Modulhandbuch

Bachelor-Studiengang Bauingenieurwesen (6-sem.)

&

Bachelor-Studiengang Bauingenieurwesen PLUS (7-sem.)

Stand: 30.05.2018
Studienvarianten Bachelor Bauingenieurwesen:

Bachelor Bauingenieurwesen (6-sem.):

6. Semester

Vorlesung (Vertieferrichtungen BB, VK) *

Praxisphase (BB, VK) *

Module VSB7, VSV8

Bachelorarbeit

*) Vertieferrichtungen:
BB: Baubetrieb und Bauwirtschaft
KI: Konstruktiver Ingenieurbau
VK: Verkehrswesen
WR: Wasser- und Ressourcenwirtschaft

Bachelor Bauingenieurwesen PLUS (7-sem.):

6. Semester

Vorlesung (Vertieferrichtungen BB, VK) *

Praxissemester

Beginn Praxissemester

7. Semester

Projekt (BB, VK) *

Module VSB10, VSV11

Bachelorarbeit

Abschluss: B.Eng. (180 CPs)

Direkter Anschluss an Master Bauing. möglich

Abschluss: B.Eng. (210 CPs)
Inhaltsverzeichnis

GRUNDSTUDIUM

Modul: GS1	Mathematik I	10
Modul: GS2	Mathematik II	11
Modul: GS3	Technische Mechanik I	12
Modul: GS4	Technische Mechanik II	13
Modul: GS5	Baustofflehre/Bauchemie	14
Modul: GS6	Bauphysik	15
Modul: GS7	Baukonstruktion I + II	16
Modul: GS8	Datenverarbeitung / CAD	17
	Teil: CAD	17
	Teil: Datenverarbeitung	18
Modul: GS9	Vermessungskunde	19

BAUBETRIEB UND BAUWIRTSCHAFT

<p>| Modul: FSB1 | Allgemeine Kompetenzen/Fremdsprachen | 21 |
| Modul: FSB2 | Geotechnik | 22 |
| Modul: FSB3 | Grundlagen Konstruktiver Ingenieurbau | 23 |
| Modul: FSB4 | Grundlagen Bauverfahrenstechnik | 24 |
| Modul: FSB5 | Baubetrieb und Baurecht | 25 |
| | Teil: Baubetrieb | 25 |
| | Teil: Bau- und Vertragsrecht | 26 |</p>
<table>
<thead>
<tr>
<th>Modul: FSB6</th>
<th>Kurs: Grundlagen Verkehrswesen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul: FSB7</td>
<td>Kurs: Grundlagen Wasser- und Ressourcenwirtschaft</td>
</tr>
<tr>
<td>Modul: FSB8</td>
<td>Kurs: Sicherheitstechnik I</td>
</tr>
<tr>
<td>Modul: FSB9</td>
<td>Kurs: Massivbaukonstruktionen</td>
</tr>
</tbody>
</table>

BAUBETRIEB UND BAUWIRTSCHAFT

<table>
<thead>
<tr>
<th>Modul: VSB1</th>
<th>Kurs: Kosten- und Leistungsrechnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul: VSB2</td>
<td>Kurs: Managementsysteme</td>
</tr>
<tr>
<td>Modul: VSB3</td>
<td>Kurs: Bauverfahrenstechnik</td>
</tr>
<tr>
<td>Modul: VSB4</td>
<td>Kurs: Projekt</td>
</tr>
<tr>
<td>Modul: VSB5</td>
<td>Kurs: Sicherheitstechnik II</td>
</tr>
<tr>
<td>Modul: VSB6</td>
<td>Kurs: Energetische Bewertung von Bestandsgebäuden</td>
</tr>
<tr>
<td>Modul: VSB7</td>
<td>Kurs: Grundlagen BWL</td>
</tr>
<tr>
<td>Modul: VSB8</td>
<td>Kurs: Konstruieren im Stahlbetonbau</td>
</tr>
</tbody>
</table>

VERTIEFERSTUDIUM

<table>
<thead>
<tr>
<th>Modul: VSB6</th>
<th>Kurs: Anlagentechnik in Gebäuden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul: VSB7</td>
<td>Kurs: Praxisphase (nur 6-sem. Bachelor Bauing.)</td>
</tr>
<tr>
<td>Modul: VSB8</td>
<td>Kurs: Bachelorarbeit</td>
</tr>
<tr>
<td>Modul: VSB9</td>
<td>Kurs: Kolloquium</td>
</tr>
<tr>
<td>Modul: VSB10</td>
<td>Kurs: Projekt „Sondergebiete des Baubetriebs“ (nur Bauing. PLUS, 7-sem.)</td>
</tr>
<tr>
<td>Modul: VSB11</td>
<td>Kurs: Praxissemester (nur Bauing. PLUS, 7-sem.)</td>
</tr>
</tbody>
</table>
KONSTRUKTIVER INGENIEURBAU ... 47

FACHSTUDIUM .. 47
Modul: FSK1 .. 48
Kurs: Allgemeine Kompetenzen/Fremdsprachen ... 48
Modul: FSK2 .. 49
Kurs: Geotechnik ... 49
Modul: FSK3 .. 50
Kurs: Grundlagen Bauverfahrenstechnik ... 50
Modul: FSK4 .. 51
Kurs: Grundlagen Baubetrieb inkl. Bau- und Vertragsrecht 51
Teil: Grundlagen Baubetrieb ... 51
Kurs: Grundlagen und Baurecht ... 52
Teil: Bau- und Vertragsrecht .. 52
Modul: FSK5 .. 53
Kurs: Grundlagen Verkehrswesen .. 53
Modul: FSK6 .. 54
Kurs: Grundlagen Wasser- und Ressourcenwirtschaft 54
Modul: FSK7 .. 55
Kurs: Grundlagen der Tragwerksplanung .. 55
Modul: FSK8 .. 56
Kurs: Baustatik I ... 56
Modul: FSK9 .. 57
Kurs: Massivbau I ... 57
Modul: FSK10 .. 58
Kurs: Stahlbau I ... 58

KONSTRUKTIVER INGENIEURBAU .. 59

VERTIEFERSTUDIUM .. 59
Modul: VSK1 .. 60
Kurs: Baustatik II .. 60
Modul: VSK2 .. 61
Kurs: Stahlbau II ... 61
Modul: VSK3 .. 62
Kurs: Ingenieurholzbau .. 62
Modul: VSK4 .. 63
Kurs: Massivbau II .. 63
Modul: VSK5 .. 64
Kurs: Tragwerke des Hochbaus ... 64

Anhang zur Akkreditierung
Modulhandbuch Bachelor Bauingenieurwesen Teil A
Anhang zur Akkreditierung
Modulhandbuch Bachelor Bauingenieurwesen Teil A

Modul: VSK6 .. 65
Kurs: Konstruieren im Stahlbetonbau.. 65
Kurs: Energetische Bewertung von Bestandsgebäuden ... 66
Kurs: Angewandte Tragwerksplanung ... 67
Kurs: Projekt KI ... 68
Kurs: Bauelemente ... 69

Modul: VSK7 .. 70
Kurs: Brücken- und Tunnelbau .. 70

Modul: VSK8 .. 71
Kurs: Bachelorarbeit .. 71

Modul: VSK9 .. 72
Kurs: Kolloquium .. 72

Modul: VSK10 .. 74
Kurs: Praxissemester (nur Bauing. PLUS, 7-sem.) ... 74

VERKEHRSWESEN ... 75

FACHSTUDIUM .. 75

Modul: FSV1 ... 76
Kurs: Allgemeine Kompetenzen/Fremdsprachen ... 76

Modul: FSV2 ... 77
Kurs: Geotechnik .. 77

Modul: FSV3 ... 78
Kurs: Grundlagen Konstruktiver Ingenieurbau ... 78

Modul: FSV4 ... 79
Kurs: Grundlagen Bauverfahrenstechnik .. 79

Modul: FSV5 ... 80
Kurs: Grundlagen Baubetrieb inkl. Bau- und Vertragsrecht .. 80
Teil: Grundlagen Baubetrieb ... 80
Kurs: Grundlagen und Baurecht ... 81
Teil: Bau- und Vertragsrecht ... 81

Modul: FSV6 ... 82
Kurs: Grundlagen Wasser- und Ressourcenwirtschaft ... 82

Modul: FSV7 ... 83
Kurs: Entwurf von Verkehrsanlagen .. 83

Modul: FSV8 ... 84
Kurs: Straßenwesen .. 84

Modul: FSV9 ... 85
Kurs: Projekte des Verkehrswesens Teil: Projekt I .. 85
Kurs: Projekte des Verkehrswesens Teil: Projekt II ... 86
VERKEHRSWESEN .. 87

VERTIEFERSTUDIUM .. 87

Modul: VSV1 .. 88
Kurs: Schienenverkehrsbau ... 88

Modul: VSV2 .. 89
Kurs: Sondergebiete des Straßenwesens .. 89
Kurs: Straßenbautechnisches Praktikum .. 90

Modul: VSV3 .. 91
Kurs: CAD im Verkehrswesen .. 91

Modul: VSV4 .. 92
Kurs: Angewandte Mathematik ... 92

Modul: VSV5 .. 93
Kurs: Brücken- und Tunnelbau ... 93

Modul: VSV6 .. 94
Kurs: Landschaft und Gewässer ... 94

Modul: VSV7 .. 95
Kurs: Planungsmodelle / Telematik .. 95

Modul: VSV8 .. 96
Kurs: Praxisphase (nur 6-sem. Bachelor Bauing.) .. 96

Modul: VSV9 .. 97
Kurs: Bachelorarbeit ... 97

Modul: VSV10 .. 98
Kurs: Kolloquium .. 98

Modul: VSV11 .. 100
Kurs: Projekt (nur Bauing. PLUS, 7-sem.) .. 100

Modul: VSV12 .. 101
Kurs: Praxissemester (nur Bauing. PLUS, 7-sem.) .. 101

WASSER- UND RESSOURCENWIRTSCHAFT .. 102

FACHSTUDIUM .. 102

Modul: FSW1 .. 103
Kurs: Allgemeine Kompetenzen/Fremdsprachen .. 103

Modul: FSW2 .. 104
Kurs: Geotechnik .. 104

Modul: FSW3 .. 105
Kurs: Grundlagen Konstruktiver Ingenieurbau ... 105

Modul: FSW4 .. 106
Kurs: Grundlagen Bauverfahrenstechnik .. 106
Anhang zur Akkreditierung
Modulhandbuch Bachelor Bauingenieurwesen Teil A

Modul: FSW5 ... 107
Kurs: Grundlagen Baubetrieb inkl. Bau- und Vertragsrecht .. 107
Teil: Grundlagen Baubetrieb ... 107
Kurs: Grundlagen Baubetrieb ... 107
Teil: Bau- und Vertragsrecht ... 108

Modul: FSW6 ... 109
Kurs: Grundlagen Verkehrswesen .. 109

Modul: FSW7 ... 110
Kurs: Grundlagen Wasser- und Ressourcenwirtschaft ... 110

Modul: FSW8 ... 111
Kurs: Umweltbiologie/-chemie ... 111

Modul: FSW9 ... 112
Kurs: Wasserwirtschaft und Hydrologie I+II .. 112
Teil: Wasserwirtschaft und Hydrologie I ... 112
Kurs: Wasserwirtschaft und Hydrologie I+II .. 113
Teil: Wasserwirtschaft und Hydrologie II .. 113

Modul: FSW10 ... 114
Kurs: Abfall- und Ressourcenwirtschaft I+II ... 114

WASSER- UND RESSOURCENWIRTSCHAFT ... 115

VERTIEFERSTUDIUM ... 115

Modul: VSW1 ... 116
Kurs: Anlagentechnik in Gebäuden ... 116

Modul: VSW2 ... 117
Kurs: Wasserbau und Hydromechanik I+II .. 117

Modul: VSW3 ... 118
Kurs: Siedlungswasserwirtschaft I+II .. 118

Modul: VSW4 ... 119
Kurs: Entwurfsprojekt und Exkursion .. 119

Modul: VSW5 ... 120
Kurs: Bachelorarbeit .. 120

Modul: VSW6 ... 121
Kurs: Kolloquium .. 121

Modul: VSW7 ... 123
Kurs: Praxissemester (nur Bauing. PLUS, 7-sem.) ... 123
Grundstudium

1. + 2. Semester
<table>
<thead>
<tr>
<th>Modul: GS1</th>
<th>Modus: P</th>
<th>Kurs: Mathematik I</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 180 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>6</td>
<td>5 V/Ü/SU</td>
<td>75 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung / Seminaristischer Unterricht

Dozent/Dozentin
Prof. Dr.-Ing. Lücken-Girmscheid, Prof. Dr.-Ing. Carstens

Veranstaltungsinhalte
- Allgemeine Grundlagen
- Zinseszinsrechnung
- Stereometrie
- Trigonometrie
- Lineare Algebra
- Funktionen
- Analytische Geometrie der Ebene
- Vektorrechnung

Qualifikationsziele
- Die Studierenden sollen grundlegende, berufsbezogene und mathematische Methoden beherrschen.
- Im Bauingenieurwesen auftretende mathematische Probleme sollen gelöst werden können.
- Erlernen und praktische Anwendung systematischer Arbeits- und Kontrollmethoden.

Prüfungsform
Klausur

Prüfungsvoraussetzungen

Teilnahmeveraussetzung
Erforderlich:
Nützlich: Gute Grundkenntnisse im Fach Mathematik und die sichere Beherrschung der elementaren Rechentechniken
Vorkurs Mathematik

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: GS2</th>
<th>Modus: P</th>
<th>Kurs: Mathematik II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>Workload 180 h</td>
<td>Modul</td>
</tr>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>6</td>
<td>5 V/Ü/SU</td>
<td>75 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung / Seminaristischer Unterricht

Dozent/Dozentin
Prof. Dr.-Ing. Lücken-Girmscheid, Prof. Dr.-Ing. Carstens

Veranstaltungsinhalte
- Differentialrechnung
- Integralrechnung
- Statistik

Qualifikationsziele
- Den Studierenden sollen grundlegende, berufsbezogene und mathematische Kenntnisse an die Hand gegeben werden.
- Im Bauingenieurwesen auftretende mathematische Probleme sollen gelöst werden können.
- Erlernen und praktische Anwendung systematischer Arbeits- und Kontrollmethoden.

Prüfungsform
Klausur

Prüfungsvoraussetzungen

Teilnahmevoraussetzung
Erforderlich:
Nützlich: Beherrschung der Lehrinhalte des Moduls Mathematik I

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: GS3
Modus: P
Pflicht/Wahlpflicht/Wahl

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 180 h</th>
<th>Modul</th>
</tr>
</thead>
</table>
| CP | SWS | Kontaktzeit
Selbststudium/Prüfung | Dauer | Turnus |
| 6 | 5 V/Ü/SU | 75 h
105 h | 1 Sem | WS |

Lehrformen: Vorlesung / Übung / Seminaristischer Unterricht

Dozent/Dozentin
Prof. Dr.-Ing. Baumann, Prof. Dr.-Ing. Vette, Prof. Dr.-Ing. Waltering

Veranstaltungsinhalte

- Grundbegriffe der Mechanik, physikalische Größen, Einheiten
- Zentrale Kräftesysteme, grafische und numerische Methoden
- Allgemeine Kräftesysteme, grafische und numerische Methoden
- Gleichgewicht, Auflagerarten und -reaktionen
- Grenzfälle des Gleichgewichts, Lagestabilität, Haftung u. Reibung
- Überprüfung der Unverschieblichkeit (Bildungsgesetz, Polplan)
- Schnittpinzip, Schnittgrößen
- Zusammengesetzte Systeme
- Räumliche Schnittgrößen

Qualifikationsziele

- Anschauliches Verständnis für Kräfte und Momente; Beherrschen der Zerlegung und Überlagerung von Kräften
- Erkennen von statischen Systemen; Beherrschen der Ermittlung von statischer Bestimmtheit und verschieblichen Systemen
- Beherrschen von zusammengesetzten statischen Systemen einschließlich der statischen Bestimmtheit und Unverschieblichkeit
- Sicherheit in der Ermittlung und Beurteilung von Schnittgrößen
- Abstraktion des Gleichgewichtsprinzips auf Schnittgrößen im Raum

Prüfungsform

Klausur

Prüfungsvoraussetzungen

Hausarbeit (PVL)

Teilnehmervoraussetzung

Erforderlich: Grundkenntnisse in Mathematik und Physik
Nützlich: räumliches Vorstellungsvermögen

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: GS4</th>
<th>Modus: P</th>
<th>Kurs: Technische Mechanik II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>Workload 180 h</td>
<td>Modul</td>
</tr>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>6</td>
<td>5 V/Ü/SU</td>
<td>75 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung / Seminaristischer Unterricht

Dozent/Dozentin

Prof. Dr.-Ing. Baumann, Prof. Dr.-Ing. Vette, Prof. Dr.-Ing. Waltering

Veranstaltungsinhalte

- Festigkeitslehre: Spannungen (aus ebenen Schnittgrößen)
- Werkstoffkennwerte (Festigkeit, E-Modul usw.)
- Spannungen (aus räumlichen Schnittgrößen)
- Verformungen (Differentialgleichung der Biegelinie, Arbeitssatz)
- Einführung in die Berechnung mit ebenen Stabwerkprogrammen
- Stabilitätsprobleme (Knicken gerader Stäbe)

Qualifikationsziele

- Kenntnisse von Spannungen und Verformungen sowie vom Versagen eines Bauteils
- Aufstellung einfacher Standsicherheitsnachweise und Verformungsberechnungen
- Verständnis und sichere Anwendung der Spannungsbeziehungen

Prüfungsform

Klausur

Prüfungsvoraussetzungen

Hausarbeit (PVL)

Teilnahmeverwaltung

Erforderlich: Grundkenntnisse in Mathematik und Baustoffkunde
Nützlich: räumliches Vorstellungsmögen

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: GS5
Modus: P
Kurs: Baustofflehre/Bauchemie

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 240 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>8</td>
<td>7 V/Ü/P</td>
<td>105 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung / Praktikum

Dozent/Dozentin
Prof. Dr.-Ing. Harnisch

Veranstaltungsinhalte
- Allgemeine Grundlagen der Chemie
- Anorganische Chemie
- Organische Chemie
- Bauchemie (Herstellung, Anwendung und Verhalten von Stoffen/Baustoffen)
- Nichtmetallische anorganische Baustoffe (Natursteine, künstliche Steine, Mörtel, Putz und Beton)
- Metallische Baustoffe (Stahl, Aluminium, Kupfer, Zink und Blei)
- Organische Baustoffe (Holz, Kunststoffe)

Qualifikationsziele
- Erwerb grundlegender Kenntnisse über chemische Reaktionen sowie die Herstellung, Anwendung und das Verhalten von Stoffen/Baustoffen
- Anwendung physikalischer und chemischer Kenngrößen zur Beurteilung von Baustoffeigenschaften
- Erkennung von Zusammenhängen zwischen Eigenschaften und Baustoffen sowie deren Funktion im Bauwerk
- Erarbeitung von Baustoffkenngrößen zum Verständnis auch von neuen Stoffen
- Vertiefung theoretischer Erkenntnisse durch Übungen

Prüfungsform
Modulprüfung, Klausur

Prüfungsvoraussetzungen
Regelmäßige Teilnahme und Mitarbeit an den praktischen Übungen, PVL Bauchemie

Teilnahmevoraussetzung
- Erforderlich: Grundkenntnisse in Physik, Chemie, Mathematik
- Nützlich: Kenntnisse von Grundlagen der anorganischen und organischen Chemie

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: GS6 Modus: Pflicht/Wahl

<table>
<thead>
<tr>
<th>Modulhandbuch Bachelor Bauingenieurwesen Teil A</th>
</tr>
</thead>
</table>

Kurs: Bauphysik

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 180 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
</tr>
<tr>
<td>6</td>
<td>6 V/Ü/P</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium/Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 h</td>
<td>90 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2 Sem</td>
</tr>
</tbody>
</table>

Lehrformen:
Vorlesung / Übung / Praktikum

Dozent/Dozentin
Prof. Dr.-Ing. Homann

Veranstaltungsinhalte
- Feuchteschutz: Ziele des Feuchteschutzes, Feuchtebeanspruchungen, Feuchtetechnische Mechanismen (Feuchtespeicherung, Feuchteübergang), Tauwasserausfall im Bauteilinneren, Betauung von Bauteiloberflächen, Schlagregen- und Spritzwasserschutz, Anforderungen und Nachweise
- Schallschutz: Physikalische Grundlagen und Begriffe, Bauakustik (Luftschallschutz, Trittschallschutz, Anforderungen an den Schallschutz, Schalltechnische Nachweise), Raumakustik (Schallausbreitung im Raum, Schallabsorption, Schallreflexion, raumakustische Projektierung)
- Brandschutz: Brandschutzziele, Brandschutzkonzepte, Brandverlauf, vorbeugender baulicher Brandschutz, bauaufsichtliche Vorschriften, Gebäudeklassen gemäß LBO, Baustoffklasse und Feuerwiderstandsklasse, Mindestanforderungen an den baulichen Brandschutz, Brandverhalten von Bauteilen

Qualifikationsziele
- Beherrschung bauphysikalischer Grundkenntnisse (Begriffe, Phänomene, Berechnungsmethoden, Regelwerke, Nachweisverfahren) sowie der Zusammenhänge zwischen physikalischen und technischen Kriterien bei Bauwerken, Stadtplanung und Umwelt.
- Fähigkeit, Baukonstruktionen zu dimensionieren und die bauphysikalischen Erkenntnisse in planerische Gesamtkonzepte einzubinden.

Prüfungsform
Modulprüfung, Klausur oder mdl. Prüfung

Prüfungsvoraussetzungen
Regelmäßige und erfolgreiche Teilnahme an Übungen und Praktika.

