Bachelor-Studiengang "Bauen im Bestand"

- Modulhandbuch -

Stand Juli 2017

Fachhochschule
Münster University of
Applied Sciences

Fachhochschule Münster

Akademie Bauhandwerk

der Handwerkskammer Münster

Bachelor-Studiengang "Bauen im Bestand"

Modulverzeichnis

Fach	Modul	Beauftragte(r)
Mathematik I	BM1	Runge
Mathematik II	BM2	Runge
Statik I	BM3	Schaper
Statik II	BM4	Schaper
Baustofflehre / Bauchemie	BM5	Fix
Bauphysik I	BM6	Homann
Bauphysik II	BM7	Homann
Bauphysik III	BM8	Homann
Vermessung / Bauaufnahme	BM9	Schulte-
		Eickhoff
Baukonstruktion I	BM10	Heidhoff
Baukonstruktion II	BM11	Heidhoff
Entwerfen	BM12	Heidhoff
Projekt P1 Entwerfen / Baukonstruktion	BM13	Heidhoff
Baugeschichte / Denkmalpflege	BM14	Heidhoff
Baubetrieb / Bau- und Vertragsrecht I	BM15	Dellen
Baubetrieb / Bau- und Vertragsrecht II	BM16	Dellen
Sanierung von Gebäuden	BM17	Fix
Baukonstruktion III	BM18	Heidhoff
Projekt P2 Bausanierung	BM19	Fix
Baumanagement I	BM20	Friedrichsen
Baumanagement II	BM21	Friedrichsen
Ingenieur-Hochbau I	BM22	Waltering
Ingenieur-Hochbau II	BM23	Waltering
Technische Gebäudeausrüstung (TGA)	BM24	Homann
Energetische Bewertung und Sanierung im Bestand	BM25	Homann
Betriebswirtschaftslehre (BWL)	BM26	Göttker
Sanierung von Holzkonstruktionen	BM27	Fix
Projekt P3 Planung u. Kalkulation eines Gebäudeumbaus	BM28	Dellen
Gebäudekonstruktionen und Bauschäden	BM29	Schaper
Bachelorarbeit	BM33	Dozenten
Kolloquium	BM34	Dozenten

Modul: BM1	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs: Mat	hematik I		
An	zahl	Workload 120 h		Мс	dul
СР	SWS	Kontaktzeit	Selbststudium/Prüfung	Dauer	Turnus
5	4 V/Ü	60 h	60 h	1 Sem	WS

Dozent/Dozentin

Prof. Dr. rer. nat. Runge

Modulinhalte

- Allgemeine Grundlagen der Arithmetik
- Gleichungen Umformen von Termen
- Finanzmathematik
- Körperberechnungen Massenberechnungen

Qualifikationsziele

Am Ende der Lehrveranstaltungen soll der Studierende

- Termumformungen sicher durchführen können
- Gleichungen aufstellen und lösen können
- finanzmathematische Probleme verstehen und lösen können
- Flächen-, Körper- und Massenberechnungen durchführen können
- Denken in Zusammenhängen beherrschen

_			•
Ρr	'I I † I I	nne	form
	uıu	เเษอ	,,,,,,,,,

Klausur

Prüfungsvoraussetzungen

Teilnahmevoraussetzung

Modul: BM2	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs : Mat	hematik II		
An	zahl	Workload 120 h		Modul	
CP	SWS	Kontaktzeit	Selbststudium/Prüfung	Dauer	Turnus
5	4 V/Ü	60 h	60 h	1 Sem	SS

Dozent/Dozentin

Prof. Dr. rer. nat. Runge

Modulinhalte

- Trigonometrie: Winkelfunktionen; Sinussatz, Cosinussatz; Heronsche Formel; vermessungstechnische Anwendungen
- Funktionen: Darstellung von Funktionen; Umkehrfunktion, Interpolation; Koordinatentransformationen, Verfahren zur Bestimmung von Nullstellen
- Analytische Geometrie der Ebene: Punkt, Strecke, Fläche, Gerade, Kreis, Ellipse
- Beschreibende Statistik: Erhebung, Aufbereitung, Darstellung, empirischer Daten; statistische Kenngrößen
- Grundlagen der Informatik

