
$\mathrm{Xe}+2 \mathrm{~F}_{2} \rightarrow \mathrm{XeF}_{4}$ (square-planar)
$\mathrm{Xe}+\mathbf{3} \mathrm{F}_{2} \rightarrow \mathrm{XeF}_{6}$ (distorted octahedral)
$\mathrm{XeF}_{6}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HF}+\mathrm{XeOF}_{4}$ (square-pyramidal)
$\mathrm{XeOF}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{HF}+\mathrm{XeO}_{3}$ (trigonal-pyramidal) $2 \mathrm{XeO}_{3}+4 \mathrm{OH}^{-} \rightarrow \mathrm{XeO}_{6}{ }^{4-}+\mathrm{Xe}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ $\mathrm{Ba}_{2} \mathrm{XeO}_{6}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{BaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{XeO}_{4}$ (tetrahedral)

$\mathrm{nXeF}_{4}+2 \mathrm{nH}_{2} \mathrm{O} \rightarrow \mathrm{nXeO}_{2}+4 \mathrm{nHF} \rightarrow\left(\mathrm{XeO}_{2}\right)_{\mathrm{n}}+4 \mathrm{nHF}$
Lit.: JACS 133 (2011) 6265-6269

6.4 VSEPR Model

Valence Shell Electron Pair Repulsion Model is based on the Fact that Electron Pairs reject themselves and thus try to arrange the largest possible Distance between them

History

Ronald Gillespie and Ronald Nyholm published this theory, by which the structure of simple molecules of the type $A B_{n}$ can be predicted.

Basics

The Lewis model of valence electron pairs, in which two valence electrons having antiparallel spin are combined to form a valence electron pair, which can connect atoms.

Thesis

The 3D structure of molecules are determined by reppelling forces between the electron pairs of the valence shell.

6.4 VSEPR Model

Physical Basis: Electromagnetism as the fundamental Interaction

- Some charges/poles repell each other (+ and + or - and -)
- Opposite charges/poles attract each other (+ and -)

Electrons as well as the atomic shell are negatively charged

\Rightarrow Inner electrons are spherical distributed
\Rightarrow Valence electrons (bond and non-bond) arrange in a way, that the repellent interactions between them are minimised
\Rightarrow The structure of molecules is mostly determined by the electromagnetic interaction between the valence electrons

Molecule structure = Connectivity of atoms + 3D arrangement in space

6.4 VSEPR Model

VSEPR Model can be reduced to four Rules for the Structure Prediction

$1^{\text {st }}$ Rule: In molecules of type $A B_{n}$ the bonding and non-bonding electron pairs arrange themselves in the valence shell of the central atom A in such a way that their distance becomes maximum. Bonding π-electron pairs are not taken into account separately, i.e. double and triple bonds are regarded as a single domain.

Lit.: E. Riedel, Anorganische Chemie Walter de Gruyter 2004, 136f

Gerade

trigonale Bipyramide

gleichseitiges Dreieck

quadratische Pyramide

Tetraeder

Oktaeder

pentagonale Bipyramide

6.4 VSEPR Model

6.4 VSEPR Model

Number of VEPs	Molecule type	Arrangement of atoms	Examples	
5	AB_{5}	trigonalbipyramidal	$\mathbf{P F}_{5}, \mathrm{PCl}_{5}$	
	$\mathrm{AB}_{4} \mathrm{E}$	rocker-shaped	$\mathbf{S F}_{4}, \mathrm{SeF}_{4}, \mathbf{S C l}_{4}$	
	$\mathrm{AB}_{3} \mathrm{E}_{2}$	T-shaped		
	$\mathrm{AB}_{2} \mathrm{E}_{3}$	linear	$\mathbf{K r F}_{\mathbf{2}}, \mathrm{XeF}_{2}, \mathbf{I}_{\mathbf{3}}{ }^{-} \mathbf{I C l}_{\mathbf{2}}{ }^{-}$	