Teilnahmevoraussetzung
- Erforderlich:
- Nützlich: Mathematische und physikalische Grundkenntnisse

Verwendbarkeit in anderen Studiengängen

Sonstige Information

Anhang zur Akkreditierung
Modulhandbuch Bachelor Bauingenieurwesen Teil A
<table>
<thead>
<tr>
<th>Modul: GS7</th>
<th>Modus: P</th>
<th>Kurs: Baukonstruktion I + II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pflicht/Wahlpflicht/Wahl</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 300 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit Selbststudium/Prüfung</td>
</tr>
<tr>
<td>10</td>
<td>8 V/P/SU</td>
<td>120 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Praktikum / Seminaristischer Unterricht

Dozent/Dozentin

Prof. Dr.-Ing. Mähner

Veranstaltungsinhalte
- Baugrund und Gründungen, Baugrubensicherungen,
- Haus- und Grundstücksentwässerung,
- Mauerwerksbau, Deckensysteme, Gebäudeabdichtung, Treppen
- Methoden der Darstellung, Bautechnisches Zeichnen
- Wasserundurchlässige Bauwerke, Balkone, Flachdächer, Dächer,
- Bauwerksaussteifung, Fertigteilbau, Maßabweichungen

Qualifikationsziele
- Die Studierenden sollen die grundlegenden Baukonstruktionsmethoden beherrschen.
- Sie sollen in der Lage sein, Detailpunkte im Hochbau konstruktiv auszubilden.
- Sie sollen das Zusammenspiel einzelner Konstruktionen unter Berücksichtigung von unterschiedlichen Parametern und Randbedingungen sowie die erforderliche Vernetzung mit anderen Gewerken erkennen.

Prüfungsform

Modulteilprüfung 1, Modulteilprüfung 2, Klausuren

Prüfungsvoraussetzungen

Erfolgreiche konstruktive Ausarbeitungen

Teilnahmevoraussetzung

Erforderlich:
Nützlich: Baustellentätigkeit durch Berufsausbildung oder Praktikum, möglichst im Massivbau

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: GS8</th>
<th>Modus:</th>
<th>P</th>
<th>Kurs:</th>
<th>Datenverarbeitung / CAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulhandbuch Bachelor Bauingenieurwesen Teil A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pflicht/Wahlpflicht/Wahl</th>
<th>P</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modul</th>
<th>Anzahl</th>
<th>Workload 180 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8 V/P</td>
<td>120 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Praktikum

Dozent/Dozentin
Dipl.-Ing. Broß

Veranstaltungsinhalte
- Grundlagen CAD
- Konzept des Computerprogramms AutoCAD
- Zeichnen, Bemaßen, Konstruieren mit AutoCAD
- Im 2D und 3D-Bereich

Qualifikationsziele
- Die Studierenden sollen die Grundlagen des Zeichenprogramms AutoCAD selbständig beherrschen

Prüfungsform
Modulteilprüfung, Klausur und Zeichnen von Aufgaben am PC

Prüfungsvoraussetzungen
Regelmäßige und erfolgreiche Teilnahme am Praktikum

Teilnahmevoraussetzung
- Erforderlich: Grundkenntnisse der Bedienung eines PC
- Nützlich: Grundkenntnisse der Bedienung eines PC

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: GS8</th>
<th>Modus: P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kurs: Datenverarbeitung / CAD</td>
<td></td>
</tr>
<tr>
<td>Teil: Datenverarbeitung</td>
<td></td>
</tr>
</tbody>
</table>

| Lehrformen: Vorlesung / Praktikum |

<table>
<thead>
<tr>
<th>Dozent/Dozentin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipl.-Ing. Broß</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Veranstaltungsinhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Datenverarbeitung</td>
</tr>
<tr>
<td>Datentypen und ihre Auswirkung auf Genauigkeit der Ergebnisse</td>
</tr>
<tr>
<td>Einführung in ein Office Programm</td>
</tr>
<tr>
<td>Einführung in eine höhere Programmiersprache</td>
</tr>
<tr>
<td>Behandlung der wichtigsten Sprachelemente</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Qualifikationsziele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einschätzung von Stärken und Schwächen der Datenverarbeitung im Bauingenieurwesen</td>
</tr>
<tr>
<td>Lösung einfacher praxisnaher Probleme mit Hilfe der EDV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulteilprüfung, Klausur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regelmäßige und erfolgreiche Teilnahme am Praktikum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilnahmevoraussetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erforderlich: logisches Denken</td>
</tr>
<tr>
<td>Nützlich: Mathematische Grundkenntnisse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit in anderen Studiengängen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sonstige Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul: GS9</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Anzahl</td>
</tr>
<tr>
<td>CP</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Praktikum

Dozent/Dozentin
Prof. Dr.-Ing. Prof. h.c. Lühder

Veranstaltungsinhalte
- Instrumentenkunde, Fehlerlehre
- Verfahren der Lage- und Höhenmessung
- Optische und elektrooptische Distanzmessung
- Koordinaten-, Flächen- und Massenberechnung

Qualifikationsziele
- Die Studierenden sollen die vermessungstechnischen Grundlagen beherrschen.
- Sie sollen in der Lage sein Vermessungsinstrumente selbständig zu bedienen.

Prüfungsform
Modulprüfung, Klausur

Prüfungsvoraussetzungen
Regelmäßige Teilnahme und Mitarbeit an den praktischen Übungen

Teilnahmevoraussetzung
- Erforderlich: Gute mathematische Grundkenntnisse
- Nützlich: Vorkenntnisse der Geometrie

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Baubetrieb und Bauwirtschaft

Fachstudium

(3. + 4. Semester)
<table>
<thead>
<tr>
<th>Modul: FSB1</th>
<th>Modus: P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflicht/Wahlpflicht/Wahl</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kurs: Allgemeine Kompetenzen/Fremdsprachen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 120 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP 4</td>
<td>SWS 3 V/S/Ü</td>
<td>Kontaktzeit 45 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Seminar / Übung

Dozent/Dozentin
Prof. Dr.-Ing. Friedrichsen, Prof. Dr.-Ing. Homann

Veranstaltungsinhalte

- Technisches Englisch od. Technisches Spanisch od. Technisches Französisch
- Präsentationstechniken
 - Präsentationsvorbereitung (Ziele, Zielgruppe, Inhalte)
 - Medieneinsatz (Auswahl, und Einsatz von Medien, Grafikgestaltung)
 - Präsentationphase (von der Eröffnung bis zum Abschluss)
- Wissenschaftliches Arbeiten
 - Datenerhebung
 - Datenanalyse
 - Datendarstellung

Qualifikationsziele

- Aufbau einer technischen Sprachkompetenz in Wort und Schrift
- Sichere Beherrschung von Präsentationstechniken
- Ordnungsgemäßes Erarbeiten und Abfassen wissenschaftlicher Erkenntnisse und Untersuchungen

Prüfungsform

Modulprüfung, Klausur oder mdl. Prüfung oder Präsentationen

Prüfungsvoraussetzungen

Teilnahmevoraussetzung

Erforderlich:
Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: FSB2 Modus: \(P \) Pflicht/Wahlpflicht/Wahl Kurs: Geotechnik

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 240 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP 8</td>
<td>SWS 8 V/Ü/P</td>
</tr>
<tr>
<td>Kontaktzeit 120 h</td>
<td>Selbststudium/Prüfung 120 h</td>
</tr>
<tr>
<td>Dauer 2 Sem</td>
<td>Turnus WS+SS</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung / Praktikum

Dozent/Dozentin
Prof. Dr.-Ing. Heimbecher

Veranstaltungsinhalte
- Entstehung und Erkundung von Boden und Fels, bodenmechanische Kennwerte
- Spannungen u. Verformungen, Erddruck, Flachgründungen, Tiefgründungen
- Stützbauwerke, Böschungen, Baugruben, Verdichtung von Böden
- Verdichtungsprüfung, Wasserhaltungen, Grundwasserabsenkungen

Qualifikationsziele
- Kenntnisse der Besonderheiten des Baustoffes Boden, der Interaktion von Baugrund und Bauwerk, der Dimensionierung von Gründungen,
- Beherrschen der Berechnung von Gründungen und des Nachweises der Standsicherheit von Stützbauwerken, Böschungen und Baugruben,
- Kenntnisse der Verdichtungsprüfungen im Erdbau

Prüfungsform
Modulprüfung, Klausur

Prüfungsvoraussetzungen
Prüfungsvorleistungen (PVL)

Teilnahmeveraussetzung
- Erforderlich: Grundkenntnisse in Mechanik, Statik, Mathematik und Physik
- Nützlich: Baustellenpraktikum im Erd- und Straßenbau

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: FSB3
Kurs: Grundlagen Konstruktiver Ingenieurbau

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 240 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>8</td>
<td>8 V/Ü/SU</td>
<td>120 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung / Seminaristischer Unterricht

Dozent/Dozentin
Prof. Dr.-Ing. Büsse, Prof. Dr.-Ing. Waltering

Veranstaltungsinhalte
- Grundlagen des Stahlbetonbaues – Tragfähigkeit und Gebrauchssicherheit
- Biegetragwirkung und Querkrafttragwirkung
- Tragwirkung von Stützen, Fundamenten, Platten und Wänden
- Gebrauchssicherheit – Durchbiegung und Rissbreitenbeschränkung
- Statisch unbestimmte Systeme – Durchlaufträger und Rahmen
- Lastannahmen
- Gebäudeaussteifung
- Einführung in die Anwendung baustatischer Methoden
- Grundlagen des Stahlbaues – Material, Biegeträger, Stützen, Verbindungsmittel
- Grundlagen des Holzbaues – Material, Biegeträger, Stützen, Verbindungsmittel
- Grundlagen des Mauerwerks – Material, Wand, Pfeiler, Bogen

Qualifikationsziele
- Beurteilung des Tragverhaltens einfacher Konstruktionen aus Stahlbeton, Stahl, Holz und Mauerwerk
- Kenntnisse in der Berechnung von Schnittgrößen und Verformungen statischer Systeme

Prüfungsform
Modulteilprüfung 1 und 2, Klausur

Prüfungsvoraussetzungen
Erfolgreiche konstruktive Ausarbeitung

Teilnahmeverträglichkeit
Erforderlich: gute Grundkenntnisse Baustoffkunde, Baukonstruktionslehre, Technischer Mechanik
Nützlich: geübtes räumliches Vorstellungsvermögen

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: FSB4</th>
<th>Modus: P</th>
<th>Kurs: Grundlagen Bauverfahrenstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>Workload 120 h</td>
<td>Modul</td>
</tr>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>4</td>
<td>4 V/Ü/SU</td>
<td>60 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung / Seminaristischer Unterricht

Dozent/Dozentin
Prof. Dr.-Ing. Biernath, Prof. Dr.-Ing. Heimbecher

Veranstaltungsinhalte
- Baugrubensicherungen, Unterfangungen
- Wasserhaltung
- Baugrundverbesserungen
- Betriebstechnischer Erdbau
- Grundlagen der Schalungstechnik (Wand- und Deckenschalungen)
- Bewehrung
- Betonage
- Elementwände

Qualifikationsziele
- Verfahrenstechnische Kompetenz und Problemlösekompetenz zu technisch und wirtschaftlich sinnvollen Baugrubensicherungen inkl. Wasserhaltung
- Verfahrenstechnische Kompetenz und Entscheidungskompetenz im Umgang mit Baugrundverbesserungen
- Kompetenz im Umgang mit den maßgebenden technischen Regelwerken und dem zugehörigen Rechtsrahmen
- Kennenlernen der Grundbegriffe und des Zusammenwirkens von Schalungs-, Bewehrungs- und Betonarbeiten
- Kennenlernen der Grundprinzipien sowie wichtiger Vor- und Nachteile von Trägerwand- und Rahmenwandschalung
- Kennenlernen verschiedener Deckenschalungssysteme sowie deren Vor- und Nachteile
- Erlangung der Fertigkeit, einfache Schalungskonstruktionen zu skizzieren und wesentliche Konstruktionsteile zu benennen

Prüfungsform
Modulprüfung, Klausur

Prüfungsvoraussetzungen
keine

Teilnahmevoraussetzung
Erforderlich:
Nützlich: baubetriebliche Praxis

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: FSB5

Kurs: Baubetrieb und Baurecht

Teil: Baubetrieb

| Modul | Modus: P | Pflicht/Wahlpflicht/Wahl | Kurs: Baubetrieb und Baurecht | Teil: Baubetrieb |

Anzahl Workload 390 h

<table>
<thead>
<tr>
<th>CP</th>
<th>SWS</th>
<th>Kontaktzeit</th>
<th>Selbststudium/Prüfung</th>
<th>Dauer</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>11</td>
<td>165 h</td>
<td>225 h</td>
<td>2 Sem</td>
<td>WS+SS</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung / Seminaristischer Unterricht

Dozent/Dozentin
Prof. Dr.-Ing. Dellen, Prof. Dr.-Ing. Friedrichsen, Prof. Dr.-Ing. Paffrath,
Prof. Dr.-Ing. Mitschein, Prof. Dr.-Ing. Strotmann

Veranstaltungsinhalte
- Baumarkt
- Kostenmanagement, Terminmanagement, Qualitätsvorgaben
- Projektbezogene Termin-, Kosten- und Qualitätssteuerung
- Angebotskalkulation, Arbeitsvorbereitung, Bauleitung
- Anwendung gängiger baubetrieblicher EDV-Programme (Revit, MS Project, RIB iTWO)
- Rechtliche Grundlagen (BGB, VOB, VOF, VOL, ZPO), vertragliche Grundlagen zum privaten Baurecht, Bauplanung und Bauphase, Ausschreibung und Vergabe von Bauleistungen

Qualifikationsziele
- Die Studierenden sollen die bauherren- und unternehmerseitigen Prozesse in der Planung, der Arbeitsvorbereitung sowie in der Bauausführung kennen.
- Die Studierenden sollen die Grundlagen der baubetrieblichen EDV beherrschen.
- Die Studierenden sollen die Grundlagen des privaten und öffentlichen Bau- rechts beherrschen.
- Die Ablaufphasen eines Bauvorhabens (Planung, Genehmigung, Ausführung) sollen aus baubetrieblicher und baurechtlicher Sicht verstanden sein.

Prüfungsform
Modulprüfung, Klausur

Prüfungsvoraussetzungen

Teilnahmevoraussetzung
- Erforderlich:
- Nützlich: baubetriebliche Praxis

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: FSB5</th>
<th>Modus: P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pflicht/Wahlpflicht/Wahl</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Kurs:</td>
<td>Baubetrieb und Baurecht</td>
</tr>
<tr>
<td></td>
<td>Teil: Bau- und Vertragsrecht</td>
</tr>
</tbody>
</table>

| Lehrformen: Vorlesung / Übung / Praktikum |

<table>
<thead>
<tr>
<th>Dozent/Dozentin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr.-Ing. Mitschein</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Veranstaltungsinhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rechtliche Grundlagen (BGB, VOB, VOF, VOL, ZPO)</td>
</tr>
<tr>
<td>Vertragliche Grundlagen zum privaten Baurecht (Formfreiheit von Verträgen, Vertragsabschluss, Vollmachten, Fristen, Vertragsstrafe, Verjährung, Mahnverfahren)</td>
</tr>
<tr>
<td>Bauplanung und Bauphase (Grundlagen des öffentlichen Baurechts, Landesbauordnung, Baunutzungsverordnung, Baubeteiligte, Ablaufphasen eines Bauvorhabens)</td>
</tr>
<tr>
<td>Ausschreibung und Vergabe von Bauleistungen (Vergabearten, Vertragsbedingungen, Leistungsbeschreibung, Submission)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Qualifikationsziele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden sollen die Grundlagen des privaten und öffentlichen Baurechts beherrschen.</td>
</tr>
<tr>
<td>Die Ablaufphasen eines Bauvorhabens (Planung, Genehmigung, Ausführung) sollen aus rechtlicher Sicht verstanden sein.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur</td>
</tr>
</tbody>
</table>

| Prüfungsvoraussetzungen |

<table>
<thead>
<tr>
<th>Teilnahmevoraussetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erforderlich:</td>
</tr>
<tr>
<td>Nützlich:</td>
</tr>
</tbody>
</table>

| Verwendbarkeit in anderen Studiengängen |

<p>| Sonstige Information |</p>
<table>
<thead>
<tr>
<th>Modul: FSB6</th>
<th>Modus: P</th>
<th>Kurs: Grundlagen Verkehrswesen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 240 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP 8</td>
<td>SWS 6 V/Ü</td>
<td>Kontaktzeit: Selbststudium/Prüfung 90 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung

Dozent/Dozentin
Prof. Dr.-Ing. Hartz, Prof. Dr.-Ing. Prof. h.c Lühder, Prof. Dr.-Ing. Weßelborg

Veranstaltungsinhalte
- Verkehrsentwicklung und Umwelt
- Fahrdynamik und Entwurfsggrundlagen
- Trassierung von Straßen
- Straßen- und Knotenentwurf
- Grundlagen des Schienenverkehrsbaus
- Untergrund und Unterbau von Straßen
- Dimensionierung des Oberbaus von Verkehrsflächen
- Einsatz und Bau verschiedener Bauweisen und Bauverfahren
- Bauliche Erhaltung von Verkehrsflächen

Qualifikationsziele
Nach erfolgreicher Teilnahme
- kennen die Studierenden die Grundlagen der Planung und des Entwurfs von Verkehrsanlagen des Verkehrswegbaus und können dieses anwenden.
- beherrschen Sie die Grundlagen der konstruktiven Ausbildung und der Herstellung von Straßen, Wegen und Gleisanlagen.

Prüfungsform
Teilprüfungen, Klausuren

Prüfungsvoraussetzungen

Teilnahmvoraussetzung
Erforderlich:
Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: FSB7</th>
<th>Modus: P</th>
<th>Kurs: Grundlagen Wasser- und Ressourcenwirtschaft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>Workload 240 h</td>
<td>Modul</td>
</tr>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>8</td>
<td>8 V/Ü/SU</td>
<td>120 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung / Seminaristischer Unterricht

Dozent/Dozentin
Prof. Dr.-Ing. Flamme, Prof. Dr.-Ing. Haberkamp, Prof. Dr.-Ing. Mohn, Prof. Dr.-Ing. Uhl

Veranstaltungsinhalte
- Grundlagen der Hydromechanik (Hydrostatik, Schwimmstabilität, Kontinuitätprinzip, Fließzustände und dimensionslose Kennzahlen der Strömung, Energieverluste der Rohrströmung, stationär gleichförmige Gerinneströmung)
- Grundlagen des Wasserbaus (Wehre, Talsperren, Wasserkraftanlagen, ökologische Verbesserung der Fließgewässer)
- Grundlagen der Ressourcenwirtschaft (Abfallrecht, Abfallmengen, Bauabfallverwertung, Abfallbehandlung, Deponie)
- Grundlagen der Abwasserableitung (Schmutz- und Niederschlagsabflüsse, Kanalisation, Regenbecken, Bodenfilter, Versickerung, Pumpwerk, röhrstatische Grundlagen)
- Grundlagen der Abwasserreinigung (mechanische und biologische Verfahren)

Qualifikationsziele
- Kenntnisse der Hydromechanik und des Wasserbaus, der Siedlungswasserwirtschaft und der Ressourcenwirtschaft
- Kenntnisse über berufliche Fertigkeiten eines Planers, Bauleiters und/oder Betreibers von wasserbaulichen und abfallwirtschaftlichen Anlagen
- Erwerben von Kenntnissen grundlegender Arbeitsschritte der hydraulischen, der wasser- und der abfallwirtschaftlichen Bemessung von Anlagen.