Qualifikationsziele

Am Ende der Lehrveranstaltungen soll der Studierende

- vermessungstechnische (Teil-) Aufgaben lösen können
- Interpolationsaufgaben beherrschen
- elementare Aufgaben der analytischen Geometrie beherrschen
- die Terminologie der beschreibenden Statistik verstehen und die wichtigsten statistischen Kenngrößen berechnen können
- die grundlegende Arbeitsweise eines Computers verstanden haben
- gelernt haben, in Zusammenhängen zu denken.

Ρ	r	u	tı	u	n	g	S	t	0	r	n	n
						-	_		_			

Klausur

Prüfungsvoraussetzungen

Teilnahmevoraussetzung

Modul: BM3	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs: Sta	tik I		
An	nzahl Workload 120 h I		Мс	dul	
CP	SWS	Kontaktzeit	Selbststudium/Prüfung	Dauer	Turnus
5	4 V/Ü	60 h	60 h	1 Sem	WS

Dozent/Dozentin

Prof. Dr.-Ing. G. Schaper, Dr.-Ing. S. Barlag

Modulinhalte

Kräfte:

Definitionen, Einheiten

Zusammensetzen und Zerlegen von Kräften, Kräftepaare, Momente

Lasten:

• Ständige Lasten, Verkehrslasten, Lastermittlungen

Gleichgewicht: Ermittlung von Auflagerkräften an statisch bestimmten Systemen

Schwerpunkte: Ermittlung von Linienschwerpunkten, Flächenschwerpunkten, Körperschwer-

punkten

Schnittgrößen: Ermittlung und zeichnerische Darstellung von Normalkräften, Querkräften, Mo-

menten

Ebene Fachwerke: Systeme und Lasten, Ermittlung von Stabkräften

Formänderung von Trägern (Durchbiegung und Biegelinie)

Anwendung und Arbeiten mit bautechnischen Zahlentafeln

Qualifikationsziele

Am Ende der Lehreinheiten soll der Studierende

- Grundlagen der Technischen Mechanik kennen
- Kraftflüsse bei einfachen stat. Systemen nachvollziehen können
- Lastermittlungen für gebräuchliche Konstruktionen selbst durchführen
- Auflagerkräfte und Schnittkräfte für stat. best. Systeme berechnen können
- Stab- und Auflagerkräfte einfacher ebener Fachwerke ermitteln können
- Lernfähigkeit besitzen und in Zusammenhängen denken.

Prüfungsform

Klausur

Prüfungsvoraussetzungen

Teilnahmevoraussetzung

Modul: BM4	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs: Sta	tik II		
An	zahl	W	orkload 120 h	Modul	
CP	SWS	Kontaktzeit	Selbststudium/Prüfung	Dauer	Turnus
5	4 V/Ü	60 h	60 h	1 Sem	SS

Dozent/Dozentin

Prof. Dr.-Ing. G. Schaper, Dr.-Ing. S. Barlag

Modulinhalte

Schnittgrößen:

- Statisch unbestimmte Systeme (Durchlaufträger, eingespannter Träger)
- Rahmentragwerke (unverschieblich und verschieblich)

Festigkeitslehre

• Ermittlung von Spannungen (Zug-, Druck-, Schubspannungen, Sicherheitsbeiwerte)

Anwendung und Arbeiten mit bautechnischen Zahlentafeln

Qualifikationsziele

Am Ende der Lehreinheiten soll der Studierende

- Kraftflüsse bei stat. unbest. Systemen nachvollziehen können
- Auflagerkräfte und Schnittkräfte für stat. unbest. Systeme berechnen können
- Normal- und Schubspannungen von Tragsystemen ermitteln können
- Stabartige Tragstrukturen modellieren können
- Lernfähigkeit besitzen und in Zusammenhängen denken.