6.4 VSEPR Model

Number of VEPs	Molecule type	Arrangement of atoms	Examples	
6	AB_{6}	octahedral	$\mathrm{SF}_{6}, \mathrm{SeF}_{6}, \mathrm{PF}_{6}{ }^{-}$	
	$\mathrm{AB}_{5} \mathrm{E}$	squarepyramidal	$\mathrm{ClF}_{5}, \mathrm{BrF}_{5}, \mathrm{IF}_{5}$	
	$\mathbf{A B}_{4} \mathrm{E}_{2}$	square- planar	$\mathrm{XeF}_{4}, \mathrm{BrF}_{4}{ }^{-}, \mathrm{ICl}_{4}{ }^{-}$	
7	$\mathbf{A B}_{7}$	pentagonalbipyramidal	IF_{7}	
	$\mathrm{AB}_{6} \mathrm{E}$	distorted octahedral	XeF_{6}	
		capped trigonalprismatic	$\left[\mathrm{NbF}_{7}\right]^{\mathbf{2 -}}$	
General Chemistry		Slide 78		

6.4 VSEPR Model

$2^{\text {nd }}$ Rule: The lone pairs of electrons E are located in a molecule of type $A B_{n} E_{m}$ only in the field of an atomic nucleus and therefore take up more space than that bonding electron pairs. Therefore, they reduce the bond angle in a rocker-like manner.

Example: Tetrahedral structures $\mathrm{AB}_{4-\mathrm{x}} \mathrm{E}_{\mathrm{x}}(\mathbf{x}=\mathbf{0}-2)$
Lit.: E. Riedel, Anorganische Chemie Walter de Gruyter 2004, 136f

Beispiele für die tetraedrischen Strukturen $A B_{4}, A B_{3} E$ und $A B_{2} E_{2}$ sind $C H_{4}$, NH_{3} und $\mathrm{H}_{2} \mathrm{O}$

Bond angle: $109,5^{\circ}$

107°

$104,5^{\circ}$

6.4 VSEPR Model

$2^{\text {nd }}$ Rule: The lone pairs of electrons E are located in a molecule of type $A B_{n} E_{m}$ only in the field of an atomic nucleus and therefore take up more space than that bonding electron pairs. Thus, they reduce the bond angle in a rocker-like manner.

Example: Pentagonal-bipyramidal structures $\mathrm{AB}_{5-\mathrm{x}} \mathrm{E}_{\mathrm{x}}(\mathrm{x}=0$ - 2)

Bond angle:
Lit.: E. Riedel, Anorganische Chemie Walter de Gruyter 2004, 136f

$$
\begin{aligned}
& \mathrm{F}_{\text {aq }} \mathrm{PF}_{\text {aqq }} 120^{\circ} \\
& \mathrm{F}_{\text {ax }} \times \mathrm{PF}_{\text {ax }} 180^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{F}_{\text {aqu }} \mathrm{SF}_{\text {äq }} 101^{\circ} \\
& \mathrm{F}_{\mathrm{ax}} \mathrm{SF}_{\text {ax }} 173^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{F}_{\text {ax }} \mathrm{CIF}_{\text {äq }} 87,5^{\circ} \\
& \mathrm{F}_{\mathrm{ax}} \mathrm{ClF}_{\mathrm{ax}} 175^{\circ}
\end{aligned}
$$

6.4 VSEPR Model

$2^{\text {nd }}$ Rule: The lone pairs of electrons E are located in a molecule of type $A B_{n} E_{m}$ only in the field of an atomic nucleus and therefore take up more space than that bonding electron pairs. Thus, they reduce the bond angle in a rocker-like manner.

Example: Octahedral structures $\mathrm{AB}_{6-\mathrm{x}} \mathrm{E}_{\mathrm{x}}(\mathrm{x}=0$-2)
Lit.: E. Riedel, Anorganische Chemie Walter de Gruyter 2004, 136f

6.4 VSEPR Model

$3^{\text {rd }}$ Rule: The repulsive force of an AB bond decreases as the difference in electronegativity (EN) χ between A and B increases. The valence angles therefore decrease as the EN difference increases.
a) Electronegativity of the central atom A

$\mathrm{H}_{2} \underline{\mathrm{~A}}$	Bond angle [${ }^{\circ}$]	AF_{3}	Bond angle [${ }^{\circ}$]
$\mathrm{H}_{2} \mathrm{O}$	104.5	NF_{3}	102.4
$\mathrm{H}_{2} \mathrm{~S}$	92.3	PF_{3}	97.4
$\mathrm{H}_{2} \mathrm{Se}$	91.0	AsF_{3}	96.0
$\mathrm{H}_{2} \mathrm{Te}$	89.5	$\mathbf{S b F}_{3}$	95.0

Causes

- Trend of the EN values

$$
\chi_{\mathrm{O}}>\chi_{\mathrm{S}}>\chi_{\mathrm{Se}}>\chi_{\mathrm{Te}} \quad \chi_{\mathrm{N}}>\chi_{\mathrm{P}}>\chi_{\mathrm{As}}>\chi_{\mathrm{Sb}}
$$