Prüfungsform
Modulteilprüfung 1 und 2, Klausur

Prüfungsvoraussetzungen
Prüfungsvorleistung (Übungsaufgaben, häusliche Bearbeitung)

Teilnahmevoraussetzung
Erforderlich:
Nützlich: technisches Grundverständnis

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: FSB8

Modus: P

Kurs: Sicherheitstechnik I

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 120 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
</tr>
<tr>
<td>4</td>
<td>3 V/Ü</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium/Prüfung</th>
<th>Dauer</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 h</td>
<td>75 h</td>
<td>1 Sem</td>
<td>WS</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung

Dozent/Dozentin
Prof. Dr.-Ing. Biernath

Veranstaltungsinhalte

- Arbeitsschutzrecht und Arbeitsschutzsystem
- Maßnahmen zur Sicherheit bei Erd- und Tiefbauarbeiten
- Gefährdung durch Absturz
- Sicherer Einsatz von Gerüsten
- Sicherer Einsatz von Leitern, Fahrgerüsten und Hebebühnen
- Gefährdungen durch Elektrizität
- Gefährdungen durch Gefahrstoffe
- Maßnahmen zur Sicherheit bei Montagearbeiten
- Maßnahmen zur Sicherheit bei Abbruch- und Sanierungsarbeiten
- Sicherer Personen- und Fahrzeugverkehr, sichere Baustellentransporte und Lagerung
- Sicherer Einsatz von Maschinen und Geräten
- Schutzmaßnahmen bei Lärm und Vibration

Qualifikationsziele

- Die Studierenden sollen Kenntnisse im sozialen Arbeitsschutz, in der Notfallplanung und Ersten Hilfe haben
- Die Studierenden sollen in der Lage sein, selbstständig Gefährdungen einzuschätzen und entsprechende sichernde Maßnahmen einzuleiten

prüfungszform

Klausur oder mdl. Prüfung

prüfungsvoraussetzungen

Teilnahmevoraussetzung

- Erforderlich: gute Kenntnisse in Grundlagen Baubetrieb
- Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: FSB9
Modus: Pflicht
Kurs: Massivbaukonstruktionen

<table>
<thead>
<tr>
<th>Modul</th>
<th>Modus: Pflicht</th>
<th>Kurs: Massivbaukonstruktionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>Workload 120 h</td>
<td>Modul</td>
</tr>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>4</td>
<td>2 V/P/Ü</td>
<td>30 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Praktikum / Übung

Dozent/Dozentin
Prof. Dr.-Ing. Schaper, Dipl.-Ing. Stuhr

Veranstaltungsinhalte
Bemessung und Konstruktion im Stahlbetonbau von:
- Stützen, Balken, Deckenplatten, Fundamente, Treppen
- Konstruktion von Detailpunkten im Stahlbetonbau
- Zeichnerische Darstellung von Stahlbetonbauteilen

Qualifikationsziele
- Erkennen übergeordneter Gedankengänge zur Berechnung und Konstruktion von Stahlbetonbauteilen
- Beherrschen der konstruktiven Gestaltung von Detailpunkten im Stahlbetonbau
- Beherrschen der zeichnerischen Darstellung von Stahlbetonbauteilen
- Verstehen des baubetrieblichen Einflusses auf die Konstruktion von Massivbauwerken
- Konstruieren und Zeichnen von Schal- und Bewehrungsplänen

Prüfungsform
Modulteilprüfung, Klausur oder Projektarbeit oder mündliche Prüfung

Prüfungsvoraussetzungen
Prüfungsvorleistung

Teilnahmeveraussetzung
Erforderlich: gute Kenntnisse in Grundlagen Konstruktiver Ingenieurbau
Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Baubetrieb und Bauwirtschaft

Vertieferstudium

5. + 6. Semester
+ 7. Semester (Bachelor Bauingenieurwesen PLUS)
Modul: VSB1 Modus: P Pflicht/Wahlpflicht/Wahl

Kurs: Kosten- und Leistungsrechnung

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 240 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>8</td>
<td>8 V/S/Ü/SU</td>
<td>120 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Seminar / Übung / Seminaristischer Unterricht

Dozent/Dozentin
Prof. Dr.-Ing. Mitschein

Veranstaltungsinhalte
- Grundlagen des Rechnungswesens
- Kurzeinführung in die Unternehmensrechnung (Geschäftsbuchführung)
 - Bilanzrechnung
 - Gewinn- und Verlustrechnung
 - Der Baukontenrahmen im baubetrieblichen Rechnungswesen
 - Abschreibung der Anlagegüter
- Kosten- und Leistungsrechnung (KLR)
 - Grundlagen der KLR
 - Grundbegriffe der KLR
 - Repetitorium zur Kalkulation über die Angebotssumme
 - Bauauftragsrechnung
 - Sonderthemen der Kalkulation (Strategische Kalkulation, Alternativ- und Eventualpositionen, Preisgleitklauseln, Deckungsbeitragsrechnung)
 - Sonderprobleme der Kalkulation nach Vertragsabschluss (§§ 2 Abs. 3, 4, 5, 6 VOB/B, Gestörter Bauablauf)
- Kennzahlenrechnung
- Das baubetriebliche Unternehmensplanspiel

Qualifikationsziele
- Die Studierenden sollen Grundlagen der Unternehmensrechnung sowie der Kosten- und Leistungsrechnung beherrschen.
- Sie sollen ein Verständnis für Bilanzen und Gewinn- und Verlustrechnung entwickeln
- Sie sollen in die Lage versetzt werden, Aufträge zu kalkulieren und zahlenmäßig im operativen Geschäft umzusetzen
- Bei einem baubetrieblichem Unternehmensplanspiel sollen die Studierenden in der Lage sein, selbständig Aufgaben der Arbeitsvorbereitung, Kalkulation und Liquiditätsplanung sowie Marktbeobachtung und Marktanalysen durchzuführen, um das Bauunternehmen gegen Konkurrenz auf dem Baumarkt zu behaupten

Prüfungsform
Modulprüfung, Klausur

Prüfungsvoraussetzungen
regelmäßige Teilnahme am Kurs und erfolgreiche Teilnahme an dem Unternehmensplanspiel

Teilnahmeverwaltungsauflagen
Erforderlich: Grundlagen Baubetrieb

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: VSB2</th>
<th>Modus: P</th>
<th>Kurs: Managementsysteme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>Workload 210 h</td>
<td>Modul</td>
</tr>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit Selbststudium/Prüfung</td>
</tr>
<tr>
<td>7</td>
<td>8 V/S/Ü/SU</td>
<td>120 h 90 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Seminar / Übung / Seminaristischer Unterricht

Dozent/Dozentin
Prof. Dr.-Ing. Dellen, RA'in. Wiemann, Prof. Dr.-Ing. Paffrath

Veranstaltungsinhalte
- Personalwesen im Unternehmen
- Arbeits- und Tarifrecht
- Bewerbungstraining
- Organisation einer Unternehmung
- Rechtsformen von Unternehmen
- Businessplan
- Ausgewählte Managementprozesse (Projektmanagement, Einkauf, etc.)

Qualifikationsziele
- Kenntnisse der Grundlagen des Personalwesens im Unternehmen.
- Beherrschen von Fragestellungen des Arbeits- und Tarifrechts.

Prüfungsform
Modulprüfung, Klausur oder mdl. Prüfungen

Prüfungsvoraussetzungen
regelmäßige Teilnahme am Kurs und erfolgreiche Teilnahme an dem Bewerbungstraining

Teilnahmevoraussetzung
Erforderlich: Bau- und Vertragsrecht, Grundlagen Baubetrieb
Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: VSB3</th>
<th>Modus: P</th>
<th>Kurs: Bauverfahrenstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>Workload 240 h</td>
<td>Modul</td>
</tr>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>V/S/Ü/SU</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Seminar / Übung / Seminaristischer Unterricht

Dozent/Dozentin
Prof. Dr.-Ing. Biernath

Veranstaltungsinhalte
- Hebezeuge (Krane, Aufzüge, Bühnen)
- Gerüstbau
- Spezialschalungen (Fahrschalungen, Gekrümmte Schalungen)
- Elementbauweisen (Wände, Stützen, Decken)
- Spannbetonbauweisen
- Spritzbetonverfahren
- Mauerwerksbau
- Deckelbauweisen (Tunnelbau, Hochbau)
- Abbruchverfahren
- Baulogistik

Qualifikationsziele
- Kenntnisse der unterschiedlichen Bauverfahren und Möglichkeiten der Herstellung von Bauteilen und Bauwerken
- Beherrschung technisch wirtschaftlicher Verfahrensvergleiche

Prüfungsform
Modulprüfung, Klausur oder mdl. Prüfungen

Prüfungsvoraussetzungen
Prüfungsvorleistung (PVL)

Teilnahmevoraussetzung
Erforderlich: Grundlagen Baubetrieb
Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: VSB4</th>
<th>Modus: P</th>
<th>Kurs: Projekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>Workload 210 h</td>
<td>Modul</td>
</tr>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>7</td>
<td>8 S/Ü/SU</td>
<td>120 h</td>
</tr>
</tbody>
</table>

Lehrformen: Seminaristischer Unterricht / Übung / Seminar

Dozent/Dozentin
Prof. Dr.-Ing. Dellen, Prof. Dr.-Ing. Mitschein, Prof. Dr.-Ing. Paffrath, Prof. Dr.-Ing. Strotmann

Veranstaltungsinhalte

Qualifikationsziele
- Die Studierenden sollen bei einem vorgegeben Bauvorhaben selbstständig die Aufgaben des Bauherren resp. des Bauherrenvertreters und die Aufgaben eines Unternehmers übernehmen können.

Prüfungsform
Modulteilprüfung, mdl. Prüfung / Präsentation der Projektarbeit

Prüfungsvoraussetzungen
regelmäßige Teilnahme und Mitarbeit am Kurs

Teilnahmevoraussetzung
Erforderlich: Grundlagen Baubetrieb und Baurecht
Nützlich:

Verwendbarkeit in anderen Studiengängen
Sonstige Information
Modul: VSB5 Modus: WP Kurs: Sicherheitstechnik II

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 150 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>5</td>
<td>4 S/Ü</td>
<td>60 h</td>
</tr>
</tbody>
</table>

Lehrformen:
Seminare / Übungen

Dozent/Dozentin
Prof. Dr.-Ing. Biernath

Veranstaltungsinhalte
- Einrichtungen der Ersten Hilfe
- Tagesunterkünfte, Waschräume
- Persönliche Schutzausrüstungen
- Arbeitszeitregelungen
- Betrieblicher Brand- und Explosionsschutz
- Ergonomie

Qualifikationsziele
- Die Studierenden sollen Kenntnisse im sozialen Arbeitsschutz, in der Notfallplanung und Ersten Hilfe haben.
- Die Studierenden sollen in der Lage sein, selbständig Gefährdungen einzuschätzen und entsprechende sichernde Maßnahmen einzuleiten

Prüfungsform
Klausur oder mdl. Prüfung

Prüfungsvoraussetzungen

Teilnahmevoraussetzung
- Erforderlich: erfolgreiche Teilnahme am Kurs Sicherheitstechnik I
- Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: VSB5
Modus: WP
Kurs: Energetische Bewertung von Bestandsgebäuden

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 150 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>5</td>
<td>4 S/Ü</td>
<td>60 h</td>
</tr>
</tbody>
</table>

Lehrformen: Seminar / Übung

Dozent/Dozentin
Prof. Dr.-Ing. Homann, Lehrbeauftragte/r (N.N.)

Veranstaltungsinhalte
- Verfahren zur Ermittlung von bau- und anlagentechnischen Kenngrößen
- Benutzung von Pauschalwerten für die Bau- und Anlagentechnik
- Bestandsaufnahme von Gebäuden
- Wärmetechnische Qualität der wärmeübertragenden Umfassungsfläche
- Energetische Qualität von Heizungs-, Trinkwarmwassererwärmsungs- und Lüftungsanlagen
- Energetische Gesamtbewertung von Gebäuden
- Entwicklung von Modernisierungskonzepten
- Betrachtungen zur Wirtschaftlichkeit, Fördermittel
- Energieausweis für Bestandsgebäude

Qualifikationsziele
- Die Studierenden sollen in die Lage versetzt werden, bestehende Gebäude energetisch bewerten zu können sowie Lösungen für energiesparende und wirtschaftliche Modernisierungen im Rahmen planerischer Gesamtkonzepte zu entwickeln.
- Besonderer Wert wird auf die Anwendung systematischer Arbeitsmethoden und die Nutzung geeigneter Software gelegt.

Prüfungsform
Mündliche Prüfung oder Präsentation oder Kolloquium

Prüfungsvoraussetzungen
Prüfungsvorleistung

Teilnahmevoraussetzung
Erforderlich:
Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul</th>
<th>Modus: WP</th>
<th>Kurs: Grundlagen BWL</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 150 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP 5</td>
<td>150 h</td>
<td></td>
</tr>
<tr>
<td>SWS 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung

Dozent/Dozentin
Prof. Dr.-Ing. Friedrichsen

Veranstaltungsinhalte
- Grundlagen VWL und BWL
- Investitionsrechnung (Statische/Dynamische Verfahren)
- Nutzen-Kosten-Untersuchungen
- Unternehmensfinanzierung
- Liquiditätsplanung

Qualifikationsziele
- Die Studierenden kennen die grundlegenden finanzwirtschaftlichen Aufgaben und Ziele eines Bauunternehmens.
- Sie wissen, wann sie welches Verfahren zur Beurteilung von Einzelinvestitionen nutzen, und können diese anwenden.
- Sie können die unterschiedlichen Formen der Unternehmens- und Projektfinanzierung unterscheiden.
- Sie wissen, worauf bei der Liquiditätsplanung eines Unternehmens zu achten ist.

Prüfungsform
Klausur

Prüfungsvoraussetzungen
Prüfungsvorleistung (PVL)

Teilnahmevoraussetzung
Erforderlich:
Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Anhang zur Akkreditierung
Modulhandbuch Bachelor Bauingenieurwesen Teil A

<table>
<thead>
<tr>
<th>Modul:</th>
<th>VSB5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modus:</td>
<td>WP</td>
</tr>
<tr>
<td></td>
<td>Pflicht/Wahlpflicht/Wahl</td>
</tr>
<tr>
<td>Kurs:</td>
<td>Konstruieren im Stahlbetonbau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 150 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>5</td>
<td>4 S/Ü</td>
<td>60 h</td>
</tr>
</tbody>
</table>

Lehrformen: Seminar / Übung

Dozent/Dozentin
Prof. Dr.-Ing. Mährer

Veranstaltungsinhalte
- Konstruieren im Stahlbeton von:
 - Stützen,
 - Balken,
 - Wänden,
 - Wandartigen Trägern,
 - Deckenplatten,
 - Fundamenten

Qualifikationsziele
- Die Studierenden sollen in der Lage sein, selbständig das Zusammenspiel einzelner Konstruktionen unter Berücksichtigung von unterschiedlichen Parametern und Randbedingungen sowie die erforderliche Vernetzung mit anderen Gewerken zu erkennen.
- Durch die Umsetzung der Lehrinhalte in Übungen mittels CAD-Konstruktionsprogrammen sollen die Studierenden die gängigen Anforderungsprofile für Tragwerksplaner abdecken.

Prüfungsform
Klausur oder mdl. Prüfung oder Projektarbeit

Prüfungsvoraussetzungen
Erfolgreiche konstruktive Ausarbeitungen

Teilnahmevoraussetzung
- Erforderlich: Vorkenntnisse im Massivbau
- Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: VSB6</th>
<th>Modus: P</th>
<th>Kurs: Anlagentechnik in Gebäuden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>Workload 90 h</td>
<td>Modul</td>
</tr>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>3</td>
<td>2 V/Ü</td>
<td>30 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung

Dozent/Dozentin
Prof. Dr.-Ing. Homann, Lehrbeauftragte/r (N.N.)

Veranstaltungsinhalte
- Heizungsanlagen:
 Wärmträger, Niedertemperaturkessel, Brennwertkessel, Wärmepumpen,
 Thermische Solaranlagen, Fern- und Nahwärme, Heizwärmeverteilung und -übergabe
- Trinkwasserwärungsanlagen:
 Monovalente und bivalente Erzeuger, indirekt und direkt beheizte Speicher,
 Trinkwasserverteilung und -übergabe
- Lüftungsanlagen:
 Abluftanlagen, Zuluft-/Abluftanlagen, Wärmerückgewinnung, Wärmetauscher,
 Wärmepumpe, Lüftungswärmeverteilung und -übergabe

Qualifikationsziele
- Die Studierenden sollen anlagetechnische Grundkenntnisse haben sowie die Zusammenhänge zwischen physikalischen und technischen Kriterien bei Bauwerken, Stadtplanung und Umwelt kennen.
- Die Studierenden sollen in der Lage sein, selbstständig Anlagen primärenergietisch zu bewerten und in planerische Gesamtkonzepte einzubinden.

Prüfungsform
Modulprüfung, Klausur oder mdl. Prüfung oder Projektarbeit oder Präsentation

Prüfungsvoraussetzungen
Berechnung eines Übungsbeispiels (PVL)

Teilnahmevoraussetzung
Erforderlich: Bauphysikalische Grundkenntnisse
Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: VSB7
Modus: Pflicht/Wahl
Kurs: Praxisphase (nur 6-sem. Bachelor Bauing.)

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 300 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP 10</td>
<td>SWS 2 P</td>
<td></td>
</tr>
</tbody>
</table>

Lehrformen: Praktikum

Dozent/Dozentin
Prof. Dr.-Ing. Dellen, Prof. Dr.-Ing. Friedrichsen, Prof. Dr.-Ing. Mitschein, Prof. Dr.-Ing. Biernath, Prof. Dr.-Ing. Paffrath

Veranstaltungsinhalte
- Praktische Tätigkeit in einem in- oder ausländischen Unternehmen, Betrieb, einer Behörde oder einem Ingenieur- oder Architekturbüro im operativen Baugeschäft mit Übernahme von Ingenieuraufgaben
- Präsentation und Abfassung eines Berichtes

Qualifikationsziele
- Durch eine enge Verzahnung von Theorie und Praxis sollen die Studierenden an Tätigkeiten im operativen Baugeschäft herangeführt werden. Sie erhalten damit die Möglichkeit, die im Studium vermittelten Kenntnisse auf komplexe Probleme der Praxis anzuwenden.

Prüfungsform
Projektbericht und Vorstellung des Berichtes im Blockseminar

Prüfungsvoraussetzungen
- regelmäßige Teilnahme und Mitarbeit am praxissemesterbegleitenden Kurs

Teilnahmeveraussetzung
Erforderlich: Grundlagen- und Vertiefungskenntnisse im Bereich Baubetrieb und Bauwirtschaft
Nützlich: erfolgreich abgelegte Fachprüfungen in der Fachrichtung der Praxistätigkeit

Verwendbarkeit in anderen Studiengängen
Offen für andere Bachelorstudiengänge

Sonstige Information
Anhang zur Akkreditierung
Modulhandbuch Bachelor Bauingenieurwesen Teil A

Modul: VSB8 Modus: P
Pflicht/Wahlpflicht/Wahl Kurs: Bachelorarbeit

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 300 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontaktzeit</td>
<td>Selbststudium/Prüfung</td>
<td>Dauer</td>
</tr>
<tr>
<td>20</td>
<td>280 h</td>
<td>1 Sem</td>
</tr>
</tbody>
</table>

Lehrformen:
Dozent/Dozentin
Alle Mitglieder des Lehrkörpers des Fachbereichs Bauingenieurwesen

Veranstaltungsinhalte
- Stellung einer ingenieurpraktischen Aufgabe
- Selbständige Bearbeitung der gestellten Aufgabe

Qualifikationsziele
- Anwenden von bekanntem Fachwissen auf eine vorgegebene ingenieurpraktische Fragestellung.
- Verstehen des Zusammenhanges von Ingenieurplanung und baupraktischer Ausführung im Sinne eines ganzheitlichen Ansatzes.
- Kenntnisse in der selbständigen Beschaffung von Informationen (Literatur, Normen und Firmenpublikationen).
- Beherrschung der Abfassung eines ingenieurtechnischen Berichtes

Prüfungsform
Bachelorarbeit

Prüfungsvoraussetzungen
Der Prüfling hat der Betreuerin oder dem Betreuer der Bachelorarbeit während der Bearbeitungszeit regelmäßig - mindestens zweimal – persönlich über die Ausgestaltung der Bachelorarbeit zu berichten.

Teilnahmevoraussetzung
Nachweis von mindestens 120 CP (6-sem. Variante) bzw. 150 CP (7-sem. Variante) in der Studienrichtung Baubetrieb und Bauwirtschaft.

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: VSB9</th>
<th>Modus: Pflicht/Wahl</th>
<th>Kurs: Kolloquium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl: CP</td>
<td>SWS</td>
<td>Workload 60 h</td>
</tr>
<tr>
<td>2</td>
<td>5 h</td>
<td>55 h</td>
</tr>
</tbody>
</table>

Lehrformen:

Dozent/Dozentin
Prof. des Fachbereichs Bauingenieurwesen

Veranstaltungsinhalte
Vorstellung und Erläuterung der Bachelorarbeit

Qualifikationsziele

Prüfungsform
Mündliche Prüfung

Prüfungsvoraussetzungen
Erstellen eines Posters zur Bachelorarbeit

Teilnahmevoraussetzung
Erfolgreich abgeschlossene Bachelorarbeit

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Baubetrieb und Bauwirtschaft

Vertieferstudium

zusätzliche Module 6. + 7. Semester
für 7-semestrigen
Bachelor Bauingenieurwesen PLUS
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>Workload 300 h</td>
<td>Modul</td>
</tr>
<tr>
<td>CP SWS</td>
<td>Kontaktzeit Selbststudium/Prüfung Dauer Turnus</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>20 h 280 h 1 Sem SS</td>
<td></td>
</tr>
</tbody>
</table>

Lehrformen:

Dozent/Dozentin
Prof. Dr.-Ing. Biernath, Prof. Dr.-Ing. Dellen, Prof. Dr.-Ing. Friedrichsen, Prof. Dr.-Ing. Mitschein, Prof. Dr.-Ing. Paffrath, Prof. Dr.-Ing. Strotmann

Veranstaltungsinhalte
- Bearbeitung einer ganzheitlichen Aufgabe aus dem Baubetrieb unter Einbeziehung konstruktiver oder baulogistischer Probleme
- Bearbeitung ggf. unter Beteiligung von Partnern aus Praxis oder Forschung

Qualifikationsziele
- Die Studierenden sollen Kenntnisse im baubetrieblichen Alltag beherrschen.
- Ferner sollen sie Methodenwissen für die ganzheitliche Bearbeitung von Bauprojekten erwerben. Des Weiteren sollen sie in die Lage versetzt werden, unterschiedliche Managementtechniken anzuwenden.

Prüfungsform
Projektbericht, Präsentation

Prüfungsvoraussetzungen
Erarbeitung eines Projektberichtes
Erfolgreich bestandene Modulprüfungen des 1. bis einschließlich 3. Fachsemesters.

Teilnahmeveruaissetzung
Erforderlich: Grundlagen Baubetrieb und Projektvorbereitungen
Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: VSB11 Modus: P

Kurs: Praxissemester (nur Bauing. PLUS, 7-sem.)

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 900 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP 30</td>
<td>SWS 6 P</td>
</tr>
</tbody>
</table>

Kontaktzeit: 90 h Selbststudium/Prüfung: 810 h

Dauer: 2 Sem Turnus: SS/WS

Lehrformen: Praktikum

Dozent/Dozentin
Prof. Dr.-Ing. Biernath, Prof. Dr.-Ing. Dellen, Prof. Dr.-Ing. Friedrichsen, Prof. Dr.-Ing. Mitschein, Prof. Dr.-Ing. Paffrath, Prof. Dr.-Ing. Strotmann

Veranstaltungsinhalte
- Praktische Tätigkeit in einem in- oder ausländischen Unternehmen, Betrieb, einer Behörde oder einem Ingenieur- oder Architekturbüro im operativen Baugeschäft mit Übernahme von Ingenieuraufgaben
- Präsentation und Abfassung eines Berichtes

Qualifikationsziele
- Durch eine enge Verzahnung von Theorie und Praxis sollen die Studierenden an Tätigkeiten im operativen Baugeschäft herangeführt werden. Sie erhalten damit die Möglichkeit, die im Studium vermittelten Kenntnisse auf komplexe Probleme der Praxis anzuwenden.

Prüfungsform
Projektbericht

Prüfungsvoraussetzungen
Erfolgreich bestandene Modulprüfungen des 1. bis einschließlich 4. Fachsemesters.