Prüfungsform

Klausur

Prüfungsvoraussetzungen

Teilnahmevoraussetzung

Modul: BM5	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs : Baustofflehre/Bauchemie				
An	Anzahl		orkload 150 h	Modul		
СР	SWS	Kontaktzeit	Selbststudium/Prüfung	Dauer	Turnus	
5	5 V/Ü	75 h	75 h	1 Sem	WS	

Lehrformen: Vorlesung / Praktikum / Exkursion

Dozent/Dozentin

Prof. Dr.-Ing. W. Fix, Dr. rer. nat. T. Maue

Modulinhalte

Bauchemie:

- · Chemische Grundbegriffe; Symbole und Formelsprache, Atombau und chemische Bindung
- Grundtypen chemischer Reaktionen
- Bauchem. Grundlagen: Korrosion und Korrosionsschutz; Anorgan. Bindemittel und Erhärtungsreaktionen

Rechtliche Regelungen bei Baustoffen (CE, abZ, abP, Baustoffkenngrößen) Anorganische Baustoffe:

- Natursteine, künstliche Steine, historische Entwicklung
- Gesteinskörnungen für Beton und Mörtel: Definitionen, Begriffe, Normen, Arten, Eigenschaften
- Zement: Herstellung, Eigenschaften, Arten, Normen Baukalke: Begriffe und Arten, Eigenschaften, Anwendung Gips: Herstellung, Besonderheiten, GKB, GKF
- Mauermörtel: historische Entwicklung, Mörtelgruppen, Eigenschaften
- Beton: Geschichtliche Entwicklung, Definitionen und Normen, Entwurfskriterien und Betonzusammensetzung, Mischungsentwurf, Herstellen und Verarbeiten von Frischbeton, Nachbehandlung, Dauerhaftigkeit, Expositionsklassen, Qualitätssicherung auf der Baustelle, Betonzusatzstoffe, Betonzusatzmittel
- Estrich: Eigenschaften, Arten und Anwendungsbereiche, Normen
- Putze: Eigenschaften, Anwendungsbereiche, Normen

Organische Baustoffe und Metalle:

- Holz, Holzwerkstoffe und bauspezifische Holzprodukte, Verwendung im Baubereich
- Metalle: Eisen, Stahl, Nichteisenmetalle
- Mineralische und organische Dämmstoffe, Eigenschaften und Verwendung
- Kunststoffe, Eigenschaften und Verwendung im Baubereich
- Bitumen, Asphalt

Qualifikationsziele

Am Ende der Lehrveranstaltungen soll der Studierende

- wesentliche Grundlagen und Prinzipien der Chemie kennen
- die Chemie anorganischer Baustoffe und Polymere in den Grundzügen beherrschen
- Grundlagen und Zusammenhänge der Ausgangsstoffe für Beton und Mörtel kennen
- Grundlegendes Baustoffverhalten (Feuchte, Wärme, Belastung) einschätzen können
- Kriterien für die Dauerhaftigkeit von Baustoffen bewerten können
- Eigenschaften der Baustoffe verstehen und in die Praxis umsetzen
- Verträglichkeit von Baustoffen miteinander und mit der Umwelt richtig einschätzen
- Baustofftechnische Probleme erkennen und Schäden vermeiden

Prüfungsform

Klausur

Prüfungsvoraussetzungen

Teilnahmevoraussetzung

Sonstige Information

Empfohlene Literatur:

H. Knoblauch, U. Schneider: Bauchemie, Werner-Verlag, Düsseldorf

Scholz, Hiese: Baustoffkenntnis, Werner-Verlag, Düsseldorf

Zement-Merkblätter, Bauberatung Zement (download: www.bdzement.de)

Modul: BM6	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs : Bauphysik I				
An	zahl	Workload 120 h		Modul		
CP	SWS	Kontaktzeit	Selbststudium/Prüfung	Dauer	Turnus	
5	4 V/Ü	60 h	60 h	1 Sem	WS	

Dozent/Dozentin

Prof. Dr.-Ing. M. Homann

Modulinhalte

Wärmeschutz:

- Ziele des Wärmeschutzes,
- Wärmetransportmechanismen,
- Stationärer Wärmedurchgang an Bauteilflächen und Wärmebrücken,
- Wärmeübertragung infolge Sonneneinstrahlung,
- Mindestwärmeschutz:
- Luftdichtheit und Raumklima,
- energiesparender Wärmeschutz
- sommerlicher Wärmeschutz
- Anforderungen und Nachweise

Qualifikationsziele

Am Ende der Lehrveranstaltungen soll der Studierende

- die für die Praxis wesentlichen Grundlagen und Prinzipien der Bauphysik kennen
- die wesentlichen bauphysikalischen Problemstellungen bei Wohn- und Bürogebäuden kennen
- einfache bauphysikalische Berechnungen durchführen können
- Nachweise zum Wärmeschutz verstehen und für Standardfälle selbst führen können
- bauphysikalische Probleme in der Praxis erkennen und kommunizieren können
- bauphysikalische Mängel erkennen und vermeiden können
- Methodensicherheit besitzen.

Prüfungsform

Klausur oder mündliche Prüfung

Prüfungsvoraussetzungen

Projektausarbeitung

Teilnahmevoraussetzung

Modul: BM7	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs : Bauphysik II			
An	Anzahl		orkload 120 h	Modul	
СР	SWS	Kontaktzeit	Selbststudium/Prüfung	Dauer	Turnus
5	4 V/Ü	60 h	60 h	1 Sem	SS

Dozent/Dozentin

Prof. Dr.-Ing. M. Homann

Modulinhalte

Feuchteschutz:

- Ziele des Feuchteschutzes,
- Feuchtebeanspruchungen,
- Feuchtetechnische Mechanismen (Feuchtespeicherung, Feuchtetransport, Feuchteübergang)
- Tauwasserausfall im Bauteilinneren,
- Betauung von Bauteiloberflächen,
- · Schlagregen- und Spritzwasserschutz,
- Anforderungen und Nachweise

Qualifikationsziele

Am Ende der Lehrveranstaltungen soll der Studierende

- die für die Praxis wesentlichen Grundlagen und Prinzipien der Bauphysik kennen
- die wesentlichen bauphysikalischen Problemstellungen bei Wohn- und Bürogebäuden kennen
- einfache bauphysikalische Berechnungen durchführen können
- Nachweise zum Feuchteschutz verstehen und für Standardfälle selbst führen können
- bauphysikalische Probleme in der Praxis erkennen und kommunizieren können
- bauphysikalische Mängel erkennen und vermeiden können
- Methodensicherheit besitzen.

Prüfungsform

Klausur oder mündliche Prüfung

Prüfungsvoraussetzungen

Projektausarbeitung

Teilnahmevoraussetzung

Modul: BM8	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs : Bauphysik III			
An	zahl	W	orkload 120 h	Modul	
СР	SWS	Kontaktzeit	Selbststudium/Prüfung	Dauer	Turnus
5	4 V/Ü	60 h	60 h	1 Sem	WS

Dozent/Dozentin

Prof. Dr.-Ing. M. Homann, Dipl.-Ing. Bachor

Modulinhalte

Schallschutz:

- Physikalische Grundlagen und Begriffe
- Bauakustik
 - Luftschallschutz
 - Trittschallschutz
 - Anforderungen an den Schallschutz
 - Schalltechnische Nachweise
- Raumakustik
 - Schallausbreitung im Raum
 - Schallabsorption
 - Schallreflexion
 - · raumakustische Projektierung

Brandschutz:

- Grundlagen
- Brandverhalten von Baustoffen und Bauteilen
- Baustoffklassen
- Feuerwiderstandsklassen
- Bauliche Maßnahmen zum Brandschutz

Qualifikationsziele

Am Ende der Lehrveranstaltungen soll der Studierende

- die für die Praxis wesentlichen Grundlagen und Prinzipien der Bauphysik kennen
- die wesentlichen bauphysikalischen Problemstellungen bei Wohn- und Bürogebäuden kennen
- einfache bauphysikalische Berechnungen durchführen können
- Nachweise zum Schallschutz verstehen und für Standardfälle selbst führen können
- Brandschutznachweise führen können
- bauphysikalische Probleme in der Praxis erkennen und kommunizieren können
- bauphysikalische Mängel erkennen und vermeiden können
- Methodensicherheit besitzen.