- Increasing energy difference between the ns- and np-orbitals of the central atoms reduces extent of hybridisation

6.4 VSEPR Model

$3^{\text {rd }}$ Rule: The repulsive force of an AB bond decreases as the difference in electronegativity (EN) χ between A and B increases. The valence angles therefore decrease as the EN difference increases.
b) Electronegativity of the ligands B

$\mathbf{P B}_{3}$	Bond angle $\left[^{\circ}{ }^{\circ}\right.$	$\mathbf{A s B}_{3}$	Bond angle $\left.\Gamma^{\circ}\right]$
$\mathbf{P F}_{3}$	$\mathbf{9 7 . 4}$	AsF_{3}	$\mathbf{9 6 . 0}$
$\mathbf{P C l}_{3}$	$\mathbf{1 0 0 . 1}$	AsCl_{3}	$\mathbf{9 8 . 6}$
$\mathbf{P B r}_{3}$	$\mathbf{1 0 1 . 0}$	AsBr_{3}	$\mathbf{9 9 . 7}$
PI_{3}	$\mathbf{1 0 2 . 0}$	AsI_{3}	$\mathbf{1 0 0 . 2}$

Causes

- Trend of the EN values

$$
\chi_{\mathrm{F}}>\chi_{\mathrm{CI}}>\chi_{\mathrm{Br}}>\chi_{\mathrm{I}}
$$

- Increasing energy difference between the ns- and np-orbitals of the central atoms reduces extent of hybridisation

6.4 VSEPR Model

$4^{\text {th }}$ Rule: Multiple bonds are formally treated like single bonds

Trigonal-planar structure
$\mathrm{BF}_{3} \quad 3$ Single bonds
$\mathrm{SO}_{3} 3$ Double bonds

Tetrahedral structure
$\mathrm{CH}_{4} 4$ Single bonds
$\mathrm{XeO}_{4} 4$ Double bonds

Trigonal-pyramidal structure
$\mathrm{NH}_{3} 3$ Single bonds + 1 lone electron pair
$\mathrm{XeO}_{3} \quad 3$ Double bonds + 1 lone electron pair

6.4 VSEPR Model

$4^{\text {th }}$ Rule: Multiple bonds are formally treated like single bonds.
However, multiple bonds require more space and thus reduce the bond angle

Phosphate $\mathrm{PO}_{4}{ }^{3-}$

Phosphorylfluoride POF_{3}

Bond angle: FPF 101°

Sulphite $\mathbf{S O}_{3}{ }^{\mathbf{2 -}}$

Sulphate $\mathbf{S O}_{4}{ }^{\mathbf{2 -}}$

OSF 107°
FSF 93°

OSO 124°
FSF $\quad 96^{\circ}$

6.4 VSEPR Model

Limits of the Theory

a) Transition metal compounds (complexes), e.g. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ and $\left[\mathrm{PtCl}_{4}\right]^{2-}$ are square-planar \rightarrow Ligand field theory

b) Liganden, which enforces structure for sterical reasons Chelating ligands: $\left[\mathrm{M}\left(\mathrm{S}_{2} \mathrm{C}_{2}(\mathrm{Ph})_{2}\right)_{3}\right]$ with $\mathrm{M}=\mathrm{Re}$, Mo are trigonal-prismatic
Macrocyclic ligands: Porphyrin enforces square-planar arrangement
c) For molecules with delocalized electrons, especially aromatics such as benzene or 3,4-benzopyrolle, no statement can be made about the spatial structure, since the interactions between the atoms involved have a strong impact on the spatial structure of these molecules \rightarrow Molecule orbital (MO) theory

6.4 VSEPR Model

Summary

1. The VSEPR theory is an empirical model based on observations. It only allows to roughly estimate the molecular structure of small molecules. However, a proper calculation of the structure is not possible.
2. The model is solely accurate for elements of the first two periods. Once d-orbitals are present, deviations from predictions of the VSEPR model may be observed.

VSEPR Geometries					
Steric No.	$\frac{\text { Basic Geometry }}{0 \text { lone pair }}$	1 lone pair	2 lone pairs	3 lone pairs	4 lone pairs
2					
3		Bent or Angular			
4			$\ll 109^{\circ}$ Bent or Angular		
5					
6					

3. The model is not suitable for sterically demanding ligands, molecules with delocalized electrons or some transition metal compounds.
4. In order to make accurate predictions about the construction of more complex molecules, one must apply advanced models \rightarrow Ligand field (LF) \& MO theory

6.5 Technical Application

In Light Sources, Excimer LASER, Balloons, as Respiratory Gas, as Inert Gas, etc.