Teilnahmevoraussetzung
Erforderlich: Grundlagen- und Vertiefungskenntnisse im Bereich Baubetrieb und Bauwirtschaft
Nützlich: erfolgreich abgelegte Fachprüfungen in der Fachrichtung der Praxistätigkeit

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Konstruktiver Ingenieurbau

Fachstudium

3. + 4. Semester
<table>
<thead>
<tr>
<th>Modul: FSK1</th>
<th>Modus: P</th>
<th>Kurs: Allgemeine Kompetenzen/Fremdsprachen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>Workload 120 h</td>
<td>Modul</td>
</tr>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>4</td>
<td>3 V/S/Ü</td>
<td>45 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Seminar / Übung

Dozent/Dozentin
Prof. Dr.-Ing. Friedrichsen, Prof. Dr.-Ing. Homann

Veranstaltungsinhalte
- Technisches Englisch od. Technisches Spanisch od. Technisches Französisch
- Präsentationstechniken
 - Präsentationsvorbereitung (Ziele, Zielgruppe, Inhalte)
 - Medieneinsatz (Auswahl, und Einsatz von Medien, Grafikgestaltung)
 - Präsentationsphase (von der Eröffnung bis zum Abschluss)
- Wissenschaftliches Arbeiten
 - Datenerhebung
 - Datenanalyse
 - Datendarstellung

Qualifikationsziele
- Aufbau einer technischen Sprachkompetenz in Wort und Schrift
- Sichere Beherrschung von Präsentationstechniken
- Ordnungsgemäßes Erarbeiten und Abfassen wissenschaftlicher Erkenntnisse und Untersuchungen

Prüfungsform
- Modulprüfung, Klausuren oder mdl. Prüfungen oder Präsentationen

Prüfungsvoraussetzungen

Teilnahmeveranlassung
- Erforderlich:
- Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: FSK2
Kurs: Geotechnik

<table>
<thead>
<tr>
<th>Modul:</th>
<th>Modus:</th>
<th>Pflicht/Wahl/Wahl</th>
<th>Workload 240 h</th>
<th>Anzahl</th>
<th>CP</th>
<th>SWS</th>
<th>Kontaktzeit</th>
<th>Selbststudium/Prüfung</th>
<th>Dauer</th>
<th>Turnus</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geotechnik</td>
<td>Modus: P</td>
<td>Pflicht</td>
<td>240 h</td>
<td>8</td>
<td>8</td>
<td>V/Ü/P</td>
<td>120 h</td>
<td>120 h</td>
<td>2 Sem</td>
<td>WS+SS</td>
<td>2 Sem</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung / Praktikum

Dozent/Dozentin
Prof. Dr.-Ing. Heimbecher

Veranstaltungsinhalte
- Entstehung und Erkundung von Boden und Fels, bodenmechanische Kennwerte
- Spannungen u. Verformungen, Erddruck, Flachgründungen, Tiefgründungen
- Stützbauwerke, Böschungen, Baugruben, Verdichtung von Böden
- Verdichtungsprüfungen, Wasserhaltungen, Grundwasserabsenkungen

Qualifikationsziele
- Kenntnisse der Besonderheiten des Baustoffes Boden, der Interaktion von Baugrund und Bauwerk, der Dimensionierung von Gründungen,
- Beherrschung der Berechnung von Gründungen und des Nachweises der Standsicherheit von Stützbauwerken, Böschungen und Baugruben,
- Kenntnisse der Verdichtungsprüfungen im Erdbau

Prüfungsform
Modulprüfung, Klausur

Prüfungsvoraussetzungen
Prüfungsvorleistungen (PVL)

Teilnahmeveraussetzung
Erforderlich: Grundkenntnisse in Mechanik, Statik, Mathematik und Physik
Nützlich: Baustellenpraktikum im Erd- und Straßenbau

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: FSK3</th>
<th>Modus: P</th>
<th>Kurs: Grundlagen Bauverfahrenstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pflicht/Wahlpflicht/Wahl</td>
<td></td>
</tr>
<tr>
<td>Anzahl</td>
<td>Workload 120 h</td>
<td></td>
</tr>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>4</td>
<td>4 V/Ü/SU</td>
<td>60 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung / Seminaristischer Unterricht

Dozent/Dozentin

Prof. Dr.-Ing. Biernath, Prof. Dr.-Ing. Heimbecher

Veranstaltungsinhalte

- Baugrubensicherungen, Unterfangungen
- Wasserhaltung
- Baugrundverbesserungen
- Betriebstechnischer Erdbau
- Grundlagen der Schalungstechnik (Wand- und Deckenschalungen)
- Bewehrung
- Betonage
- Elementwände

Qualifikationsziele

- Verfahrenstechnische Kompetenz und Problemlösekompetenz zu technisch und wirtschaftlich sinnvollen Baugrubensicherungen inkl. Wasserhaltung
- Verfahrenstechnische Kompetenz und Entscheidungskompetenz im Umgang mit Baugrundverbesserungen
- Kompetenz im Umgang mit den maßgebenden technischen Regelwerken und dem zugehörigen Rechtsrahmen
- Kennenlernen der Grundbegriffe und des Zusammenwirkens von Schalungs-, Bewehrungs- und Betonarbeiten
- Kennenlernen der Grundprinzipien sowie wichtiger Vor- und Nachteile von Trägerwand- und Rahmenwandschalung
- Kennenlernen verschiedener Deckenschalungssysteme sowie deren Vor- und Nachteile
- Erlangung der Fertigkeit, einfache Schalungskonstruktionen zu skizzieren und wesentliche Konstruktionsteile zu benennen

Prüfungsform

Modulprüfung, Klausur

Prüfungsvoraussetzungen

keine

Teilnahmeverpflichtung

Erforderlich: kein Erfordernis
Nützlich: baubetriebliche Praxis

Verwendbarkeit in anderen Studiengängen

Sonstige Information
| Teil: Grundlagen Baubetrieb |
|---|---|---|
| Anzahl | Workload 180 h | Modul |
| CP | SWS | Kontaktzeit Selbststudium/Prüfung | Dauer | Turnus |
| 6 | 6 V/Ü/SU | 90 h 90 h | 1 Sem | SS |

Lehrformen: Vorlesung / Übung / Seminaristischer Unterricht

Dozent/Dozentin
Prof. Dr.-Ing. Dellen, Prof. Dr.-Ing. Friedrichsen, Prof. Dr.-Ing. Paffrath

Veranstaltungsinhalte
- Baumarkt (Beteiligte, Bauphasen, Projektorganisation)
- Kostenmanagement (Methoden der Kostenermittlung)
- Terminmanagement (Stufen der Ablaufplanung, Methoden der Ablaufplanung, Kapazitätsplanung)
- Qualitätsvorgaben (Ausschreibungsform, Standardisierung, funktionale Beschreibung)
- Angebotskalkulation (Kalkulation im Rechnungswesen, EP-Ermittlung über Angebotssumme)
- Arbeitsvorbereitung (Baustelleneinrichtung, Baulogistik)
- Bauleitung (Vergabe, Kontrolle, Steuerung und Dokumentation des Bauge schehens)

Qualifikationsziele
- Die Studierenden sollen Kenntnisse über baubetriebliche, auftragsgeberseitige und auftragsnehmerseitige Bauaufgaben haben.

Prüfungsform
- Modulteilprüfung 1 und 2, Klausur

Prüfungsvoraussetzungen

Teilnahmevoraussetzung
- Erforderlich:
- Nützlich: baubetriebliche Praxis

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: FSK4</th>
<th>Modus: P</th>
<th>Kurs: Grundlagen und Baurecht</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pflicht/Wahl</td>
<td>Teil: Bau- und Vertragsrecht</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung / Praktikum

Dozent/Dozentin
Prof. Dr.-Ing. Mitschein

Veranstaltungsinhalte
- Rechtliche Grundlagen (BGB, VOB, VOF, VOL, ZPO)
- Vertragliche Grundlagen zum privaten Baurecht (Formfreiheit von Verträgen, Vertragsabschluss, Vollmachten, Fristen, Vertragsstrafe, Verjährung, Mahnverfahren)
- Bauplanung und Bauphase (Grundlagen des öffentlichen Baurechts, Landesbauordnung, Baunutzungsverordnung, Baubeteiligte, Ablaufphasen eines Bauvorhabens)
- Ausschreibung und Vergabe von Bauleistungen (Vergabearten, Vertragsbedingungen, Leistungsbeschreibung, Submission)

Qualifikationsziele
- Die Studierenden sollen die Grundlagen des privaten und öffentlichen Baurechts beherrschen.
- Die Ablaufphasen eines Bauvorhabens (Planung, Genehmigung, Ausführung) sollen aus rechtlicher Sicht verstanden sein.

Prüfungsform
Klausur

Prüfungsvoraussetzungen

Teilnahmevoraussetzung
Erforderlich:
Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: FSK5</th>
<th>Modus: P</th>
<th>Kurs: Grundlagen Verkehrswesen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Anzahl Workload 240 h Modul</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP SWS Kontaktzeit Selbststudium/Prüfung Dauer Turnus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 6 V/Ü 90 h 150 h 2 Sem WS+SS</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung

Dozent/Dozentin
Prof. Dr.-Ing. Hartz, Prof. Dr.-Ing. Prof. h.c. Lühder, Prof. Dr.-Ing. Weßelborg

Veranstaltungsinhalte
- Verkehrsentwicklung und Umwelt
- Fahrdynamik und Entwurfsgrundlagen
- Trassierung von Straßen
- Straßen- und Knotenentwurf
- Grundlagen des Schienenverkehrbaus
- Untergrund und Unterbau von Straßen
- Dimensionierung des Oberbaus von Verkehrsflächen
- Einsatz und Bau verschiedener Bauweisen und Bauverfahren
- Bauliche Erhaltung von Verkehrsflächen

Qualifikationsziele
Nach erfolgreicher Teilnahme
- kennen die Studierenden die Grundlagen der Planung und des Entwurfs von Verkehrsanlagen des Verkehrswegbaus und können diese anwenden.
- beherrschen Sie die Grundlagen der konstruktiven Ausbildung und der Herstellung von Straßen, Wegen und Gleisanlagen.

Prüfungsform
Teilprüfungen, Klausuren

Prüfungsvoraussetzungen

Teilnahmeveraussetzung
Erforderlich:
Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: FSK6</th>
<th>Modus: Pflicht/Wahl</th>
<th>Kurs: Grundlagen Wasser- und Ressourcenwirtschaft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>Workload 240 h</td>
<td>Modul</td>
</tr>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit Selbststudium/Prüfung</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>120 h</td>
</tr>
<tr>
<td></td>
<td>V/Ü/SU</td>
<td>120 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Sem</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WS+SS</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung / Seminaristischer Unterricht

Dozent/Dozientin
Prof. Dr.-Ing. Flamme, Prof. Dr.-Ing. Haberkamp, Prof. Dr.-Ing. Mohn, Prof. Dr.-Ing. Uhl

Veranstaltungsinhalte
- Grundlagen der Hydromechanik (Hydrostatik, Schwimmstabilität, Kontinuitätsprinzip, Fließzustände und dimensionslose Kennzahlen der Strömung, Energieverluste der Rohrströmung, stationär gleichförmige Gerinneströmung)
- Grundlagen des Wasserbaus (Wehre, Talsperren, Wasserkraftanlagen, ökologische Verbesserung der Fließgewässer)
- Grundlagen der Ressourcenwirtschaft (Abfallrecht, Abfallmengen, Bauabfallverwertung, Abfallbehandlung, Deponie)
- Grundlagen der Abwasserableitung (Schmutz- und Niederschlagsabflüsse, Kanalisation, Regenbecken, Bodenfilter, Versickerung, Pumpwerk, rohrstatische Grundlagen)
- Grundlagen der Abwasserreinigung (mechanische und biologische Verfahren)

Qualifikationsziele
- Kenntnisse der Hydromechanik und des Wasserbaus, der Siedlungswasserwirtschaft und der Ressourcenwirtschaft
- Kenntnisse über berufliche Fertigkeiten eines Planers, Bauleiters und/oder Betreibers von wasserbaulichen und abfallwirtschaftlichen Anlagen
- Erwerben von Kenntnissen grundlegender Arbeitsschritte der hydraulischen, der wasser- und der abfallwirtschaftlichen Bemessung von Anlagen.

Prüfungsform
Modulteilprüfung 1 und 2, Klausur

Prüfungsvoraussetzungen
Prüfungsvorleistung (Übungsaufgaben, häusliche Bearbeitung)

Teilnahmevoraussetzung
Erforderlich:
Nützlich: technisches Grundverständnis

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: FSK7 | Modus: P | Kurs: Grundlagen der Tragwerksplanung

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 120 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4 V/S/Ü/SU</td>
<td></td>
</tr>
</tbody>
</table>

Kontaktzeit | Selbststudium/Prüfung | Dauer | Turnus
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
<td>60 h</td>
<td>1 Sem</td>
<td>WS</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Seminar / Übung / Seminaristischer Unterricht

Dozent/Dozentin
Prof. Dr.-Ing. Lücken-Girmscheid

Veranstaltungsinhalte
- Einwirkungen auf Tragwerke nach DIN EN 1990
- Lastaufstellung und Lastverteilung für übliche Tragwerke des Hochbaus
- Übungen

Qualifikationsziele
Kennenlernen und selbständiges Anwenden
- des Sicherheitskonzeptes,
- der Einwirkungen,
- üblicher Lasten im Hochbau,
- der Lastaufstellung und Lastverteilung für die Berufspraxis.

Prüfungsform
Klausur

Prüfungsvoraussetzungen
Hausarbeit (PVL)

Teilnahmeveraussetzung
- Erforderlich: Gute Grundkenntnisse in der Technischen Mechanik
- Nützlich: gute Grundkenntnisse Mathematik

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Anhang zur Akkreditierung
Modulhandbuch Bachelor Bauingenieurwesen Teil A

Modul: FSK8
Modus: P

| Kurs: Baustatik I |

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 120 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>4</td>
<td>4 V/S/Ü/SU</td>
<td>60 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Seminar / Übung / Seminaristischer Unterricht

Dozent/Dozentin
Prof. Dr.-Ing. Baumann, Prof. Dr.-Ing. Vette, Prof. Dr.-Ing. Waltering

Veranstaltungsinhalte
- Aufbau prüffähiger statischer Berechnungen
- Kraftgrößenverfahren (ebene Systeme)
- Schnittgrößen und Verformungen statisch unbestimmter Systeme bei Last- und Temperatureinwirkungen, Lagerverformungen
- Nachgiebige Lagerungen und Verbindungen (Federn)
- Einflusslinien für Kraft- und Weggrößen
- Anwendung des Kraftgrößenverfahrens auf räumliche Systeme
- EDV-Berechnungen ebener und räumlicher Stabtragwerke

Qualifikationsziele
- Vertiefte Kenntnisse des Tragverhaltens (Schnittgrößen und Verformungen) von Stabtragwerken (Theorie I. Ordnung).
- Beherrschen der Ermittlung von Schnittgrößen und Verformungen statisch unbestimmter Stabtragwerke (Handrechenverfahren und EDV-Programme).

Prüfungsform
Klausur

Prüfungsvoraussetzungen
Hausarbeit (PVL)

Teilnahmeveraussetzung
Nützlich: räumliches Vorstellungsvermögen, EDV-Grundkenntnisse

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: FSK9</th>
<th>Modus: P</th>
<th>Kurs: Massivbau I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl CP</td>
<td>SWS</td>
<td>Workload 240 h</td>
</tr>
<tr>
<td>8</td>
<td>6 V/Ü</td>
<td>Kontaktzeit 90 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selbststudium/Prüfung 150 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modul</th>
<th>Dauer</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 Sem</td>
<td>WS+SS</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung

Dozent/Dozentin
Prof. Dr.-Ing. Büsse, Prof. Dr.-Ing. Baumann

Veranstaltungsinhalte
- Begriffe, Bauteile
- Prinzip Stahlbeton / Dauerhaftigkeit / Brandschutz
- Werkstoffgesetze, Sicherheitskonzept
- Tragwerksidealisierung, Verfahren zur Schnittgrößenermittlung
- Bemessung für Moment und Normalkraft
- Bemessung für Querkraft und Torsion
- Druckbeanspruchte Tragglieder
- Bauhliche Durchbildung

Qualifikationsziele
- Kenntnisse der Bauweise Stahlbeton
- Kenntnisse der Normen und Sicherheitskonzepte
- Praxisgerechte Tragwerksidealisierungen und Bemessungsverfahren
- Beherrschung der wichtigsten Konstruktionsregeln zur Bewehrungsführung
- Grundsätzliches Verständnis für nichtlineare Berechnungsweisen nach Theorie II. Ordnung unter Ansatz gerissener Querschnittswerte und sichere Anwendung entsprechender baupraktischer Näherungsverfahren.

Prüfungsform
Klausur

Prüfungsvoraussetzungen
Hausarbeit (PVL)

Teilnahmevoraussetzung
Nützlich: geübtes räumliches Vorstellungsvermögen

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Anhang zur Akkreditierung

Modulhandbuch Bachelor Bauingenieurwesen Teil A

Modul: FSK10 Modus: P Kurs: Stahlbau I

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 240 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP 8</td>
<td>SWS 7 V/S/Ü</td>
</tr>
<tr>
<td>Kontaktzeit 105 h</td>
<td>Selbststudium/Prüfung 135 h</td>
</tr>
<tr>
<td>Dauer 2 Sem</td>
<td>Turnus SS/WS</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung/ Seminar / Übung

Dozent/Dozentin
Prof. Dr.-Ing. Büsse, Prof. Dr.-Ing. Vette

Veranstaltungsinhalte
- Einführung Stahlbau, Werkstoffe
- Dimensionierung Grundwerkstoff el./el. und el./pl. nach Norm
- Schraub- und Schweißverbindungen
- Typisierte Verbindungen
- Korrosionsschutz, Brandschutz

Qualifikationsziele
- Kenntnisse von Verbindungsmitteln;
- Beherrschung der zugehörigen Bemessungsverfahren.
- Fähigkeit zu Entwurf, Konstruktion und Berechnung von Verbindungen des Stahlbaus

Prüfungsform
Klausur

Prüfungsvoraussetzungen
Hausarbeit (PVL)

Teilnahmevoraussetzung
Nützlich: geübtes räumliches Vorstellungsvermögen

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Konstruktiver Ingenieurbau

Vertieferstudium

5. + 6. Semester
+ 7. Semester (Bachelor Bauingenieurwesen PLUS)
<table>
<thead>
<tr>
<th>Modul: VSK1</th>
<th>Modus: P</th>
<th>Kurs: Baustatik II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>Workload 300 h</td>
<td>Modul</td>
</tr>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>10</td>
<td>10 V/S/Ü/SU</td>
<td>150 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Seminar / Übung / Seminaristischer Unterricht

Dozent/Dozentin
Prof. Dr.-Ing. Baumann, Prof. Dr.-Ing. Vette, Prof. Dr.-Ing. Waltering

Veranstaltungsinhalte
- Weggrößenverfahren (ebene Systeme)
- Stabilitätsprobleme bei Stäben und Stabwerken: Verzweigungsproblem, Berechnung nach Theorie II. Ordnung, Berechnung mit dem Weggrößenverfahren und mit Stabwerkprogrammen nach Theorie II.O.
- Platten
 - Grundlagen, Beziehungen am Plattenelement, Plattengleichung, Lagerungsbedingungen, drillweiche/drillsteife Platten, Plattenfelder, Singularitäten, Einflussflächen
 - Anwendungsorientierte Finite Element Methode (Scheiben und Platten)

Qualifikationsziele
- Vertiefte Kenntnisse des Tragverhaltens bei stabilitätsgefährdeten Stabtragwerken (Theorie II. Ordnung) und bei Platten.
- Grundfähigkeiten in der Schnittgrößenermittlung und Verformungsberechnung für Stabtragwerke nach Theorie II.O. und Platten mit EDV-Programmen, Kontrollen durch Handrechenverfahren.

Prüfungsform
Klausur

Prüfungsvoraussetzungen
Hausarbeit (PVL)

Teilnahmevoraussetzung
Erforderlich: Gute Grundkenntnisse in der Technischen Mechanik, Baustatik I und Mathematik
Nützlich: räumliches Vorstellungsvermögen, EDV-Grundkenntnisse

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: VSK2</th>
<th>Modus: P</th>
<th>Kurs: Stahlbau II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>Workload 180 h</td>
<td>Modul</td>
</tr>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>6</td>
<td>3 S/Ü</td>
<td>45 h</td>
</tr>
</tbody>
</table>

Lehrformen: Seminar / Übung

Dozent/Dozentin

Prof. Dr.-Ing. Büsse, Prof. Dr.-Ing. Vette

Veranstaltungsinhalte

- Bemessung und Konstruktion (Tragfähigkeit, Gebrauchstauglichkeit)
- weitere Bemessungsverfahren nach Norm
- Konstruktionen des Stahlhochbaus, z.B. anhand ausgeführter Bauwerke
- Stabilität von Stäben und Stabwerken
 - Theorie II. Ordnung
 - Ersatzstabverfahren
- Beulnachweise für Stahlplatten nach Norm
- Verbundkonstruktionen im Hochbau

Qualifikationsziele

- Kenntnisse der Konstruktion und Berechnung von Standardbauteilen des Stahlbaus,
- Beherrschung der praxisgerechten Anwendung vereinfachter Stabilitätsnachweise,
- Umgang mit EDV-gestützten Nachweisverfahren,
- Verstehen von komplexeren Stahlbaukonstruktionen.

Prüfungsform

Klausur

Prüfungsvoraussetzungen

Hausarbeit (PVL)

Teilnahmevoraussetzung

- Nützlich: geübtes räumliches Vorstellungsvermögen

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: VSK3 Modus: P Pflicht/Wahl

<table>
<thead>
<tr>
<th>Modulhandbuch Bachelor Bauingenieurwesen Teil A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 300 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8 S/Ü/SU</td>
<td>120 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Sem</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WS+SS</td>
</tr>
</tbody>
</table>

Lehrformen: Seminar / Übung / Seminaristischer Unterricht

Dozent/Dozentin

Prof. Dr.-Ing. Carstens

Veranstaltungsinhalte

- technologische Grundlagen der Holzbaustoffe
- Entwurf, Berechnung und Bemessung von Holzbauwerken nach DIN EN 1995
- projektbezogenen Übungen, EDV-Anwendungen
- Praktikum I (Eigenschaften von Holzbaustoffen), Praktikum II (Ermitteln der Tragfähigkeit von Holzbauteilen in Versuchen)

Qualifikationsziele

- Kenntnisse der Holzbaustoffe und Verbindungsmittel
- Kenntnisse der konstruktiven Gestaltung von Holzkonstruktionen
- Ganzheitliche Beherrschung des Entwurfs von Holzbauwerken.