Prüfungsform

Klausur oder mündliche Prüfung

Prüfungsvoraussetzungen

Projektausarbeitung

Teilnahmevoraussetzung

Modul: BM9	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs: Vermessung / Bauaufnahme			
Anzahl		W	orkload 120 h	Modul	
СР	SWS	Kontaktzeit	Selbststudium/Prüfung	Dauer	Turnus
4	4 V/Ü	60 h	60 h	1 Sem	WS

Dozent/Dozentin

Dipl.-Ing. T. Schulte-Eickhoff, B.Eng. A. Kaiser

Modulinhalte

- Ziele und Prinzipien der Bauaufnahme
- Freihandzeichnen von Konstruktionen
- Freihandzeichnen von organischen Formen
- Freihandzeichnen von Architekturdetails
- Übungen zum Freihandzeichnen
- Räumliche Darstellung einer Gebäudeecke
- Ansichtsskizzen eines typischen Fensters als Grundlage für das Aufmaß
- Aufmaße mit Fotografieprogrammen
- Aufmaße mit Vermessungsgeräten:
 - a) Nivelliergerät
 - b) Theodolit
 - c) elektronischer Theodolit
 - d) Tachymeter
- Zeichnerische Darstellung manuell
- Zeichnerische Darstellung mit CAD
- · Bildnachbearbeitung mit Photoshop und Illustrator

Qualifikationsziele

Am Ende der Lehreinheiten soll der Studierende

- Baukörper als Freihandskizze isometrisch darstellen können
- Architekturdetails als Freihandzeichnung darstellen können
- Aufmaßskizzen für Grundrisse vorbereiten und nach dem Aufmaß Grundrisse anfertigen und praxisgerecht anfertigen können, manuell und CAD
- Aufmaßskizzen für Ansichten und Schnitte vorbereiten und nach dem Aufmaß Zeichnungen anfertigen können, manuell und CAD
- Aufmaße von Bauwerken mit Hilfe von Vermessungsgeräten (Winkelprisma, Nivelliergerät, elektronischer Theodolit, Laserentfernungsmessung) durchführen und in Bauzeichnungen als Bestandszeichnungen umsetzen können

Prüfungsform

Studienarbeit Bauaufnahme, Klausur, Skizzen zur Bauaufnahme

Prüfungsvoraussetzungen

Teilnahmevoraussetzung

Sonstige Information

Empfohlene Literatur

E. Baumann: Vermessungskunde I & II, Bonn

Modul: BM10	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs : Bau	ıkonstruktion l		
An	zahl	W	Vorkload 120 h Modul		dul
СР	SWS	Kontaktzeit	Selbststudium/Prüfung	Dauer	Turnus
5	4 V/Ü/P	60 h	60 h	1 Sem	WS

Lehrformen: Vorlesung / Übung / Baustellenbesichtigungen

Dozent/Dozentin

Dipl.-Ing. E. Heidhoff, M.A. (Arch.) A. Pier-Eiling

Modulinhalte

- Baukonstruktion im Mauerwerksbau, Verbindungstechniken, Verbandsarten, Lastabtrag im Mauerwerk, Aussteifungsfunktion im Mauerwerksbau
- Grundkonstruktionen des zweischaligen Mauerwerks, Luftschichten, Wärmedämmschichten, Feuchtebelastung aus Schlagregen, Abdichtungen nach Technischen Regelwerken
- Wärme und Feuchteschutz nach DIN 4108
- Detailplanung im Mauerwerksbau, Fensteröffnungen in drei Schnitten, mit und ohne Sonnenschutz, Tür- und Toreinbau
- Fußbodenkonstruktionen, schwimmender Estrich mit und ohne Beheizung, Aufbau mit unterschiedlichen Materialien, Naturstein, Holz, Textil
- Ausführungsplanung im Maßstab 1:50

Qualifikationsziele

Am Ende der Lehrveranstaltungen soll der Studierende

- Detailkonstruktionen eines konventionellen Gebäudes erkennen und einordnen können
- Grundkonstruktionen einfacher Mauerwerksbauten entwerfen können
- Detailzeichnungen unter Beachtung des Wärme- und Feuchteschutzes erstellen können
- Detailzeichnungen älterer Gebäude lesen und auf Fehler analysieren können
- Methodensicherheit besitzen.