1. Light sources
$\mathrm{Ar}, \mathrm{Kr}, \mathrm{Xe}$ in incandescent lamps
$\mathrm{Ar}, \mathrm{Ne}, \mathrm{Kr}, \mathrm{Xe}$ in gas discharge lamps
2. Excimer LASER and plasma displays
$\mathrm{Ar}_{2}{ }^{*} \rightarrow 2 \mathrm{Ar}+\mathrm{h} \boldsymbol{\mathrm { h }}(\mathbf{1 2 6} \mathbf{~ n m})$
$\mathrm{Kr}_{2}{ }^{*} \rightarrow 2 \mathrm{Kr}+\mathrm{hv}$ ($\mathbf{1 4 6} \mathrm{nm}$)
$\mathrm{Xe}_{2}{ }^{*} \rightarrow 2 \mathrm{Xe}+\mathrm{hv}(172 \mathrm{~nm})$
3. Filling of balloons

Low density of $\mathrm{He} \sim 0.1785 \mathrm{~g} / \mathrm{l}$
4. Respiratory gas

$\mathbf{H e}-\mathrm{O}_{2}$ for deep divers (He dissolves less in blood than \mathbf{N}_{2})

6.6 Gas Discharge Lamps

Light Generation is based on the Light Emission of excited Atoms, e.g. Hg, Na, or Noble Gases from the Gas Phase

Principle of light generation
cathode $\rightarrow \mathbf{e}^{-}$
$\mathbf{e}^{-}+\mathbf{A} \rightarrow \mathrm{A}^{+}+\mathbf{2} \mathrm{e}^{-}$
$\mathrm{A}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{A}^{*}$
$\mathbf{A}^{*} \rightarrow \mathbf{A}+\mathrm{h} \nu_{\mathrm{UV}}$
$\mathrm{h} \nu_{\mathrm{UV}}+$ phosphor $\rightarrow \mathbf{h} \nu_{\text {visible }}$

Fluorescent lamps

comprise 3-5 mg liquid $\mathbf{H g}$, that goes into the gas phase during lamp operation

Phosphors: Inorganic solid-state compounds \Rightarrow Oxides, sulphides, nitrides, (halides)
$\mathrm{BaMgAl}_{10} \mathrm{O}_{17}: \mathrm{Eu}^{2+}$
$\mathrm{Sr}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{Cl}: \mathrm{Eu}^{2+}$
$\mathrm{LaPO}_{4}: \mathrm{Ce}^{3+}, \mathrm{Tb}^{3+}$
$\mathrm{Y}_{2} \mathrm{O}_{3}: \mathrm{Eu}^{3+}$
$\mathrm{CeMgAl}_{11} \mathrm{O}_{19}: \mathrm{Tb}^{3+}$
$\mathbf{G d M g B}_{5} \mathrm{O}_{\mathbf{1 0}}: \mathrm{Ce}^{3+}, \mathbf{T b}^{3+}, \mathbf{M n}^{2+}$

$6.7^{129} \mathrm{Xe}$-NMR Spectroscopy

Application in Chemistry and Medicine

Medicine

Contrast enhancement in nuclear spin tomography diagnostics
\Rightarrow Improved imaging of vessels, inner organs, body cavities, e.g. lung

Chemistry

Structure elucidation of complex molecules

7. Oxygen

Outline

7.1 Occurrence in Earth's Atmosphere
7.2 Isolation and Reactivity
7.3 Physical Properties
7.4 Atmosphere Chemistry
7.5 Oxygen Compounds
7.6 Technical Application

7.1 Occurrence in Earth's Atmosphere

The Presence of Oxygen $\left(\mathrm{O}_{2}\right.$ and $\left.\mathrm{O}_{3}\right)$ in Earth's Atmosphere is the Result of Biological Activity \rightarrow Photosynthesis: $\quad 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}$