Prüfungsform

Klausur oder Projektarbeit

Prüfungsvoraussetzungen

schriftlicher Leistungsnachweis (PVL)

Teilnahmevoraussetzung

Erforderlich: Gute Kenntnisse in Technischer Mechanik, Baustatik, Allgemeine Grundlagen KI

Nützlich: Gute Kenntnisse in Mathematik, Bauphysik, Baukonstruktion/CAD

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: VSK4</th>
<th>Modus: P</th>
<th>Kurs: Massivbau II</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 150 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>5</td>
<td>4 S/Ü/SU</td>
<td>60 h</td>
</tr>
</tbody>
</table>

Lehrformen: Seminar / Übung / Seminaristischer Unterricht

Dozent/Dozentin
Prof. Dr.-Ing. Baumann, Prof. Dr.-Ing. Büsse,

Veranstaltungsinhalte
- Platten
- Positions-, Schal- und Bewehrungspläne, Bewehren von Stahlbetonbauteilen
- Gebrauchstauglichkeit (Rissbreiten, Verformungen, Spannungen)
- Momentenumlagerungen
- B- und D- Bereiche, Stabwerkmodelle
- Sonderfragen

Qualifikationsziele
- Verständnis des Tragverhaltens sowie Kompetenz in der Berechnung und Konstruktion von Platten,
- Kenntnisse in der Bewehrungstechnik und Konstruktion sowie in der Erstellung von Ausführungsplänen des Massivbaus
- Sichere Führung von Nachweisen zur Gebrauchstauglichkeit
- Verständnis der Momentenumlagerungen
- Grundkenntnisse zur Lastabtragung in D-Bereichen und in der Anwendung von Stabwerkmodellen

Prüfungsform
Klausur oder Projektarbeit

Prüfungsvoraussetzungen
schriftlicher Leistungsnachweis (PVL)

Teilnahmevoraussetzung
- Erforderlich: Gute Kenntnisse in Technischer Mechanik, Baustoffkunde und Massivbau I
- Nützlich: geübtes räumliches Vorstellungsvermögen

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: VSK5 Modus: Pflicht/Wahl

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 150 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4 S/Ü/SU</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium/Prüfung</th>
<th>Dauer</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
<td>90 h</td>
<td>1 Sem</td>
<td>SS</td>
</tr>
</tbody>
</table>

Lehrformen: Seminaristischer Unterricht / Übung / Seminar

Dozent/Dozentin
Dipl.-Ing. Elias

Veranstaltungsinhalte
- Konstruktion, Berechnung und Bemessung von Mauerwerksbauten
- Bauwerksaussteifungen
- Treppen
- Flachgründungen
- Sonderbauteilen (z.B. Wandartigen Trägern)

Qualifikationsziele
- Kenntnis üblicher Tragwerke und Bauarten in Hochbaukonstruktionen
- Kenntnisse in der Anwendung praxisbezogener Berechnungs- und Bemessungsverfahren

Prüfungsform
Klausur oder Projektarbeit

Prüfungsvoraussetzungen
- schriftlicher Leistungsnachweis (PVL)

Teilnahmevoraussetzung
- Erforderlich: Gute Grundkenntnisse in Massivbau und Baustatik
- Nützlich: räumliches Vorstellungsvermögen Kenntnis der Materialeigenschaften von Beton und Mauerwerk

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: VSK6 Modus: WP Kurs: Konstruieren im Stahlbetonbau

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 180 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Modul</td>
</tr>
<tr>
<td>6</td>
<td>180 h</td>
<td>Dauer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Turnus</td>
</tr>
<tr>
<td></td>
<td>Kontaktzeit</td>
<td>45 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudium/Prüfung</td>
<td>135 h</td>
</tr>
<tr>
<td></td>
<td>Dauer</td>
<td>1 Sem</td>
</tr>
<tr>
<td></td>
<td>Termine</td>
<td>WS</td>
</tr>
</tbody>
</table>

Lehrformen: Seminar / Übung

Dozent/Dozentin
Prof. Dr.-Ing. Mähner

Veranstaltungsinhalte
Konstruieren im Stahlbeton von:
- Stützen,
- Balken,
- Wänden,
- Wandartigen Trägern,
- Deckenplatten,
- Fundamenten

Qualifikationsziele
- Die Studierenden sollen in der Lage sein, selbständig das Zusammenspiel einzelner Konstruktionen unter Berücksichtigung von unterschiedlichen Parametern und Randbedingungen sowie die erforderliche Vernetzung mit anderen Gewerken zu erkennen.
- Durch die Umsetzung der Lehrinhalte in Übungen mittels CAD-Konstruktionsprogrammen sollen die Studierenden die gängigen Anforderungsprofile für Tragwerksplaner abdecken.

Prüfungsform
Klausur oder mdl. Prüfung oder Projektarbeit

Prüfungsvoraussetzungen
Erfolgreiche konstruktive Ausarbeitungen

Teilnahmevoraussetzung
Erforderlich: Vorkenntnisse im Massivbau
Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: VSK6
Modus: WP
Kurs: Energetische Bewertung von Bestandsgebäuden

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 180 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>6</td>
<td>3 S/Ü</td>
<td>45 h</td>
</tr>
</tbody>
</table>

Lehrformen: Seminar / Übung

Dozent/Dozentin
Prof. Dr.-Ing. Homann

Veranstaltungsinhalte
- Verfahren zur Ermittlung von bau- und anlagentechnischen Kenngrößen
- Benutzung von Pauschalwerten für die Bau- und Anlagentechnik
- Bestandsaufnahme von Gebäuden
- Wärmetechnische Qualität der wärmeübertragenden Umfassungsfläche
- Energetische Qualität von Heizungs-, Trinkwarmwassererwärmungs- und Lüftungsanlagen
- Energetische Gesamtbewertung von Gebäuden
- Entwicklung von Modernisierungskonzepten
- Betrachtungen zur Wirtschaftlichkeit, Fördermittel
- Energieausweis für Bestandsgebäude

Qualifikationsziele
- Die Studierenden sollen in die Lage versetzt werden, bestehende Gebäude energetisch bewerten zu können sowie Lösungen für energiesparende und wirtschaftliche Modernisierungen im Rahmen planerischer Gesamtkonzepte zu entwickeln.
- Besonderer Wert wird auf die Anwendung systematischer Arbeitsmethoden und die Nutzung geeigneter Software gelegt.

Prüfungsform
Mündliche Prüfung oder Präsentation oder Kolloquium

Prüfungsvoraussetzungen
Prüfungsvorleistung

Teilnehmervoraussetzung
- Erforderlich:
- Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: VSK6</th>
<th>Modus: WP</th>
<th>Kurs: Angewandte Tragwerksplanung</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 180 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP 6</td>
<td>SWS 3 S/Ü</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kontaktzeit 45 h</td>
<td>Selbststudium/Prüfung 135 h</td>
</tr>
</tbody>
</table>

Lehrformen: Seminar/Übung

Dozenten

Prof. Dr.-Ing. Waltering, Dipl.-Ing. Dietz M.Sc.

Veranstaltungsinhalte

- Statische Berechnung eines Wohn- und Geschäftsgebäudes in Massivbauweise
- Aufbau statischer Berechnungen
- Einführung in die Tragwerksplanung, Tragwerksidealisation, Lastannahmen
- Einführung in die Berechnung von Stahlbetonplatten mithilfe der FEM
- Berechnung von Stahlbetonbauteilen, insbesondere Deckenplatten unter Verwendung praxisüblicher EDV-Programme / FEM-Programme
- Bemessung elastisch gebetteter Bodenplatten
- Konstruktiver Brandschutz

Qualifikationsziele

- Selbständiges Aufstellen einer vollständigen statischen Berechnung unter Berücksichtigung des Brand-, Schall- und Wärmeschutzes
- Praxisnaher Einsatz von EDV in der Tragwerksplanung
- Praxisbezogene Vorgehensweise

Prüfungsform

mündliche Prüfung, Präsentation der Projektarbeit

Prüfungsvoraussetzungen

Erfolgreiche Teilnahme mit selbständiger Erarbeitung einer statischen Berechnung, Referat

Teilnahmeveraussetzung

Praxisbezogene Vorgehensweise

Verwendbarkeit in anderen Studiengängen

Sonstige Information

Maximale Teilnehmeranzahl: 18
Modul: VSK6

Modus: WP
- Pflicht/Wahl

Kurs: Projekt KI

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 180 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>Kontaktzeit</td>
<td>Dauer</td>
</tr>
<tr>
<td>SWS</td>
<td>Selbststudium/Prüfung</td>
<td>Turnus</td>
</tr>
<tr>
<td>6</td>
<td>45 h</td>
<td>1 Sem</td>
</tr>
<tr>
<td>3 S/Ü</td>
<td>135 h</td>
<td>WS</td>
</tr>
</tbody>
</table>

Lehrformen: Seminar / Übung

Dozent/Dozentin
- Dipl.-Ing. Elias, Prof. Dr.-Ing. Büsse

Veranstaltungsinhalte
- Entwurf, Berechnung und Konstruktion einer ausgewählten Gesamtkonstruktion (z. B. aus dem Bereich des Hochbaus)
- Praxisbezogene Einführung in die Tragwerksplanung
- Tragwerksidealisierung
- Bauartübergreifende Konzipierung eines sinnvollen Tragverhaltens
- Berechnung von Einzelbauteilen verschiedener Bauarten unter Verwendung praxisüblicher EDV-Programme
- Teamorientiertes Erarbeiten verschiedener Lösungsvarianten
- Aufstellung einer vollständigen statischen Berechnung

Qualifikationsziele
- Bauartübergreifendes Verständnis des Gesamttragverhaltens ganzer Bauwerke
- Sinnvoller und effektiver Einsatz von EDV in der Tragwerksplanung
- Zusammenführen vieler Einzelüberlegungen zu einem schlüssigen Gesamtkonzept
- Praxisbezogene Vorgehensweise

Prüfungsform
- mündliche Prüfung, Präsentation der Projektarbeit

Prüfungsvoraussetzungen
- Erfolgreiche Teilnahme mit schriftlicher Erarbeitung eines Projektberichtes

Teilnahmevoraussetzung
- Erforderlich: Gute Kenntnisse in Technischer Mechanik, Baustoffkunde und Massivbau
- Nützlich: geübtes räumliches Vorstellungsvermögen

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: VSK6

Kurs: Bauelemente

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3 S/Ü</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kontaktzeit</td>
<td>Selbststudium/Prüfung</td>
</tr>
<tr>
<td></td>
<td>45 h</td>
<td>135 h</td>
</tr>
</tbody>
</table>

Lehrformen: Seminar/Übung

Dozenten
Prof. Dr.-Ing. Mähner, Dipl.-Ing. Stuhr

Veranstaltungsinhalte
- Entwurf, Berechnung und Konstruktion eines Mehrfamilienwohnhauses
- Praxisbezogene Einführung in die Tragwerksplanung
- Tragwerksidealisation
- Berechnung von Stahlbetonbauteilen, Holz- und Mauerwerksbauteilen unter Verwendung praxisüblicher EDV-Programme
- Teamorientiertes Erarbeiten verschiedener Lösungsvarianten
- Aufstellung einer vollständigen statischen Berechnung

Qualifikationsziele
- Bauartübergreifendes Verständnis des Gesamttragverhaltens ganzer Bauwerke
- Sinnvoller und effektiver Einsatz von EDV in der Tragwerksplanung
- Zusammenführen vieler Einzelüberlegungen zu einem schlüssigen Gesamtkonzept
- Praxisbezogene Vorgehensweise

Prüfungsform
mündliche Prüfung, Präsentation der Projektarbeit

Prüfungsvoraussetzungen
Erfolgreiche Teilnahme mit schriftlicher Erarbeitung eines Projektberichtes, Referat

Teilnahmevoraussetzung
Erforderlich: Gute Kenntnisse in Technischer Mechanik, Baustoffkunde und Massiv- und Holzbau
Nützlich: geübtes räumliches Vorstellungsvermögen

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Maximale Teilnehmeranzahl: 18
<table>
<thead>
<tr>
<th>Modul: VSK7</th>
<th>Modus: P</th>
<th>Kurs: Brücken- und Tunnelbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>Workload 150 h</td>
<td>Modul</td>
</tr>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>5</td>
<td>4 S/Ü/SU</td>
<td>60 h</td>
</tr>
</tbody>
</table>

Lehrformen: Seminaristischer Unterricht / Übung / Seminar

Dozent/Dozentin
Prof. Dr.-Ing. Mähner (Tunnelbau), Prof. Dr.-Ing. Lücken-Girmscheid (Brückenbau)

Veranstaltungsinhalte
- Überblick über die Entwicklung des Brückenbaus
- Lastannahmen für Straßen-Brücken nach Eurocode 2
- Erläuterung der Tragwirkung verschiedener Brückenbautypen
- Brückenbauteile: Lager, Fahrbahnübergänge, Kappen, Geländer
- Unterbauten von Brücken: Widerlager, Pfeiler
- Überblick über die Entwicklung des Tunnelbaues
- Herstellung und Konstruktion von Tunneln in bergm. Bauweise
- Maschineller Tunnelvortrieb

Qualifikationsziele
- Beurteilung des Tragverhaltens einfacher Brücken- und Tunnelkonstruktionen
- Beherrschung der Lastrückumlauft von Straßenbrücken
- Kenntnisse der Berechnung von Überbauten und Unterbauten
- Kenntnisse der Berechnung, Bemessung und Ausführung von Tunnelkonstruktionen

Prüfungsform
Klausur oder mdl. Prüfung

Prüfungsvoraussetzungen

Teilnahmevoraussetzung
Erforderlich: Grundkenntnisse in der Statik, des Grund-, Stahlbeton- und Stahlbaus

Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: VSK8</th>
<th>Modus: P</th>
<th>Kurs: Bachelorarbeit</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 300 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

Lehrformen:
- Dozent/Dozentin
 Alle Mitglieder des Lehrkörpers des Fachbereichs Bauingenieurwesen

Veranstaltungsinhalte
- Stellung einer ingenieurpraktischen Aufgabe
- Selbständige Bearbeitung der gestellten Aufgabe

Qualifikationsziele
- Anwenden von bekanntem Fachwissen auf eine vorgegebene ingenieurpraktische Fragestellung.
- Verstehen des Zusammenhanges von Ingenieurplanung und baupraktischer Ausführung im Sinne eines ganzheitlichen Ansatzes.
- Kenntnisse in der selbständigen Beschaffung von Informationen (Literatur, Normen und Firmenpublikationen).
- Beherrschung der Abfassung eines ingenieurtechnischen Berichtes

Prüfungsform
- Bachelorarbeit

Prüfungsvoraussetzungen
- Der Prüfling hat der Betreuerin oder dem Betreuer der Bachelorarbeit während der Bearbeitungszeit regelmäßig - mindestens zweimal – persönlich über die Ausgestaltung der Bachelorarbeit zu berichten.

Teilnahmevoraussetzung

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: VSK9

<table>
<thead>
<tr>
<th>Modus: P</th>
<th>Kurs: Kolloquium</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 60 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontakzeit</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5 h</td>
</tr>
</tbody>
</table>

Lehrformen:

Dozent/Dozentin

Prof. des Fachbereichs Bauingenieurwesen

Veranstaltungsinhalte

Vorstellung und Erläuterung der Bachelorarbeit

Qualifikationsziele

Prüfungsform

Mündliche Prüfung

Prüfungsvoraussetzungen

Erstellen eines Posters zur Bachelorarbeit

Teilnahmeveraussetzung

Erfolgreich abgeschlossene Bachelorarbeit

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Konstruktiver Ingenieurbau

Vertieferstudium

zusätzliche Module 6. + 7. Semester
für 7-semestrigen
Bachelor Bauingenieurwesen PLUS
Modul: VSK10

<table>
<thead>
<tr>
<th>Modus:</th>
<th>Pflicht/Wahlpflicht/Wahl</th>
</tr>
</thead>
</table>

Kurs: Praxissemester (nur Bauing. PLUS, 7-sem.)

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 900 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>SWS</td>
<td>Selbststudium/Prüfung</td>
</tr>
</tbody>
</table>

Dauer 810 h

Turnus 2 Sem SS/WS

Lehrformen: Praktikum

Dozent/Dozentin
Prof. Dr.-Ing. Baumann, Prof. Dr.-Ing. Büsse, Prof. Dr.-Ing. Carstens,
Prof. Dr.-Ing. Lücken-Girmscheid, Prof. Dr.-Ing. Mähner, Prof. Dr.-Ing. Vette,
Prof. Dr.-Ing. Waltering

Veranstaltungsinhalte
- Praktische Tätigkeit in einem in- oder ausländischen Unternehmen, einer
 Behörde, einem Ingenieur- oder Architekturbüro mit Übernahme von
 Ingenieuraufgaben in der Tragwerksplanung

Qualifikationsziele
- Durch eine enge Verzahnung von Theorie und Praxis sollen die Studierenden
 an die Tragwerksplanung herangeführt werden. Sie erhalten damit die
 Möglichkeit, die im Studium vermittelten Kenntnisse auf komplexe Probleme
 der Praxis anzuwenden.

Prüfungsform
Projektbericht und Vorstellung des Berichtes

Prüfungsvoraussetzungen
Erfolgreich bestandene Modulprüfungen des 1. bis einschließlich 4. Fachsemesters.

Teilnahmeveraussetzung
- Erforderlich: Grundlagen- und Vertiefungskenntnisse im Bereich Konstruktiver
 Ingenieurbau
- Nützlich: erfolgreich abgelegte Fachprüfungen in der Fachrichtung der
 Praxistätigkeit

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Verkehrswesen

Fachstudium

3. + 4. Semester
Modul: FSV1
Modus: Pflicht/Wahl
Kurs: Allgemeine Kompetenzen/Fremdsprachen

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 120 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3 V/S/Ü</td>
<td>45 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Seminar / Übung

Dozent/Dozentin
Prof. Dr.-Ing. Friedrichsen, Prof. Dr.-Ing. Homann

Veranstaltungsinhalte
- Technisches Englisch
- Präsentationstechniken
 - Präsentationsvorbereitung (Ziele, Zielgruppe, Inhalte)
 - Medieneinsatz (Auswahl, und Einsatz von Medien, Grafikgestaltung)
 - Präsentationsphase (von der Eröffnung bis zum Abschluss)
- Wissenschaftliches Arbeiten
 - Datenerhebung
 - Datenanalyse
 - Datendarstellung

Qualifikationsziele
- Aufbau einer technischen Sprachkompetenz in Wort und Schrift
- Sichere Beherrschung von Präsentationstechniken
- Ordnungsgemäßer Erarbeiten und Abfassen wissenschaftlicher Erkenntnisse und Untersuchungen

Prüfungsform
- Modulprüfung, Klausur oder mdl. Prüfung oder Präsentationen

Prüfungsvoraussetzungen

Teilnahmeveraussetzung
- Erforderlich:
- Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: FSV2</th>
<th>Modus: P</th>
<th>Kurs: Geotechnik</th>
</tr>
</thead>
</table>

| Modulhandbuch Bachelor Bauingenieurwesen Teil A |

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 240 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>8</td>
<td>8 V/Ü/P</td>
<td>120 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung / Praktikum

Dozent/Dozentin
Prof. Dr.-Ing. Heimbecher

Veranstaltungsinhalte
- Entstehung und Erkundung von Boden und Fels, bodenmechanische Kennwerte
- Spannungen u. Verformungen, Erddruck, Flachgründungen, Tiefgründungen
- Stützbauwerke, Böschungen, Baugruben, Verdichtung von Böden
- Verdichtungsprüfungen, Wasserhaltungen, Grundwasserabsenkungen

Qualifikationsziele
- Kenntnisse der Besonderheiten des Baustoffes Boden, der Interaktion von Baugrund und Bauwerk, der Dimensionierung von Gründungen,
- Beherrschen der Berechnung von Gründungen und des Nachweises der Standsicherheit von Stützbauwerken, Böschungen und Baugruben,
- Kenntnisse der Verdichtungsprüfungen im Erdbau

Prüfungsform
Modulprüfung, Klausur

Prüfungsvoraussetzungen
Prüfungsvorleistungen (PVL)

Teilnahmeveraussetzung
Erforderlich: Grundkenntnisse in Mechanik, Statik, Mathematik und Physik
Nützlich: Baustellenpraktikum im Erd- und Straßenbau

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: FSV3</th>
<th>Modus: P</th>
<th>Kurs: Grundlagen Konstruktiver Ingenieurbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Workload 240 h</td>
</tr>
<tr>
<td>Anzahl</td>
<td></td>
<td>Modul</td>
</tr>
<tr>
<td>8</td>
<td>8 V/Ü/SU</td>
<td>Kontaktzeit Selbststudium/Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dauer Turnus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>120 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>120 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Sem WS+SS</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung / Seminaristischer Unterricht

Dozent/Dozentin
Prof. Dr.-Ing. Büsse, Prof. Dr.-Ing. Waltering

Veranstaltungsinhalte
- Grundlagen des Stahlbetonbaues – Tragfähigkeit und Gebrauchssicherheit
- Biegetragwirkung und Querkrafttragwirkung
- Tragwirkung von Stützen, Fundamenten, Platten und Wänden
- Gebrauchssicherheit – Durchbiegung und Rissbreitenbeschränkung
- Statisch unbestimmte Systeme – Durchlaufträger und Rahmen
- Lastannahmen
- Gebäudeaussteifung
- Einführung in die Anwendung baustatischer Methoden
- Grundlagen des Stahlbaues – Material, Biegeträger, Stützen, Verbindungsmittel
- Grundlagen des Holzbaues – Material, Biegeträger, Stützen, Verbindungsmittel
- Grundlagen des Mauerwerks – Material, Wand, Pfeiler, Bogen