Prüfungsform

Klausur oder mündliche Prüfung

Prüfungsvoraussetzungen

Hausarbeiten

Teilnahmevoraussetzung

Sonstige Information

Empfohlene Literatur: Frick/Knöll: Baukonstruktionslehre

Modul: BM11	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs : Bau	ıkonstruktion II		
An	zahl	Workload 120 h		Modul	
СР	SWS	Kontaktzeit	Selbststudium/Prüfung	Dauer	Turnus
5	4 V/Ü	60 h	60 h	1 Sem	SS

Lehrformen: Vorlesung / Übung / Baustellenbesichtigungen

Dozent/Dozentin

Dipl.-Ing. E. Heidhoff, M.A. (Arch.) A. Pier-Eiling

Modulinhalte

- Deckenkonstruktionen aus Holz, Stahlbeton und Kappendecken
- Deckenauflager bei verschiedenen Außenwandkonstruktionen
- Wärmebrücken am Deckenauflager
- Fundamentdetails im Bestand und nachträgliche Abdichtungsmöglichkeiten
- Sockelpunkt im Bestand bei verschiedenen Außenwandkonstruktionen
- Wärmebrücken im Sockelbereich
- Balkone
- Dachkonstruktionen in Holzbauweise, Neigungsdach, Dachtragsysteme, Sparren-, Pfettenund Kehlbalkenkonstruktionen, Trauf-, First- und Ortgangausbildung im Neigungsdach mit unterschiedlichen Deckmaterialien
- Flachdach, belüftet und unbelüftet
- Dachsonderkonstruktionen (Gauben, Erker, Grate, Kehlen)

Qualifikationsziele

Am Ende der Lehrveranstaltungen soll der Studierende

- Detailzeichnungen unter Berücksichtigung des Wärme- und Feuchteschutzes prüfen und ggf. neu entwickeln können
- Sanierungsvorschläge erstellen können
- Detailzeichnungen älterer und historischer Konstruktionen erkennen, einordnen und beurteilen können
- Sanierungsvorschläge erarbeiten können.

Prüfungsform

Klausur oder mündliche Prüfung; Präsentation

Prüfungsvoraussetzungen

Hausarbeiten

Teilnahmevoraussetzung

Nützlich: Grundkenntnisse der Baukonstruktion

Sonstige Information

Empfohlene Literatur: Frick/Knöll: Baukonstruktionslehre

Modul: BM12	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs: Ent	werfen		
An	zahl	W	Workload 180 h Modu		dul
СР	SWS	Kontaktzeit	Selbststudium/Prüfung	Dauer	Turnus
7	6 V/Ü	90 h	90 h	2 Sem	WS/SS

Lehrformen: Vorlesung / Übung / Baubesichtigungen

Dozent/Dozentin

Dipl.-Ing. E. Heidhoff, M.A. (Arch.) A. Pier-Eiling

Modulinhalte

- Einführung Entwerfen:
 - Grundelemente, Form und Raum
 - Proportion und Maßstab
 - Prinzipien
- Maß- und Modulordnung nach DIN 4172 und DIN 18000
- Grundregeln der Darstellung von Bauzeichnungen nach DIN 1356
- Linienarten, Symbole, Bemaßungen
- Modellbau
- CAD Grundlagen zum Erstellen von Entwurfszeichnungen bis Bauvorlagezeichnungen: Grundrisse, Schnitte, Ansichten, Details
- Treppen: Vorschriften, Treppenarten, Treppenformen
- Planungsgrundlagen für Küchen, Bäder, WCs
- Barrierefreies Bauen nach DIN 18024, DIN 18025, DIN 18040,
- Öffentliches Baurecht (Landesbauordnung NRW, etc.)
- Baurechtliches Verfahren
- Berechnung von Abstandsflächen
- Entwurfsübungen zur Umnutzung, Erweiterung oder Modernisierung von Bestandsgebäuden