Average composition of dry air	
N_{2}	$\mathbf{7 8 . 0 8 \%}$
O_{2}	20.95%
Ar	$\mathbf{0 . 9 3 \%}$
CO_{2}	$\mathbf{0 . 0 4 3 \%}$
Ne	$\mathbf{0 . 0 0 1 8 \%}$
$\mathrm{CH}_{4}, \mathrm{Kr}, \mathrm{N}_{2} \mathrm{O}, \mathrm{H}_{2}, \mathrm{CO}, \mathrm{Xe},<0.001 \%$	
$\mathrm{SF}_{6}, \mathrm{NF}_{3}, \mathrm{CF}_{4}, \mathrm{He}, \ldots .$.	$(<10 \mathrm{ppm})$

Oxygen isotopes

${ }^{16} \mathrm{O}$	$\mathbf{9 9 . 7 6 2 \%}$
${ }^{17} \mathrm{O}$	$\mathbf{0 . 0 3 8 \%}$
${ }^{18} \mathrm{O}$	$\mathbf{0 . 2 0 0 \%}$

Geology, climatology, palaeontology $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ enriches in the oceans due to evaporation
\Rightarrow T-Sensor: Incorporation of ${ }^{18} \mathrm{O}$ in foraminifers, molluses, and lime
\Rightarrow Mass spectroscopic determination

7.2 Synthesis and Reactivity

Synthesis

Molecular Oxygen O_{2}

a) Heating of noble metal oxides
$2 \mathrm{HgO} \rightarrow \mathrm{Hg}+\mathrm{O}_{2}$
$2 \mathrm{Ag}_{2} \mathrm{O} \rightarrow 4 \mathrm{Ag}+\mathrm{O}_{2}$
b) Decomposition of peroxides
$2 \mathrm{Na}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}+\mathrm{O}_{2}$
$2 \mathrm{BaO}_{2} \rightarrow 2 \mathrm{BaO}+\mathrm{O}_{2}$

Ozone O_{3}
a) Photolysis of O_{2} or sparks in O_{2}
$\mathrm{O}_{2} \rightarrow 2 \mathrm{O}$
$\mathrm{O}_{2}+\mathrm{O} \rightarrow \mathrm{O}_{3}$
(Discharges, ozone layer: stratosphere)
b) Photolysis of NO_{2} in air
$\mathrm{NO}_{2} \rightarrow \mathrm{NO}+\mathrm{O}$
$\mathrm{O}_{2}+\mathrm{O} \rightarrow \mathrm{O}_{3}$
(Summer smog: troposphere)

Reactivity

- Molecular Oxygen is rather stable and inert and ambient T: $\Delta H_{\text {diss }}=498 \mathrm{~kJ} / \mathrm{mol}$
- Ozone is thermodynamically instable and decomposes upon heating or in the presence of catalysts such as MnO_{2} or PbO_{2} according to $2 \mathrm{O}_{3} \rightarrow \mathbf{3} \mathrm{O}_{2}$
- O_{2} and O_{3} are strong oxidisers

$$
\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2} \text { and } \mathrm{S}+\mathrm{O}_{3} \rightarrow \mathrm{SO}_{3}
$$

7.3 Physical Properties

Molecular Oxygen and Ozone are highly soluble in Water (Much better than Carbohydrates)

Solubility of O_{2} in $\mathrm{H}_{2} \underline{O}$

- at $25^{\circ} \mathrm{C}$ and $1 \mathrm{bar} \sim 40 \mathrm{mg}$ per litre
- Air contains almost $21 \% \mathrm{O}_{2} \Rightarrow \sim 8 \mathrm{mg}$ per litre
- Solubility decreases with increasing temperature \Rightarrow Cold waters are full of fish (Humboldt stream)
- Oxygen free chemistry in solution requires thorough flushing by an inert gas (e.g. Ar or \mathbf{N}_{2})

Toxicity of O_{2} and O_{3}
$<8 \% \mathrm{O}_{2} \Rightarrow$ blanket by Oxygen deficiency
$>60 \% \mathrm{O}_{2} \Rightarrow \quad$ Formation of harmful hyperoxide $\mathrm{O}_{2}{ }^{-}$
O_{3} is extremely toxic: MAK-value $=0.2 \mathrm{mg} / \mathrm{cm}^{\mathbf{3}} \sim 0.1 \mathrm{ppm}$ (parts per million)

7.4 Atmosphere Chemistry

By Formation of O_{2} the Ozone Layer was build-up about 500 - 600 Mill. Years ago

Stratosphere (15-50 km)