Qualifikationsziele
- Beurteilung des Tragverhaltens einfacher Konstruktionen aus Stahlbeton, Stahl, Holz und Mauerwerk
- Kenntnisse in der Berechnung von Schnittgrößen und Verformungen statischer Systeme

Prüfungsform
Modulteilprüfung 1 und 2, Klausur

Prüfungsvoraussetzungen
Erfolgreiche konstruktive Ausarbeitung

Teilnahmeveraussetzung
Erforderlich: gute Grundkenntnisse Baustoffkunde, Baukonstruktionslehre, Technischer Mechanik
Nützlich: geübtes räumliches Vorstellungsvermögen

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: FSV4

<table>
<thead>
<tr>
<th>Modul: FSV4</th>
<th>Modus: Pflicht/Wahlpflicht/Wahl</th>
<th>Kurs: Grundlagen Bauverfahrenstechnik</th>
</tr>
</thead>
</table>

Anzahl Workload 120 h Modul

<table>
<thead>
<tr>
<th>CP</th>
<th>SWS</th>
<th>Kontaktzeit</th>
<th>Selbststudium/Prüfung</th>
<th>Dauer</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4 V/Ü/SU</td>
<td>60 h</td>
<td>60 h</td>
<td>1 Sem</td>
<td>WS</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung / Seminaristischer Unterricht

Dozent/Dozentin

Prof. Dr.-Ing. Biernath, Prof. Dr.-Ing. Heimbecher

Veranstaltungsinhalte

- Baugrubensicherungen, Unterfangungen
- Wasserhaltung
- Baugrundverbesserungen
- Betriebstechnischer Erdbau
- Grundlagen der Schalungstechnik (Wand- und Deckenschalungen)
- Bewehrung
- Betonage
- Elementwände

Qualifikationsziele

- Verfahrenstechnische Kompetenz und Problemlösekompetenz zu technisch und wirtschaftlich sinnvollen Baugrubensicherungen inkl. Wasserhaltung
- Verfahrenstechnische Kompetenz und Entscheidungskompetenz im Umgang mit Baugrundverbesserungen
- Kompetenz im Umgang mit den maßgebenden technischen Regelwerken und dem zugehörigen Rechtsrahmen
- Kennenlernen der Grundbegriffe und des Zusammenwirkens von Schalungs-, Bewehrungs- und Betonarbeiten
- Kennenlernen der Grundprinzipien sowie wichtiger Vor- und Nachteile von Trägerwand- und Rahmenwandschalung
- Kennenlernen verschieden Deckenschalungssysteme sowie deren Vor- und Nachteile
- Erlangung der Fertigkeit, einfache Schalungskonstruktionen zu skizzieren und wesentliche Konstruktionsteile zu benennen

Prüfungsform

Modulprüfung, Klausur

Prüfungsvoraussetzungen

keine

Teilnahmevoraussetzung

Erforderlich: kein Erfordernis
Nützlich: baubetriebliche Praxis

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: FSV5
Modus: P
**Modulhandbuch Bachelor Bauingenieurwesen Teil A
Kurs: Grundlagen Baubetrieb inkl. Bau- und Vertragsrecht
Teil: Grundlagen Baubetrieb

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 180 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>6</td>
<td>6 V/Ü/SU</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung / Seminaristischer Unterricht

Dozent/Dozentin
- Prof. Dr.-Ing. Dellen, Prof. Dr.-Ing. Friedrichsen, Prof. Dr.-Ing. Paffrath

Veranstaltungsinhalte
- Baumarkt (Beteiligte, Bauphasen, Projektorganisation)
- Kostenmanagement (Methoden der Kostenermittlung)
- Terminmanagement (Stufen der Ablaufplanung, Methoden der Ablaufplanung, Kapazitätsplanung)
- Qualitätsvorgaben (Ausschreibungsform, Standardisierung, funktionale Beschreibung)
- Angebotskalkulation (Kalkulation im Rechnungswesen, EP-Ermittlung über Angebotssumme)
- Arbeitsvorbereitung (Baustelleneinrichtung, Baulogistik)
- Bauleitung (Vergabe, Kontrolle, Steuerung und Dokumentation des Baugeschehens)

Qualifikationsziele
- Die Studierenden sollen Kenntnisse über baubetriebliche, auftragsgeberseitige und auftragsnehmerseitige Bauaufgaben haben.

Prüfungsform
- Modulteilprüfung 1 und 2, Klausur

Prüfungsvoraussetzungen

Teilnahmevoraussetzung
- Erforderlich:
 Nützlich: baubetriebliche Praxis

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: FSV5
Modus: P
Kurs: Grundlagen und Baurecht
Teil: Bau- und Vertragsrecht

Lehrformen: Vorlesung / Übung / Praktikum

Dozent/Dozentin
Prof. Dr.-Ing. Mitschein

Veranstaltungsinhalte
- Rechtliche Grundlagen (BGB, VOB, VOF, VOL, ZPO)
- Vertragliche Grundlagen zum privaten Baurecht (Formfreiheit von Verträgen, Vertragsabschluss, Vollmachten, Fristen, Vertragsstrafe, Verjährung, Mahnverfahren)
- Bauplanung und Bauphase (Grundlagen des öffentlichen Baurechts, Landesbauordnung, Baunutzungsverordnung, Baubeteiligte, Ablaufphasen eines Bauvorhabens)
- Ausschreibung und Vergabe von Bauleistungen (Vergabearten, Vertragsbedingungen, Leistungsbeschreibung, Submission)

Qualifikationsziele
- Die Studierenden sollen die Grundlagen des privaten und öffentlichen Baurechts beherrschen.
- Die Ablaufphasen eines Bauvorhabens (Planung, Genehmigung, Ausführung) sollen aus rechtlicher Sicht verstanden sein.

Prüfungsform
Klausur

Prüfungsvoraussetzungen

Teilnahmevoraussetzung
Erforderlich:
Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: FSV6 Modus: Pflicht/Wahl Pflicht/Wahl
Kurs: Grundlagen Wasser- und Ressourcenwirtschaft

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 240 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP 8</td>
<td>SWS 8 V/Ü/SU</td>
<td>Kontaktzeit 120 h Selbststudium/Prüfung 120 h Dauer Turnus 2 Sem WS+SS</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung / Seminaristischer Unterricht

Dozent/Dozentin
Prof. Dr.-Ing. Flamme, Prof. Dr.-Ing. Haberkamp, Prof. Dr.-Ing. Mohn, Prof. Dr.-Ing. Uhl

Veranstaltungsinhalte
- Grundlagen der Hydromechanik (Hydrostatik, Schwimmstabilität, Kontinuitätsprinzip, Fließzustände und dimensionslose Kennzahlen der Strömung, Energieverluste der Rohrströmung, stationär gleichförmige Gerinneströmung)
- Grundlagen des Wasserbaus (Wehre, Talsperren, Wasserkraftanlagen, ökologische Verbesserung der Fließgewässer)
- Grundlagen der Ressourcenwirtschaft (Abfallrecht, Abfallmengen, Bauabfallverwertung, Abfallbehandlung, Deponie)
- Grundlagen der Abwasserableitung (Schmutz- und Niederschlagsabflüsse, Kanalisation, Regenbecken, Bodenfilter, Versickerung, Pumpwerk, rohrstatische Grundlagen)
- Grundlagen der Abwasserreinigung (mechanische und biologische Verfahren)

Qualifikationsziele
- Kenntnisse der Hydromechanik und des Wasserbaus, der Siedlungswasserwirtschaft und der Ressourcenwirtschaft
- Kenntnisse über berufliche Fertigkeiten eines Planers, Bauleiters und/oder Betreibers von wasserbaulichen und abfallwirtschaftlichen Anlagen
- Erwerben von Kenntnissen grundlegender Arbeitsschritte der hydraulischen, der wasser- und der abfallwirtschaftlichen Bemessung von Anlagen.

Prüfungsform
Modulteilprüfung 1 und 2, Klausur

Prüfungsvoraussetzungen
Prüfungsvorleistung (Übungsaufgaben, häusliche Bearbeitung)

Teilnahmeverwaltungsstelle
Erforderlich:
Nützlich: technisches Grundverständnis

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: FSV7</th>
<th>Modus: P</th>
<th>Kurs: Entwurf von Verkehrsanlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>CP: 8</td>
<td>Workload 240 h</td>
</tr>
<tr>
<td>SWS: 7 V/Ü</td>
<td>Kontaktzeit: 105 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium/Prüfung: 135 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dauer: 2 Sem</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turnus: WS+SS</td>
<td></td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung

Dozent/Dozentin
Prof. Dr.-Ing. Hartz, Prof. Dr.-Ing. Prof. h.c. Lühder

Veranstaltungsinhalte
- Verkehrsentwicklung und Prognose
- Fahrdynamik
- Planung und Entwurf von Verkehrsanlagen
- Leistungsfähigkeit und Wirtschaftlichkeit von Verkehrsanlagen
- Verkehrssicherheit
- Verkehr und Umwelt
- Landesplanung und Städtebau
- GIS im Verkehrswesen

Qualifikationsziele
Nach erfolgreicher Teilnahme
- kennen die Studierenden die Grundlagen der Planung und des Entwurfs von Verkehrsanlagen und können diese anwenden.
- kennen Sie Verkehrssysteme und können deren Leistungsfähigkeit berechnen sowie die Auswirkungen und Sicherheit analysieren.
- können Sie selbstständig Verkehrsanlagen planen und entwerfen

Prüfungsform
Teilprüfungen, Klausuren

Prüfungsvoraussetzungen
Prüfungsvorleistungen (PVL)

Teilnahmevoraussetzung
Erforderlich:
Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: FSV8 Modus: P Kurs: Straßenwesen

<table>
<thead>
<tr>
<th>Modulhandbuch Bachelor Bauingenieurwesen Teil A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
</tr>
<tr>
<td>CP</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung

Dozent/Dozentin
Prof. Dr.-Ing. Weßelborg, Dipl.-Ing. Wiemann

Veranstaltungsinhalte
- Einführung in das Straßenwesen
- Untergrund und Unterbau von Straßen
- Dimensionierung des Oberbaus von Verkehrsflächen
- Auswahl und Herstellung von Baustoffen
- Einsatz und Bau von Schichten ohne Bindemittel, Schichten mit hydraulischen Bindemitteln sowie Schichten aus Asphalt
- Einsatz und Ausführung von Bauweisen der baulichen Erhaltung
- Prüfungen im Straßenwesen (Qualitätssicherung)
- Aufbau eines Planungsauftrags gem. HOAI

Qualifikationsziele
Nach erfolgreicher Teilnahme
- kennen die Studierenden die Grundlagen des Straßenwesens sowie die zugehörigen, gesetzlichen Regelungen und Technischen Regelwerke.
- können Sie selbstständig den konstruktiven Aufbau von Straßen dimensionieren und geeignete Bauweisen und Bauverfahren auswählen.
- kennen die Studierenden die Maßnahmen zur Qualitätssicherung und baulichen Erhaltung von Straßen.

Prüfungsform
Teilprüfungen, Klausuren

Prüfungsvoraussetzungen
Prüfungsvorleistungen (PVL)

Teilnahmevoraussetzung
Erforderlich:
Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: FSV9
Kurs: Projekte des Verkehrswesens
Teil: Projekt I

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 210 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP 7</td>
<td>SWS 4 P/Ü/SU</td>
<td>Kontaktzeit 60 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dauer 2 Sem</td>
</tr>
</tbody>
</table>

Lehrformen: Praktikum / Seminaristischer Unterricht

Dozent/Dozentin
Prof. Dr.-Ing. Hartz, Prof. Dr.-Ing. Prof. h.c. Lühder, Prof. Dr.-Ing. Weßelborg

Veranstaltungsinhalte
- Konzeptionelle Bearbeitung von aktuellen Aufgabenstellungen aus dem Verkehrswesen

Qualifikationsziele
- Nach erfolgreicher Teilnahme an der Veranstaltung können die Studierenden
 - Projekte ganzheitlich bearbeiten und kreative Lösungsansätze entwickeln.
 - Grundlagenwissen einsetzen und selbständig Recherche betreiben.
 - innerhalb eines Gruppendruges zusammenarbeiten, Lösungen entwickeln und lernen Konflikte zu lösen.
 - Inhalte strukturiert und souverän darstellen.

Prüfungsform
Projektarbeit und Präsentation

Prüfungsvoraussetzungen
Regelmäßige Teilnahme und Mitarbeit im Kurs

Teilnahmevoraussetzung
Erforderlich:
Nützlich: Teilnahme an den Vorlesungen „Entwurf von Verkehrsanlagen“ und „Straßenwesens“

Verwendbarkeit in anderen Studiengängen

Sonstige Information
| **Modul:** FSV9 | **Modus:** P | **Kurs:** Projekte des Verkehrswesens
Teil: Projekt II |
|----------------|------------|--|

<table>
<thead>
<tr>
<th>Lehrformen:</th>
<th>Übung / Seminaristischer Unterricht</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Dozent/Dozentin</th>
<th>Prof. Dr.-Ing. Hartz, Prof. Dr.-Ing. Prof. h.c. Lühder, Prof. Dr.-Ing. Weßelborg</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Veranstaltungsinhalte</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Qualifikationsziele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach erfolgreicher Teilnahme an der Veranstaltung können die Studierenden</td>
</tr>
<tr>
<td>- geeignete Lösungsansätze für spezifische Aufgabenstellungen erarbeiten und gegeneinander abwägen.</td>
</tr>
<tr>
<td>- begründete, ingenieurgeotechnische Entscheidungen herbeiführen.</td>
</tr>
<tr>
<td>- mit aktuellen Regelwerken aus dem Verkehrswesen arbeiten.</td>
</tr>
<tr>
<td>- innerhalb aller Disziplinen des Verkehrswesens eigenverantwortlich die Planung einer Straßenbaumaßnahme durchführen.</td>
</tr>
<tr>
<td>- erlerntes fächerübergreifendes Fachwissen in einem ganzheitlichen Kontext anwenden und Lösungen vermitteln.</td>
</tr>
<tr>
<td>- Inhalte strukturiert und souverän darstellen und verteidigen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsform</th>
<th>Projektarbeit und mdl. Prüfung</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prüfungsvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>regelmäßige Teilnahme und Mitarbeit im Kurs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilnahmevoraussetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erforderlich: Teilnahme an den Vorlesungen „Entwurf von Verkehrsanlagen“ und „Straßenwesen“</td>
</tr>
<tr>
<td>Nützlich: Sicherer Umgang mit Trassierungssoftware</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit in anderen Studiengängen</th>
</tr>
</thead>
</table>

| **Sonstige Information** |
Verkehrswesen

Vertieferstudium

5. + 6. Semester
+ 7. Semester (Bachelor Bauingenieurwesen PLUS)
Kurs: Schienenverkehrsbau

<table>
<thead>
<tr>
<th>Modul: VSV1</th>
<th>Modus: P (Pflicht/Wahlpflicht/Wahl)</th>
<th>Anzahl Workload 210 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C P</td>
<td>SWS Kontaktzeit Selbststudium/Prüfung</td>
<td>Dauer Turnus</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>5 S/SU 75 h 135 h</td>
<td>2 Sem WS+SS</td>
</tr>
</tbody>
</table>

Lehrformen: Seminaristischer Unterricht / Seminar

Dozent/Dozentin
Prof. Dr.-Ing. Prof. h.c. Lühder, NN.

Veranstaltungsinhalte
- Allgemeine Grundlagen (Begriffe, Vorschriften, Richtlinien)
- Trassierung von Gleisanlagen
- Weichen und Weichenverbindungen
- Bahnhöfe
- Bauarten des Oberbaus (Schotteroberbau, Feste Fahrbahn, Straßenbahnoberbau)
- Bereich Planum (Konstruktionen, Schäden, Sanierungen)
- Oberbauarbeiten und Oberbauunterhaltung (Kleine Unterhaltung, Durcharbeitung, Umbau, Sanierungsmaßnahmen, Teilumbau, Umbau, Neubau)
- Schienenverkehrsbauwerke

Qualifikationsziele
Nach erfolgreicher Teilnahme
- beherrschen die Studierenden die Grundlagen der Planung und des Bauens moderner Schienenverkehrsbauwerke und können selbständig konstruktive Details ausbilden.
- sind die Studierenden in der Lage selbständig Bau- bzw. Sanierungs- und Unterhaltungsmaßnahmen im Schienenverkehrsbau zu beurteilen, zu konstruieren und aus baubetrieblicher Sicht planerisch durchzuführen.
- können Sie geeignete Bauweisen und Bauverfahren selbständig auswählen.

Prüfungsform
Modulprüfung, Klausur

Prüfungsvoraussetzungen
Prüfungsvorleistungen (PVL)

Teilnahmeverordnung
- Erforderlich:
- Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 180 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>Kontaktzeit</td>
<td>Dauer</td>
</tr>
<tr>
<td>6</td>
<td>6 S/Ü/SU/P</td>
<td>90 h</td>
</tr>
<tr>
<td>SWS</td>
<td>Selbststudium/Prüfung</td>
<td>90 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Sem</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WS+SS</td>
</tr>
</tbody>
</table>

Lehrformen: Seminar / Übung / Seminaristischer Unterricht / Praktikum

Dozent/Dozentin
Prof. Dr.-Ing. Weßelborg, Hülsbömer M.Sc.

Veranstaltungsinhalte
- Bewertung von Untersuchungs- und Prüfergebnissen
- Oberflächeneigenschaften von Straßen (z.B. Griffigkeit und Lärm)
- Konzeption und Herstellung von Sonderbauweisen
- Vorstellung von innovativen Bauweisen und Bauverfahren (z.B. Lärmenoptimierte Deckschichten)
- Einführung in die systematische Straßenverwaltung
- Aspekte der betrieblichen Straßenverwaltung
- Exemplarische Auswahl und Anwendung von Bauweisen der baulichen Erhaltung von Verkehrswegen
- Diskussion von aktuellen Themen aus dem Straßenwesen

Qualifikationsziele
Nach erfolgreicher Teilnahme an der Veranstaltung
- kennen die Studierenden die Vielfalt besonderer Fragestellungen im Bereich des Straßenwesens und die dazugehörigen Technischen Regelwerke. Sie können diese situationsadäquat auswählen und anwenden.
- sind die Studierenden über aktuelle Innovationen im Straßenwesen informiert und können diese bewerten.
- sind die Studierenden in der Lage baustoffspezifische Untersuchungsergebnisse auszuwerten und vor dem Hintergrund bauvertraglicher Anforderungen zu bewerten.

Prüfungsform
Teilprüfung, Klausur

Prüfungsvoraussetzung
Prüfungsvorleistungen (PVL)

Teilnahmeveraussetzung
Erforderlich: Kenntnisse im Fach „Straßenwesen“
Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul:</th>
<th>VSV2</th>
<th>Modus:</th>
<th>P</th>
<th>Kurs:</th>
<th>Straßenbautechnisches Praktikum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrformen:</td>
<td>Seminaristischer Unterricht / Praktikum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dozent/Dozentin
Prof. Dr.-Ing. Weßelborg, Hülsbömer M.Sc.

Veranstaltungsinhalte
- Durchführung von Bitumen- und Asphaltuntersuchungen: Bestimmung volumetrischer Kennwerte, Bitumenkenngrößen und der Asphaltzusammensetzung Aus- und Bewertung von Laboruntersuchungen
- Beurteilung von Schadensfällen
- Funktion und Arbeitsweise einer Asphaltmischanlage unter Berücksichtigung der Anforderungen der „Werkseigenen Produktionskontrolle“

Qualifikationsziele
Nach erfolgreicher Teilnahme
- kennen die Studierenden die grundlegenden Bitumen- und Asphaltuntersuchungen.
- können Sie die entsprechenden Laborergebnisse selbständig aus- und bewerten und diese in Zusammenhang mit bauvertraglichen Fragestellungen und/oder Schadensfällen interpretieren.
- kennen die Studierenden Funktion und Arbeitsweise einer Asphaltmischanlage unter Berücksichtigung der Anforderungen der „Werkseigenen Produktionskontrolle“.

Prüfungsform
Teilprüfungen, mdl. Prüfung und Hausarbeit

Prüfungsvoraussetzungen
Prüfungsvorleistungen (PVL)

Teilnahmevoraussetzung
Erforderlich: Kenntnisse im Fach „Straßenwesen“ und „Sondergebiete aus dem Straßenwesen“
Nützlich: baustoff- und prüftechnische Kenntnisse

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: VSV3</th>
<th>Modus: Pflicht/Wahl</th>
<th>Kurs: CAD im Verkehrswesen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pflicht/Wahl</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 210 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Dauer</td>
</tr>
<tr>
<td>7</td>
<td>7 Ü/SU</td>
<td>105 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium/Prüfung</th>
</tr>
</thead>
</table>

Lehrformen: Übung / Seminaristischer Unterricht

Dozent/Dozentin
Dipl.-Ing. Rörick

Veranstaltungsinhalte
- Anwendung von Trassierungssoftware
- Trassierung einer Straße inklusive Ausbildung der Knotenpunkte, Querschnittsgestaltung, Massenermittlung und Anfertigung von richtlinienkonformen Planunterlagen

Qualifikationsziele
Nach erfolgreicher Teilnahme können die Studierenden
- Verkehrsanlagen selbständig, EDV-gestützt konstruieren und Planunterlagen erstellen.
- innerhalb eines Gruppengefüges zusammenarbeiten, Lösungen entwickeln und Konflikte lösen.

Prüfungsform
Modulprüfung, Klausur und Projektarbeit

Prüfungsvoraussetzungen

Teilnahmevoraussetzung
Erforderlich:
Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: VSV4

<table>
<thead>
<tr>
<th>Kurs: Angewandte Mathematik</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modus: Pflicht/Wahlpflicht/Wahl</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 150 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP 5</td>
<td>SWS 4 Ü/SU</td>
<td></td>
</tr>
<tr>
<td>Kontaktzeit</td>
<td>Selbststudium/Prüfung</td>
<td>Dauer</td>
</tr>
<tr>
<td>60 h</td>
<td>90 h</td>
<td>2 Sem</td>
</tr>
</tbody>
</table>

Lehrformen: Übung / Seminaristischer Unterricht

Dozent/Dozentin
Prof. Dr.-Ing. Hartz

Veranstaltungsinhalte

- Beschreibende Statistik
- Grundlagen der Wahrscheinlichkeitsrechnung
- Stichproben
- Statistische Testverfahren
- Ausreißerprüfung, Ausgleichsrechnung
- Statistiksoftware

Qualifikationsziele

Nach erfolgreicher Teilnahme können die Studierenden

- Anwendungsmöglichkeiten von statistischen Methoden im Bauingenieurwesen einschätzen.
- eigenständig Lösungen einfacher praxisnaher Probleme mit Hilfe der Statistik herbeiführen.
- selbständig mit Statistiksoftware arbeiten.