Qualifikationsziele

Am Ende der Lehrveranstaltungen soll der Studierende

- die wesentlichen Arten der Bauzeichnungen kennen sowie Schnitte, Grundrisse und Ansichten anfertigen und praxisgerecht bemaßen können
- ein CAD-Programm zur Erstellung von Bauzeichnungen sicher anwenden können
- die einzelnen Schritte und Anforderungen eines baurechtlichen Verfahrens kennen und ein Gebäude daraufhin beurteilen können
- eine sinnvolles Konzept zur Umnutzung, Erweiterung oder Modernisierung eines Bestandsgebäudes erstellen können

Prüfungsform

Klausur oder mündliche Prüfung und Präsentation

Prüfungsvoraussetzungen

Hausarbeiten

Teilnahmevoraussetzung

Sonstige Information

Empfohlene Literatur:

Neufert: Bauentwurfslehre Gehlen: Bauzeichnungen

Hoffstedt/Olzen: Abwicklung von Bauvorhaben

Modul: BM13	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs: Pro	jekt P1 Entwerfen/Bau	ıkonstruk	tion
An	zahl	W	Workload 300 h Modu		dul
СР	SWS	Kontaktzeit	Selbststudium/Prüfung	Dauer	Turnus
8	4 V/Ü	60 h	180 h	1 Sem	WS

Lehrformen: Vorlesung / Übung / angeleitete Eigenarbeit

Dozent/Dozentin

Dipl.-Ing. E. Heidhoff, M.A. (Arch.) A. Pier-Eiling,

Dipl.-Ing. F. Postel, Dipl.-Ing. F. Giljohann, Prof. Dr.-Ing. M. Waltering

Modulinhalte

- Entwurf, Berechnung und Konstruktion einer ausgewählten Gesamtkonstruktion (z. B. aus dem Bereich des Wohnungs- oder Gewerbebaus)
- Anpassung der Grundrisslösungen an heutige Anforderungen
- Tragwerksidealisierung
- Konstruktive Überarbeitung unter Berücksichtigung des Wärme- und Feuchteschutzes
- Teamorientiertes Erarbeiten verschiedener Lösungsvarianten
- Erstellung einer Genehmigungsplanung

Qualifikationsziele

- Bauartübergreifendes Verständnis einer energetischen und wohnungswirtschaftlichen Gesamtsituation
- Sinnvoller und effektiver Einsatz von EDV in der Planung
- Methoden der Baukonstruktion anwenden können
- Zusammenführen vieler Einzelüberlegungen zu einem schlüssigen Gesamtkonzept
- Praxisbezogene Vorgehensweise
- Selbstständigkeit, Flexibilität, Denken in Zusammenhängen

Prüfungsform

Projektarbeit mit Präsentation und Dokumentation

Prüfungsvoraussetzungen

Teilnahmevoraussetzung

Kenntnisse in Entwerfen und Baukonstruktion

Modul: BM14	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs : Baugeschichte / Denkmalpflege			
An	zahl	W	Workload 120 h Mod		dul
СР	SWS	Kontaktzeit	Selbststudium/Prüfung	Dauer	Turnus
4	4 V/Ü	60 h	60 h	1 Sem	SS