$\mathrm{O}_{2} \xrightarrow[<240 \mathrm{~nm}]{ } 2 \mathbf{O}$ -

$$
\mathbf{O}_{2}+\mathbf{O} \rightleftharpoons \mathbf{O}_{3}
$$

$$
\text { < } 310 \mathrm{~nm} \text { (UV-B and UV-C) }
$$

$\mathrm{Cl} \cdot+\mathrm{O}_{3} \rightarrow \mathrm{ClO} \cdot+\mathrm{O}_{2}$

$$
\begin{aligned}
& \mathrm{NO}+\mathrm{O}_{3} \rightarrow \mathrm{NO}_{2} \cdot+\mathrm{O}_{2} \\
& \mathrm{NO}_{2}+\mathrm{O} \rightarrow \mathrm{NO} \cdot+\mathrm{O}_{2}
\end{aligned}
$$

$\mathrm{ClO}+\mathrm{O} \rightarrow \mathrm{Cl}+\mathrm{O}_{2}$
Cl. stems from $\mathrm{CFC}=$ chlorofluorocarbon e.g. $\mathrm{CFCl}_{3}, \mathrm{CF}_{2} \mathrm{Cl}_{2}$

$$
\mathrm{C}_{\mathrm{x}} \mathrm{~F}_{2 \mathrm{x}+2 \mathrm{y}} \mathrm{Cl}_{\mathrm{z}} \rightarrow \mathrm{C}_{\mathrm{x}} \mathrm{~F}_{\mathrm{y}} \mathrm{Cl}_{\mathrm{z}-1}+\mathrm{Cl}
$$

Troposphere (0 - 10 km)

$$
\begin{array}{ll}
\text { Exhaust gases: } & \mathrm{CO}, \mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
& 2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2} \\
& \mathrm{NO}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{NO}+\mathrm{O}_{3} \\
& \text { (Summer smog: } \left.\mathrm{O}_{3}>180 \mu \mathrm{~g} / \mathrm{m}^{3} \text { air }\right)
\end{array}
$$

7.5 Oxygen Compounds

Oxygen Forms Oxides, Peroxides, Hyperoxides, and Ozonides
Oxides $\mathrm{O}^{2-}(-2)$

$$
4 \mathrm{Li}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Li}_{2} \mathrm{O}
$$

$$
\mathrm{Li}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{LiOH}
$$

$$
2 \mathrm{Ca}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CaO}
$$

$$
\mathrm{CaO}+\mathrm{CO}_{2} \rightarrow \mathrm{CaCO}_{3} \text { (lime) }
$$

Peroxides $\mathrm{O}_{2}{ }^{2-}(-1)$
$2 \mathbf{N a}+\mathrm{O}_{\mathbf{2}} \rightarrow \mathrm{Na}_{2} \mathrm{O}_{\mathbf{2}}$
$\mathrm{Ba}+\mathrm{O}_{\mathbf{2}} \rightarrow \mathrm{BaO}_{2}$
Hyperoxides $\mathrm{O}_{2}{ }^{-}(-1 / 2)$
$\mathbf{M e}+\mathbf{O}_{\mathbf{2}} \rightarrow \mathrm{MeO}_{\mathbf{2}}$
$\mathbf{M e}=\mathbf{K}, \mathbf{R b}, \mathbf{C s}$

Ozonides $\mathrm{O}_{3}{ }^{-}(-1 / 3)$
$\mathrm{MeO}_{2}+\mathrm{O}_{3} \rightarrow \mathrm{MeO}_{3}+\mathrm{O}_{2} \quad \mathrm{Me}=\mathrm{K}, \mathrm{Rb}, \mathrm{Cs}$

7.6 Technical Application

Molecular Oxygen (O_{2})

- Steel production
(Reduction of the carbon content: $2 \mathrm{C}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}$)
- Welding (acetylene / O_{2})
- Waste water treatment
- Drinking water treatment
- Respiratory gas (blended with \mathbf{N}_{2} or $\mathbf{H e}$)
- Medicine (Oxygen treatment)

Ozone (O_{3})

- Surfae, water, and air treatment (killing of microorganisms)
- Organic chemistry (ozonolysis)

$$
\mathrm{R}_{2} \mathrm{C}=\mathrm{CR}_{2}+\mathrm{O}_{3} \rightarrow \mathrm{R}_{2} \mathrm{C} \overbrace{\mathrm{O-O}}^{\mathrm{O}} \mathrm{CR}_{2} \rightarrow \mathrm{R}_{2} \mathrm{C}=\mathrm{O}+\mathrm{O}=\mathrm{CR}_{2} \text { Synthesis of Ketones }
$$