Prüfungsform

Modulprüfung, Klausur (Theorieteil + praktisches Arbeiten mit SPSS) oder mdl. Prüfung oder Projektarbeit

Prüfungsvoraussetzungen

Teilnahmevoraussetzung

- Erforderlich:
- Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: VSV5

Modus: P

Kurs: Brücken- und Tunnelbau

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 150 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>5</td>
<td>4 S/Ü/P</td>
<td>60 h</td>
</tr>
</tbody>
</table>

Lehrformen: Seminar / Übung / Praktikum

Dozent/Dozentin
- Prof. Dr.-Ing. Mähner (Tunnelbau),
- Prof. Dr.-Ing. Lücken-Girmscheid (Brückenbau)

Veranstaltungsinhalte
- Überblick über die Entwicklung des Brückenbaus
- Lastannahmen für Straßen-Brücken nach Eurocode 2
- Erläuterung der Tragwirkung verschiedener Brückenbautypen
- Brückenbauteile: Lager, Fahrbahnübergänge, Kappen, Geländer
- Unterbauten von Brücken: Widerlager, Pfeiler
- Traggerüste für die Herstellung von Massivbrücken
- Überblick über die Entwicklung des Tunnelbaues
- Herstellung und Konstruktion von Tunneln in bergm. Bauweise
- Maschineller Tunnelvortrieb

Qualifikationsziele
- Beurteilung des Tragverhaltens einfacher Brücken- und Tunnelkonstruktionen
- Beherrschen der Lastermittlung von Straßenbrücken
- Kenntnisse der Konstruktion und Berechnung von Traggerüsten
- Kenntnisse der Berechnung, Bemessung und Ausführung von Tunnelkonstruktionen

Prüfungsform
- Modulprüfung, Klausur oder mdl. Prüfung oder Projektarbeit

Prüfungsvoraussetzungen

Teilnahmevoraussetzung
- Erforderlich: Grundkenntnisse in der Statik, des Grund-, Stahlbeton- und Stahlbaus
- Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: VSV6
Modus: P
Kurs: Landschaft und Gewässer

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 120 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>4</td>
<td>3 S/Ü/SU</td>
<td>45 h</td>
</tr>
</tbody>
</table>

Lehrformen: Seminar / Seminaristischer Unterricht / Übung

Dozent/Dozentin
Prof. Dr.-Ing. Mohn, Dipl.-Biol. Bünning

Veranstaltungsinhalte
- Landschafts- und Raumplanung
- Landschaftspflegerische Begleitplanung
- Umweltverträglichkeit, Flora-Fauna-Habitat-(FFH-)Verträglichkeit
- Naturgemäße Gestaltung von Kreuzungsbauwerken Straße/Gewässer
- Grundlagen der Hydrologie
- Grundlagen der Ingenieurbioökologie
- Fließgewässer-Ökologie und -Morphologie (Strukturgüte)
- Naturgemäße Stabilisierung von Böschungen an Straßen und Oberflächengewässern

Qualifikationsziele
- Grundlegende Kenntnisse über Methoden, Richtlinien und Arbeitsweisen aus koop. Fachplanungsbereichen, hier bezüglich der Umweltbelange
- Kenntnisse der Hydrologie, Ingenieurbioökologie, Ökologie

Prüfungsform
Modulprüfung, Klausur oder mdl. Prüfung oder Projektarbeit

Prüfungsvoraussetzungen
Prüfungsvorleistung

Teilnahmevoraussetzung
- Erforderlich: erfolgreicher Besuch Grundlagen der Wasser- und Ressourcenwirtschaft, 2. Teilmodul, 4. Semester
- Nützlich: bestandene Klausur Grundlagen der Wasser- u. Ressourcenwirtschaft

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: VSV7
Modus: P Pflicht/Wahl
Kurs: Planungsmodelle / Telematik

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 120 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP 4</td>
<td>SWS 4 Ü/SU</td>
<td>Kontaktzeit 60 h</td>
</tr>
</tbody>
</table>

Lehrformen: Übung/Seminaristischer Unterricht

Dozent/Dozentin
Prof. Dr.-Ing. Hartz

Veranstaltungsinhalte

- Konzeptionelle Verkehrsplanungsverfahren (Planungsebenen, Planungsprozess)
- rechtliche und technische Randbedingungen
- Verkehrserhebung, Analyse von Angebot und Nachfrage
- Verkehrsplanungsmodelle
 - Verkehrserzeugung
 - Verkehrsverteilung
 - Verkehrsaufteilung
 - Verkehrsumlegung
- Wirkungen, Bewertungen der Planungsergebnisse
 - Nutzen/Kosten/Wirtschaftlichkeit
- Verkehrsbeeinflussung außerorts/innerorts u.a. LSA

Qualifikationsziele

- Kenntnisse der Verkehrsplanungsmodelle
- Die Studierenden sollen die Verfahren der Verkehrsplanung kennen und selber anwenden können
- Die Studierenden sollen den Aufbau und Einsatz von Verkehrsbeeinflussungsanlagen kennen

Prüfungsform
Modulprüfung, Klausur

Prüfungsvoraussetzungen
Prüfungsvorleistungen (PVL)

Teilnahmevoraussetzung
Erforderlich:
Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: VSV8
Modus: P
Kurs: Praxisphase (nur 6-sem. Bachelor Bauing.)

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 300 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2 P</td>
<td></td>
</tr>
</tbody>
</table>

Lehrformen: Praktikum

Dozent/Dozentin
Prof. Dr.-Ing. Hartz, Prof. Dr.-Ing. Lühder, Prof. Dr.-Ing. Weßelborg

Veranstaltungsinhalte

Qualifikationsziele
- Durch eine enge Verzahnung zwischen Studium und Berufspraxis sollen die Studierenden die anwendungsorientierten Tätigkeiten kennen lernen; sie erhalten die Möglichkeit, die im Studium in verschiedenen Disziplinen vermittelten Kenntnisse und Fertigkeiten auf komplexe Probleme der Praxis anzuwenden. Bereits während des Studiums sollen die Studierenden verschiedene Aspekte der betrieblichen Prozesse von Ingenieurbüros, Behörden, Straßenbaubetrieben, Unternehmen der Baubranche und des Maschinenbaus sowie deren Zusammenwirken kennen lernen und vertiefte Einblicke in technische, ökonomische, ökologische, juristische, organisatorische und soziale Zusammenhänge des Betriebsgeschehens erhalten

Prüfungsform
Projektbericht und Vorstellung des Berichtes im Blockseminar

Prüfungsvoraussetzungen
Regelmäßige Teilnahme und Mitarbeit am praxissemesterbegleitenden Kurs

Teilnahmevoraussetzung
Erforderlich: Grundlagen- und Vertiefungskenntnisse der Verkehrsplanung und des Straßenwesens
Nützlich: erfolgreich abgelegte Fachprüfung in der Fachrichtung der Praxiserfahrung

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: VSV9

| Modus: | P
| Pflicht/Wahlpflicht/Wahl |

Kurs: Bachelorarbeit

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 300 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

Lehrformen:

Dozent/Dozentin

Alle Mitglieder des Lehrkörpers des Fachbereichs Bauingenieurwesen

Veranstaltungsinhalte

- Stellung einer ingenieurpraktischen Aufgabe
- Selbständige Bearbeitung der gestellten Aufgabe

Qualifikationsziele

- Anwenden von bekanntem Fachwissen auf eine vorgegebene ingenieurpraktische Fragestellung.
- Verstehen des Zusammenhanges von Ingenieurplanung und baupraktischer Ausführung im Sinne eines ganzheitlichen Ansatzes.
- Kenntnisse in der selbständigen Beschaffung von Informationen (Literatur, Normen und Firmenpublikationen).
- Beherrschung der Abfassung eines ingenieurtechnischen Berichtes

Prüfungsform

Bachelorarbeit und Abgabegespräch

Prüfungsvoraussetzungen

Der Prüfling hat der Betreuerin oder dem Betreuer der Bachelorarbeit während der Bearbeitungszeit regelmäßig - mindestens zweimal – persönlich über die Ausgestaltung der Bachelorarbeit zu berichten.

Teilnahmevoraussetzung

Nachweis von mindestens 120 CP (6-sem. Variante) bzw. 150 CP (7-sem. Variante) in der Studienrichtung Verkehrswesen.

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: VSV10</th>
<th>Modus: P</th>
<th>Kurs: Kolloquium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>Workload 60 h</td>
<td>Modul</td>
</tr>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5 h</td>
</tr>
</tbody>
</table>

Lehrformen:

Dozent/Dozentin
Prof. des Fachbereichs Bauingenieurwesen

Veranstaltungsinhalte
Vorstellung und Erläuterung der Bachelorarbeit

Qualifikationsziele

Prüfungsform
Mündliche Prüfung

Prüfungsvoraussetzungen
Erstellen eines Posters zur Bachelorarbeit

Teilnahmevoraussetzung
Erfolgreich abgeschlossene Bachelorarbeit

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Verkehrswesen

Vertieferstudium

zusätzliche Module 6. + 7. Semester
für 7-semestrigen
Bachelor Bauingenieurwesen PLUS
Modul: VSV11	Modus: WP
Pflicht/Wahlpflicht/Wahl

<table>
<thead>
<tr>
<th>Kurs: Projekt (nur Bauing. PLUS, 7-sem.)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 300 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>30 h</td>
</tr>
</tbody>
</table>

Lehrformen:

Dozent/Dozentin
Prof. Dr.-Ing. Hartz, Prof. Dr.-Ing. Prof. h.c. Lühder, Prof. Dr.-Ing. Weßelborg

Veranstaltungsinhalte
- Bearbeitung einer ganzheitlichen Aufgabe aus dem Verkehrswesen
- Bearbeitung ggf. unter Einbeziehung von Partnern aus der Praxis oder Forschung

Qualifikationsziele
Nach erfolgreicher Teilnahme
- können die Studierenden selbständig die Aufgaben des Bauherrn resp. des Bauherrenvertrouters, der genehmigenden Behörde, eines in den Planungs- und Bauprozess eingebundenen Ingenieurbüros oder des Bauunternehmens übernehmen

Prüfungsform
Projektarbeit und Präsentation

Prüfungsvoraussetzungen
Erarbeitung eines Projektberichtes
Erfolgreich bestandene Modulprüfungen des 1. bis einschließlich 3. Fachsemesters

Teilnahmevoraussetzung
Erforderlich:
Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: VSV12
Modus: P
Kurs: Praxissemester (nur Bauing. PLUS, 7-sem.)

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 900 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP 30</td>
<td>SWS 6 P</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium/Prüfung</th>
<th>Dauer</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 h</td>
<td>810 h</td>
<td>2 Sem</td>
<td>SS/WS</td>
</tr>
</tbody>
</table>

Lehrformen: Praktikum

Dozent/Dozentin
Prof. Dr.-Ing. Hartz, Prof. Dr.-Ing. Prof. h.c. Lühder, Prof. Dr.-Ing. Weßelborg

Veranstaltungsinhalte

Qualifikationsziele

- Durch eine enge Verzahnung zwischen Studium und Praxis sollen die Studierenden die anwendungsorientierte Tätigkeit kennen lernen; sie erhalten die Möglichkeit, die im Studium in verschiedenen Disziplinen vermittelten Kenntnisse und Fertigkeiten auf komplexe Probleme der Praxis anzuwenden. Bereits während des Studiums sollend die Studierenden verschiedene Aspekte der betrieblichen Prozesse von Ingenieurbüros, Behörden, Straßenbaubetrieben, Unternehmen der Baubranche und des Maschinenbaus sowie deren Zusammenwirken kennen lernen und vertiefte Einblicke in technische, ökonomische, ökologische, juristische, organisatorische und soziale Zusammenhänge des Betriebsgeschehens erhalten.

Prüfungsform

- Projektbericht und Vorstellung des Berichtes.

Prüfungsvoraussetzungen

- Erfolgreich bestandene Modulprüfungen des 1. bis einschließlich 4. Fachsemesters

Teilnahmevoraussetzung

- Erforderlich: Grundlagen- und Vertiefungskenntnisse des Verkehrswesens
- Nützlich: erfolgreich abgelegte Fachprüfungen in der Fachrichtung der Praxistätigkeit

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Wasser- und Ressourcenwirtschaft

Fachstudium

3. + 4. Semester
Modul: FSW1
Modus: P
Kurs: Allgemeine Kompetenzen/Fremdsprachen

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 120 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Dauer</td>
</tr>
<tr>
<td>4</td>
<td>3 V/S/Ü</td>
<td>45 h</td>
</tr>
</tbody>
</table>

Lehrformen: Seminar

Dozent/Dozentin
Prof. Dr.-Ing. Friedrichsen, Prof. Dr.-Ing. Homann

Veranstaltungsinhalte

- Technisches Englisch o. Technisches Spanisch o. Technisches Französisch
- Präsentationstechniken
 - Präsentationsvorbereitung (Ziele, Zielgruppe, Inhalte)
 - Medieneinsatz (Auswahl, und Einsatz von Medien, Grafikgestaltung)
 - Präsentationsphase (von der Eröffnung bis zum Abschluss)
- Wissenschaftliches Arbeiten
 - Datenerhebung
 - Datenanalyse
 - Datendarstellung

Qualifikationsziele

- Aufbau einer technischen Sprachkompetenz in Wort und Schrift
- Sichere Beherrschung von Präsentationstechniken
- Ordnungsgemäßes Erarbeiten und Abfassen wissenschaftlicher Erkenntnisse und Untersuchungen

Prüfungsform

Modulprüfung, Klausur oder mdl. Prüfung oder Präsentationen

Prüfungsvoraussetzungen

Teilnahmevoraussetzung

Erforderlich:
Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: FSW2</th>
<th>Modus: P/Pflicht/Wahl/Wahl</th>
<th>Kurs: Geotechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>Workload 240 h</td>
<td>Modul</td>
</tr>
<tr>
<td>CP 8</td>
<td>SWS 8</td>
<td>Kontaktzeit 120 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung / Praktikum

Dozent/Dozentin
Prof. Dr.-Ing. Heimbecher

Veranstaltungsinhalte
- Entstehung und Erkundung von Boden und Fels, bodenmechanische Kennwerte
- Spannungen u. Verformungen, Erddruck, Flachgründungen, Tiefgründungen
- Stützbauwerke, Böschungen, Baugruben, Verdichtung von Böden
- Verdichtungsprüfungen, Wasserhaltungen, Grundwasserabsenkungen

Qualifikationsziele
- Kenntnisse der Besonderheiten des Baustoffes Boden, der Interaktion von Baugrund und Bauwerk, der Dimensionierung von Gründungen
- Beherrschen der Berechnung von Gründungen und des Nachweises der Standsicherheit von Stützbauwerken, Böschungen und Baugruben,
- Kenntnisse der Verdichtungsprüfungen im Erdbau

Prüfungsform
Modulprüfung, Klausur

Prüfungsvoraussetzungen
Prüfungsvorleistungen (PVL)

Teilnahmeveraussetzung
Erforderlich: Grundkenntnisse in Mechanik, Statik, Mathematik und Physik
Nützlich: Baustellenpraktikum im Erd- und Straßenbau

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: FSW3
Modus: Pflicht/Wahl

<table>
<thead>
<tr>
<th>Kurs: Grundlagen Konstruktiver Ingenieurbau</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 240 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>8</td>
<td>8 V/Ü/SU</td>
<td>120 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung / Seminarisotcher Unterricht

Dozent/Dozentin
Prof. Dr.-Ing. Büsse, Prof. Dr.-Ing. Waltering

Veranstaltungsinhalte
- Grundlagen des Stahlbetonbaues – Tragfähigkeit und Gebrauchssicherheit
- Biegetragwirkung und Querkrafttragwirkung
- Tragwirkung von Stützen, Fundamenten, Platten und Wänden
- Gebrauchssicherheit – Durchbiegung und Rissbreitenbeschränkung
- Statisch unbestimmte Systeme – Durchlaufträger und Rahmen
- Lastannahmen
- Gebäudeaussteifung
- Einführung in die Anwendung baustatischer Methoden
- Grundlagen des Stahlbaues – Material, Biegeträger, Stützen, Verbindungsmittel
- Grundlagen des Holzbaues – Material, Biegeträger, Stützen, Verbindungsmittel
- Grundlagen des Mauerwerks – Material, Wand, Pfeiler, Bogen

Qualifikationsziele
- Beurteilung des Tragverhaltens einfacher Konstruktionen aus Stahlbeton, Stahl, Holz und Mauerwerk
- Kenntnisse in der Berechnung von Schnittgrößen und Verformungen statischer Systeme

Prüfungsform
Modulteilprüfung 1 und 2, Klausur

Prüfungsvoraussetzungen
Erfolgreiche konstruktive Ausarbeitung

Teilnahmevoraussetzung
- Erforderlich: gute Grundkenntnisse Baustoffkunde, Baukonstruktionslehre, Technischer Mechanik
- Nützlich: geübtes räumliches Vorstellungsvermögen

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: FSW4 Modus: P
Kurs: Grundlagen Bauverfahrenstechnik

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 120 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>4</td>
<td>4 V/Ü/SU</td>
<td>60 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung / Seminaristischer Unterricht

Dozent/Dozentin
Prof. Dr.-Ing. Biernath, Prof. Dr.-Ing. Heimbecher

Veranstaltungsinhalte
- Baugrubensicherungen, Unterfangungen
- Wasserhaltung
- Baugrundverbesserungen
- Betriebstechnischer Erdbau
- Grundlagen der Schalungstechnik (Wand- und Deckenschalungen)
- Bewehrung
- Betonage
- Elementwände

Qualifikationsziele
- Verfahrenstechnische Kompetenz und Problemlösekompetenz zu technisch und wirtschaftlich sinnvollen Baugrubensicherungen inkl. Wasserhaltung
- Verfahrenstechnische Kompetenz und Entscheidungskompetenz im Umgang mit Baugrundverbesserungen
- Kompetenz im Umgang mit den maßgebenden technischen Regelwerken und dem zugehörigen Rechtsrahmen
- Kennenlernen der Grundbegriffe und des Zusammenwirkens von Schalungs-, Bewehrungs- und Betonarbeiten
- Kennenlernen der Grundprinzipien sowie wichtiger Vor- und Nachteile von Trägerwand- und Rahmenwandschalung
- Kennenlernen verschiedenen Deckenschalungssysteme sowie deren Vor- und Nachteile
- Erlangung der Fertigkeit, einfache Schalungskonstruktionen zu skizzieren und wesentliche Konstruktionsteile zu benennen

Prüfungsform
Modulprüfung, Klausur

Prüfungsvoraussetzungen
keine

Teilnahmevoraussetzung
Erforderlich: kein Erfordernis
Nützlich: baubetriebliche Praxis

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: FSW5
Modus: P
Pflicht/Wahl: Pflicht/Wahl
Kurs: Grundlagen Baubetrieb inkl. Bau- und Vertragsrecht
Theil: Grundlagen Baubetrieb

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>6</td>
<td>6 V/Ü/SU</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung / Seminaristischer Unterricht

Dozent/Dozentin
Prof. Dr.-Ing. Dellen, Prof. Dr.-Ing. Friedrichsen, Prof. Dr.-Ing. Paffrath

Veranstaltungsinhalte
- Baumarkt (Beteiligte, Bauphasen, Projektorganisation)
- Kostenmanagement (Methoden der Kostenermittlung)
- Terminmanagement (Stufen der Ablaufplanung, Methoden der Ablaufplanung, Kapazitätsplanung)
- Qualitätsvorgaben (Ausschreibungsform, Standardisierung, funktionale Beschreibung)
- Angebotskalkulation (Kalkulation im Rechnungswesen, EP-Ermittlung über Angebotssumme)
- Arbeitsvorbereitung (Baustelleneinrichtung, Baulogistik)
- Bauleitung (Vergabe, Kontrolle, Steuerung und Dokumentation des Baugezehrens)

Qualifikationsziele
- Die Studierenden sollen Kenntnisse über baubetriebliche, auftragsgeberseitige und auftragsnehmerseitige Bauaufgaben haben.

Prüfungsform
Modulteilprüfung 1 und 2, Klausur

Prüfungsvoraussetzungen

Teilnahmevoraussetzung
- Erforderlich:
- Nützlich: baubetriebliche Praxis

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: FSW5</th>
<th>Modus: P</th>
<th>Kurs: Grundlagen und Baurecht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulhandbuch Bachelor Bauingenieurwesen Teil A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modus: Pflicht/Wahlpflicht/Wahl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung / Praktikum

Dozent/Dozentin
Prof. Dr.-Ing. Mitschein

Veranstaltungsinhalte
- Rechtliche Grundlagen (BGB, VOB, VOF, VOL, ZPO)
- Vertragliche Grundlagen zum privaten Baurecht (Formfreiheit von Verträgen, Vertragsabschluss, Vollmachten, Fristen, Vertragsstrafe, Verjährung, Mahnverfahren)
- Bauplanung und Bauphase (Grundlagen des öffentlichen Baurechts, Landesbauordnung, Baunutzungsverordnung, Baubeteiligte, Ablaufphasen eines Bauvorhabens)
- Ausschreibung und Vergabe von Bauleistungen (Vergabearten, Vertragsbedingungen, Leistungsbeschreibung, Submission)

Qualifikationsziele
- Die Studierenden sollen die Grundlagen des privaten und öffentlichen Baurechts beherrschen.
- Die Ablaufphasen eines Bauvorhabens (Planung, Genehmigung, Ausführung) sollen aus rechtlicher Sicht verstanden sein.

Prüfungsform
Klausur

Prüfungsvoraussetzungen

Teilnahmevoraussetzung
Erforderlich:
Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: FSW6

<table>
<thead>
<tr>
<th>Modulhandbuch Bachelor Bauingenieurwesen Teil A</th>
</tr>
</thead>
</table>

Modul: FSW6
Pflicht/Wahl: Pflicht
Kurs: Grundlagen Verkehrswesen

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 240 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>8</td>
<td>6 V/Ü</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung

Dozent/Dozentin
- Prof. Dr.-Ing. Hartz, Prof. Dr.-Ing. Prof. h.c. Lühder, Prof. Dr.-Ing. Weßelborg

Veranstaltungsinhalte
- Verkehrsentwicklung und Umwelt
- Fahrdynamik und Entwurfsgrundlagen
- Trassierung von Straßen
- Straßen- und Knotenentwurf
- Grundlagen des Schienenverkehrsbaus
- Untergrund und Unterbau von Straßen
- Dimensionierung des Oberbaus von Verkehrsflächen
- Einsatz und Bau verschiedener Bauweisen und Bauverfahren
- Bauliche Erhaltung von Verkehrsflächen

Qualifikationsziele
- Nach erfolgreicher Teilnahme können die Studierenden die Grundlagen der Planung und des Entwurfs von Verkehrsanlagen des Verkehrswegebaus und können diese anwenden.
- beherrschen Sie die Grundlagen der konstruktiven Ausbildung und der Herstellung von Straßen, Wegen und Gleisanlagen

Prüfungsform
- Teilprüfungen, Klausuren

Prüfungsvoraussetzungen

Teilnahmevoraussetzung
- Erforderlich:
- Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: FSW7</th>
<th>Modus: P</th>
<th>Kurs: Grundlagen Wasser- und Ressourcenwirtschaft</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Anzahl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung / Seminaristischer Unterricht

Dozent/Dozentin
Prof. Dr.-Ing. Flamme, Prof. Dr.-Ing. Haberkamp, Prof. Dr.-Ing. Mohn, Prof. Dr.-Ing. Uhl

Veranstaltungsinhalte
- Grundlagen der Hydromechanik (Hydrostatik, Schwimmstabilität, Kontinuitätsprinzip, Fließzustände und dimensionslose Kennzahlen der Strömung, Energieverluste der Rohrströmung, stationär gleichförmige Gerinneströmung)
- Grundlagen des Wasserbaus (Wehre, Talsperren, Wasserkraftanlagen, ökologische Verbesserung der Fließgewässer)
- Grundlagen der Ressourcenwirtschaft (Abfallrecht, Abfallmengen, Bauabfallverwertung, Abfallbehandlung, Deponie)
- Grundlagen der Abwasserableitung (Schmutz- und Niederschlagsabflüsse, Kanalisation, Regenbecken, Bodenfilter, Versickerung, Pumpwerk, rohrstatische Grundlagen)
- Grundlagen der Abwasserreinigung (mechanische und biologische Verfahren)

Qualifikationsziele
- Kenntnisse der Hydromechanik und des Wasserbaus, der Siedlungswasserwirtschaft und der Ressourcenwirtschaft
- Kenntnisse über berufliche Fertigkeiten eines Planers, Bauleiters und/oder Betreibers von wasserbaulichen und abfallwirtschaftlichen Anlagen
- Erwerben von Kenntnissen grundlegender Arbeitsschritte der hydraulischen, der wasser- und der abfallwirtschaftlichen Bemessung von Anlagen.

Prüfungsform
Modulteilprüfung 1 und 2, Klausur

Prüfungsvoraussetzungen
Prüfungsvorleistung (Übungsaufgaben, häusliche Bearbeitung)

Teilnahmevoraussetzung
Erforderlich: technisches Grundverständnis

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: FSW8</th>
<th>Modus: P</th>
<th>Kurs: Umweltbiologie/-chemie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>Workload 150 h</td>
<td>Modul</td>
</tr>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>V/P/Ü</td>
</tr>
</tbody>
</table>

Lehrformen: Seminaristischer Unterricht / Übung / Praktikum

Dozent/Dozentin
Prof. Dr.-Ing. Haberkamp

Veranstaltungsinhalte
- Allgemeine Grundlagen der Umweltchemie/-biologie
- Anorganische Schadstoffe
- Organische Schadstoffe
- Wasser als beispielhaftes Umweltmedium
- Praktische Übungen und Untersuchungen am Beispiel von Klärschlamm
- Mikroskopier-Kurs zur (biologischen) Bewertung von Klärwasser

Qualifikationsziele
- Erwerben grundlegender Kenntnisse über das Vorkommen und Verhalten von anthropogenen, umweltrelevanten Stoffen vor allem im Bereich Abfall, Abwasser und Aufbereitung dieser Matrizes.
- Anwendung theoretischen Erkenntnisse in Übungen, Praktika und Exkursionen.

Prüfungsform
Modulprüfung, Klausur oder mündliche Prüfung oder Projektarbeit

Prüfungsvoraussetzungen
Aktive Mitarbeit und Teamarbeit in Übungen und Praktikum
Erstellung von Praktikumsprotokollen inkl. Auswertung und Interpretation der Versuchsergebnisse

Teilnahmevoraussetzung
Erforderlich:
Nützlich: Kenntnisse von Grundlagen der anorganischen und organischen Chemie sowie der Biologie

Verwendbarkeit in anderen Studiengängen
Sonstige Information
<table>
<thead>
<tr>
<th>Modul: FSW9</th>
<th>Modus: P</th>
<th>Kurs: Wasserwirtschaft und Hydrologie I+II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflicht/Wahlpflicht/Wahl</td>
<td></td>
<td>Teil: Wasserwirtschaft und Hydrologie I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 360 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>10 V/S/SU/P</td>
<td></td>
</tr>
</tbody>
</table>

Kontaktzeit	Selbststudium/Prüfung	Dauer	Turnus
150 h | 210 h | 2 Sem | SS/WS |

Lehrformen: Vorlesung/Seminar/Seminaristischer Unterricht / Praktikum

Dozent/Dozentin
Prof. Dr.-Ing. Uhl

Veranstaltungsinhalte
- Hydrologie
- Hydrometrie
- Statistische Analyse wasserwirtschaftlicher Daten

Qualifikationsziele
- Kenntnisse hydrologischer und wasserwirtschaftlicher Zusammenhänge
- Verstehen des wasserwirtschaftlichen Gesamtkonzeptes
- Anwendung wasserwirtschaftlicher Grundlagen in der Planung

Prüfungsform
Modulteilprüfung 1 und 2, Klausur oder mdl. Prüfung oder Projektarbeit

Prüfungsvoraussetzungen
regelmäßige aktive Teilnahme am Praktikum, Praktikumsbericht mit Auswertungen

Teilnahmevoraussetzung
- Erforderlich: Kenntnisse im Fach Mathematik
- Nützlich: technisches und ökologisches Grundverständnis

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: FSW9
Modus: P
Kurs: Wasserwirtschaft und Hydrologie I+II
Teil: Wasserwirtschaft und Hydrologie II

<table>
<thead>
<tr>
<th>Lehrformen:</th>
<th>Seminar/ Übung / Seminaristischer Unterricht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent/Dozentin</td>
<td>Prof. Dr.-Ing. Uhl</td>
</tr>
</tbody>
</table>

Veranstaltungsinhalte

- Ingenieurhydrologie
- Hochwasserschutz
- Speicherbewirtschaftung
- Wasserwirtschaft urbaner Gebiete
- Klimawandel
- Simulationsmodelle
- Geographische Informationssysteme (GIS)
- Wasser- und Umweltrecht

Qualifikationsziele

- Vertieftes Verständnis des hydrologischen Prozesses sowie Kenntnisse der ingenieurpraktischen Anwendung von Simulationsmodellen
- Erlangung berufsqualifizierender Kenntnisse in Hauptaufgabenfeldern der Wasserwirtschaft
- Erlangung von Grundkenntnissen in Projektmanagement sowie Wasser- und Umweltrecht

Prüfungsform

Klausur oder mdl. Prüfung oder Projektarbeit

Prüfungsvoraussetzungen

regelmäßige aktive Teilnahme am Praktikum, Praktikumsbericht mit Auswertungen, Hausübung (PVL)

Teilnahmevoraussetzung

Erforderlich: Kenntnisse im Fach Wasserwirtschaft Teil 1 und Grundlagen der Ressourcenwirtschaft
Nützlich: technisches und ökologisches Grundverständnis, EDV-Grundkenntnisse

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: FSW10

Kurs: Abfall- und Ressourcenwirtschaft I+II

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 330 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>11</td>
<td>9 V/S/SU/Ü</td>
<td>135 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung/ Seminar/ Seminaristischer Unterricht / Übung

Dozent/Dozentin
Prof. Dr.-Ing. Flamme

Veranstaltungsinhalte
- Grundlagen Abfallrecht
- Abfallarten/- mengen
- Getrennte Sammlung und Transport
- Leistungsdaten und Kosten der Logistik
- Abfallvermeidung und produktintegrierter Umweltschutz
- Anlagentechnik bei der Abfallbehandlung
- Recycling und energetische Verwertung von Abfällen
- Verfahren der Abfallbehandlung, Deponietechnik, Altlasten
- Gesetzliche Grundlagen des Immissionsschutzes
- Emissionen aus Abfallbehandlungs- und Verbrennungsanlagen
- Emissionsminderungstechniken

Qualifikationsziele
- Die Studierenden sollen die Grundlagen der Ressourcenwirtschaft und der zugehöri- gen Logistik (Ablauf und Kosten) beherrschen.
- Die Studierenden sollen anhand von konkreten Fallbeispielen die notwendigen Ar- beitsschritte zur Erstellung von Logistikkonzepten und Gebührenbedarfsrechnungen durchführen können.
- Die Studierenden erwerben grundlegende Kenntnisse über Technologien zur Abfall- handlung.
- Vertiefende Kenntnisse über berufliche Fertigkeiten eines Planers, Bauleiters und Be- treibers von abfallwirtschaftlichen Anlagen.
- Vertiefte Kenntnisse über Emissionen und Einrichtungen zum Immissionsschutz

Prüfungsform
- Modulprüfung, Klausur oder mdl. Prüfung oder Projektarbeit

Prüfungsvoraussetzungen
- Prüfungsvorleistung (Übungsaufgaben, häusliche Bearbeitung)

Teilnahmevoraussetzung
- Erforderlich:
- Nützlich: technisches Grundverständnis, Interesse an umwelttechnischen Belangen

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Wasser- und Ressourcenwirtschaft

Vertieferstudium

5. + 6. Semester
+ 7. Semester (Bachelor Bauingenieurwesen PLUS)
<table>
<thead>
<tr>
<th>Modul: VSW1</th>
<th>Modus:</th>
<th>Kurs: Anlagentechnik in Gebäuden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>Workload 90 h</td>
<td>Modul</td>
</tr>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>3</td>
<td>2 V/Ü</td>
<td>30 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung / Übung

Dozent/Dozentin
Prof. Dr.-Ing. Homann, Lehrbeauftragte/r (N.N.)

Veranstaltungsinhalte
- Heizungsanlagen:
 Wärmeträger, Niedertemperaturkessel, Brennwertkessel, Wärmepumpen, Thermische Solaranlagen, Fern- und Nahwärme, Heizwärmeverteilung und -übergabe
- Trinkwasserwärmungsanlagen:
 Monovalente und bivalente Erzeuger, indirekt und direkt beheizte Speicher, Trinkwasserverteilung und -übergabe
- Lüftungsanlagen:
 Abluftanlagen, Zuluft-/Abluftanlagen, Wärmerückgewinnung, Wärmetauscher, Wärmepumpe, Lüftungswärmeverteilung und -übergabe

Qualifikationsziele
- Kenntnisse der Anlagentechnik.
- Kenntnisse des Einflusses physikalischer und technischer Kriterien bei Bauwerks-, Stadt- und Umweltplanung.
- Die Studierenden sollen in der Lage sein, selbstständig Anlagen primärenergietisch zu beurteilen und in planerische Gesamtkonzepte einzubinden.

Prüfungsform
Modulprüfung, Klausur oder mdl. Prüfung oder Projektarbeit oder Präsentation

Prüfungsvoraussetzungen
Berechnung eines Übungsbeispiels (PVL)

Teilnahmevoraussetzung
Erforderlich: Bauphysikalische Grundkenntnisse
Nützlich:

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Modul: VSW2
Modus: Pflicht/Wahl

Kurs: Wasserbau und Hydromechanik I+II

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 360 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>12</td>
<td>8 S/Ü/SU</td>
<td>120 h</td>
</tr>
</tbody>
</table>

Lehrformen: Seminar / Übung / Seminaristischer Unterricht

Dozent/Dozentin
Prof. Dr.-Ing. Mohn, Dipl.-Biol. Bünning

Veranstaltungsinhalte
- ökologische Verbesserung der Fließgewässer
- Umsetzung der europ. Wasser-Rahmen-Richtlinie
- Gewässerstrukturgüte – Kartierung (Praktikum)
- ingenieurbioLOGische Sicherungsbauweisen
- Konstruktion, naturgemäße Gestaltung und hydraulische Bemessung von Deichen und Hochwasserrückhaltebecken, Fischauf- und –abstiegsanlagen, Wehre und Wasserkraftanlagen
- Umweltprüfungen und umweltbezogene Begleitplanungen
- Bauwerke in und an Gewässern (Kreuzungs-, Ufer- und Sohlenbauwerke, Wehre)
- Hydromechanik der Rohre und Gerinne
- Feststofftransport und Morphodynamik
- stationär ungleichförmige Strömung (1-dim. WSP-Linienberechnung)

Qualifikationsziele
- Vertiefte Kenntnisse über berufliche Fertigkeiten eines Planers, Bauleiters oder Betreibers von Anlagen in und an Gewässern bzw. eines Planers, Bauleiters oder Unterhaltungspflichtigen an Oberflächengewässern
- Beherrschen der grundlegenden Arbeitsschritte der wasserbaulichen Bemessung von Anlagen bzw. von Stabilisierungsmaßnahmen an Fließgewässern
- Beherrschen der umweltfachlichen Kartierung und Bewertung von Fließgewässern

Prüfungsform
Modulteilprüfung 1 und 2, Klausur oder mdl. Prüfung

Prüfungsvoraussetzungen
Prüfungsvorleistung (Objektplanung/Entwurf, häusliche Ausarbeitung)

Teilnahmevoraussetzung
Erforderlich: erfolgreiche Teilnahme am Modul Grundlagen der Wasser- und Ressourcenwirtschaft, Teilmodul 2, 4. Semester
Nützlich:

Verwendbarkeit in anderen Studiengängen
offen für andere Bachelor-Studiengänge

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: VSW3</th>
<th>Modus: P</th>
<th>Kurs: Siedlungswasserwirtschaft I+II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>Workload 360 h</td>
<td>Modul</td>
</tr>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>12</td>
<td>9 V/Ü/P</td>
<td>135 h</td>
</tr>
</tbody>
</table>

Lehrformen: Vorlesung/ Seminar/ Übung/ Seminaristischer Unterricht

Dozent/Dozentin
Prof. Dr.-Ing. Haberkamp

Veranstaltungsinhalte
- Wasserversorgungstechnik
- Kanalisationssonderbauwerke/-verfahren; Grundstücksentwässerung
- Weitergehende Abwasserreinigungstechnik und Klärschlammbehandlung
- Maschinentechnik für Abwasserableitungs/-Abwasserreinigungsanlagen

Qualifikationsziele
- Kenntnisse der Wasserver- und Entsorgungstechnik
- Vertiefte Kenntnisse für eine berufliche Tätigkeit als Planer, Bauleiter und/oder Betreiber siedlungswasserwirtschaftlicher Anlagen.

Prüfungsform
Modulprüfung, Klausur oder mdl. Prüfung

Prüfungsvoraussetzungen
Ausarbeitung einer mehrteiligen vorentwurfsmäßigen Hausübung (PVL)

Teilnahmevoraussetzung
Erforderlich: Grundkenntnisse im Fach Grundlagen Wasser- und Ressourcenwirtschaft II
Nützlich: technisches Grundverständnis

Verwendbarkeit in anderen Studiengängen
Offen für andere Bachelor-Studiengänge

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: VSW4</th>
<th>Modus: P</th>
<th>Kurs: Entwurfsprojekt und Exkursion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>Workload 240 h</td>
<td>Modul</td>
</tr>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>8</td>
<td>7 Ü/SU</td>
<td>105 h</td>
</tr>
</tbody>
</table>

Lehrformen: Übung /Seminaristischer Unterricht

Dozent/Dozentin
Prof. Dr.-Ing. Flamme, Prof. Dr.-Ing. Haberkamp, Prof. Dr.-Ing. Mohn, Prof. Dr. Uhl

Veranstaltungsinhalte
- Betriebliche Aufgabe: Ausarbeitung eines Betriebskonzeptes für einen wasser- oder abfalltechnischen Betrieb einschließlich verfahrenstechnischer, personeller, organisatorischer, monetärer und sonstiger Belange.

Qualifikationsziele
- Kenntnisse in Planung und Betrieb wasser- und ressourcentechischer Anlagen bzw. in der ökologischen Verbesserung der Fließgewässer im Sinne der europ. Wasserrahmenrichtlinie.

Prüfungsform
mündliche Prüfung, Präsentation der Projektarbeit

Prüfungsvoraussetzungen
regelmäßige Teilnahme und Mitarbeit am Kurs,
Teilnahme an Exkursionen

Teilnahmeverwaltungszeugnis
Erforderlich: Grundlagen- und Vertiefungskennnisse der Wasser- und Ressourcenwirtschaft
Nützlich: Teilnahme am entsprechenden Kurs der Themaklinik für das Entwurfsprojekt

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: VSW5</th>
<th>Modus: P Pflicht/Wahlpflicht/Wahl</th>
<th>Kurs: Bachelorarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>Workload 300 h</td>
<td>Modul</td>
</tr>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit Selbststudium/Prüfung Dauer Turnus</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>20 280 h 1 Sem SS/WS</td>
</tr>
</tbody>
</table>

Lehrformen:

Dozent/Dozentin
Alle Mitglieder des Lehrkörpers des Fachbereichs Bauingenieurwesen

Veranstaltungsinhalte
- Stellung einer ingenieurpraktischen Aufgabe
- Selbständige Bearbeitung der gestellten Aufgabe

Qualifikationsziele
- Anwenden von bekanntem Fachwissen auf eine vorgegebene ingenieurpraktische Fragestellung.
- Verstehen des Zusammenhanges von Ingenieurplanung und baupraktischer Ausführung im Sinne eines ganzheitlichen Ansatzes.
- Kenntnisse in der selbständigen Beschaffung von Informationen (Literatur, Normen und Firmenpublikationen).
- Beherrschung der Abfassung eines ingenieurtechnischen Berichtes

Prüfungsform
Bachelorarbeit

Prüfungsvoraussetzungen
Der Prüfling hat der Betreuerin oder dem Betreuer der Bachelorarbeit während der Bearbeitungszeit regelmäßig – mindestens zweimal – persönlich über die Ausgestaltung der Bachelorarbeit zu berichten.

Teilnahmeveraussetzung

Verwendbarkeit in anderen Studiengängen

Sonstige Information
<table>
<thead>
<tr>
<th>Modul: VSW6</th>
<th>Modus: Pflicht/Wahlpflicht/Wahl</th>
<th>Kurs: Kolloquium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>Workload 60 h</td>
<td>Modul</td>
</tr>
<tr>
<td>CP</td>
<td>SWS</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5 h</td>
</tr>
</tbody>
</table>

Lehrformen:

Dozent/Dozentin
Prof. des Fachbereichs Bauingenieurwesen

Veranstaltungsinhalte
Vorstellung und Erläuterung der Bachelorarbeit

Qualifikationsziele

Prüfungsform
Mündliche Prüfung

Prüfungsvoraussetzungen
Erstellen eines Posters zur Bachelorarbeit

Teilnahmeveraussetzung
Erfolgreich abgeschlossene Bachelorarbeit

Verwendbarkeit in anderen Studiengängen

Sonstige Information
Wasser- und Ressourcenwirtschaft

Vertieferstudium

zusätzliche Module 6. + 7. Semester
für 7-semestrigen Bachelor Bauingenieurwesen PLUS
Modul: VSW7 Modus: Pflicht/Wahl

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Workload 900 h</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP 30</td>
<td>SWS 6 P</td>
<td></td>
</tr>
</tbody>
</table>

Kurs: Praxissemester (nur Bauing. PLUS, 7-sem.)

Lehrformen: Praktikum

Dozent/Dozentin
Prof. Dr.-Ing. Flamme, Prof. Dr.-Ing. Haberkamp, Prof. Dr.-Ing. Mohn, Prof. Dr.-Ing. Uhl

Veranstaltungsinhalte

Qualifikationsziele
- Durch eine enge Verzahnung zwischen Studium und Praxis sollen die Studierenden die anwendungsoorientierte Tätigkeit kennenlernen; sie erhalten die Möglichkeit, die im Studium in verschiedenen Disziplinen vermittelten Kenntnisse und Fertigkeiten auf komplexe Probleme der Praxis anzuwenden. Bereits während des Studiums sollen die Studierenden verschiedene Aspekte der betrieblichen Prozesse von Ingenieurbüros, Behörden, Straßenbaubetrieben, Unternehmen der Baubranche und des Maschinenbaus sowie deren Zusammenwirken kennenlernen und vertiefte Einblicke in technische, ökonomische, ökologische, juristische, organisatorische und soziale Zusammenhänge des Betriebsgeschehens erhalten.

Prüfungsform
- Projektbericht und Vorstellung des Berichtes.

Prüfungsvoraussetzungen
- Erfolgreich bestandene Modulprüfungen des 1. bis einschließlich 4. Fachsemesters

Teilnahmeveraussetzung
- Erforderlich: Grundlagen- und Vertiefungskenntnisse der Wasser- und Ressourcenwirtschaft
- Nützlich: erfolgreich abgelegte Fachprüfungen in der Fachrichtung der Praxistätigkeit

Verwendbarkeit in anderen Studiengängen

Sonstige Information

Anhang zur Akkreditierung
Modulhandbuch Bachelor Bauingenieurwesen Teil A