Lehrformen: Vorlesung / Übung / Bauwerksbesichtigungen

Dozent/Dozentin

Dipl.-Ing. E. Heidhoff, Dipl.-Ing. K. Grahl

Modulinhalte

- Ziele und Prinzipien der Baudenkmalpflege
- Baugeschichtliche Epochen im Überblick
- Historische Bauzeichnungen
- Bauwerke aus der Antike
- Bauwerke in romanischem und gotischen Baustil (mit Beispielen in der Region)
- Bauwerke der Renaissance, des Barock und Klassizismus (mit Beispielen in der Region)
- Bauwerke der Gründerzeit, des Neoklassizismus und des Jugendstils
- Die neue Sachlichkeit und das Bauhaus, Bauwerke aus den 30er Jahren
- Bauwerke aus der Nachkriegszeit (50er und 60er Jahre)
- Die Architektur der 70er und 80er Jahre des zwanzigsten Jahrhunderts
- Die Architektur der Gegenwart
- Zukunftsvisionen, das Plusenergiehaus
- Exkursionen zu ausgewählten Bauten der entsprechenden Epochen

Qualifikationsziele

Am Ende der Lehreinheiten soll der Studierende

- Die Geschichte der Baukunst in ihren Grundzügen kennen
- Wesentliche Stilelemente der einzelnen Epochen erkennen und zuordnen können
- Prinzipielle konstruktive Elemente der jeweiligen Epochen kennen und zuordnen können
- Konstruktive Veränderungen in Bezug auf ihre konservatorische Auswirkung hin beurteilen können
- Die wesentlichen Grundlagen von unterschiedlichen Konstruktionsprinzipien in den Bereichen des Rohbaus und Innenausbaues der jeweiligen Baustile erkennen

Prüfungsform

Referate, Klausur

Prüfungsvoraussetzungen

Teilnahmevoraussetzung

Sonstige Information

Empfohlene Literatur: DTV Atlas der Baugeschichte

Modul: BM15	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs : Baubetrieb/Bau- und Vertragsrecht I			
An	zahl	W	Workload 150 h Mode		dul
СР	SWS	Kontaktzeit	Selbststudium/Prüfung	Dauer	Turnus
5	5 V/Ü	75 h	75 h	1 Sem	WS

Dozent/Dozentin

Prof. Dr.-Ing. R. Dellen, A. Schmitz LL.M., Prof. Dr.-Ing. J. Biernath, M.Sc. T. Heine

Modulinhalte

Grundlagen des Baubetriebs:

- Baumarkt
- Kostenmanagement
- Terminmanagement
- Qualitätsmanagement
- Arbeitssicherheit

Bau- und Vertragsrecht:

- Öffentliches Baurecht
- BGB
- VOB

Qualifikationsziele

Am Ende der Lehrveranstaltungen sollen Studierende

- Kenntnisse über die am Bauprozess Beteiligten haben
- Verschiedene Darstellungsformen der Ablaufplanung erstellen können
- Fähigkeit zur Kommunikation mit der Auftraggeberseite durch die Kenntnisse der entsprechenden Terminologie besitzen
- Grundsätzliche Begriffe des BGB und deren Anwendung im Bauwesen kennen
- Wesentlichen Grundlagen der VOB kennen
- Unterschiedliche Arten von Bauverträgen kennen
- Grundkenntnissen im Bauprozessrecht haben

Prüfungsform

Klausur oder mündliche Prüfung

Prüfungsvoraussetzungen

Teilnahmevoraussetzung

Sonstige Information

Empfohlene Literatur:
Hoffmann / Baubetriebliche Zahlentafeln
BGB, VOB

Modul: BM16	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs : Baubetrieb/Bau- und Vertragsrecht II			
An	zahl	W	Workload 150 h Mod		dul
СР	SWS	Kontaktzeit	Selbststudium/Prüfung	Dauer	Turnus
5	5 V/Ü	75 h	75 h	1 Sem	SS

Dozent/Dozentin

Prof. Dr.-Ing. R. Dellen, A. Schmitz LL.M., Prof. Dr.-Ing. J. Biernath, M.Sc. T. Heine

Modulinhalte

Grundlagen des Baubetriebs:

- Kalkulationsgrundlagen (AN-seitig)
- Arbeitsvorbereitung (Grundlagen)
- Einführung in Bauleitungsaufgaben
- Arbeitssicherheit

Bau- und Vertragsrecht:

- Öffentliches Baurecht
- **BGB**
- VOB

Qualifikationsziele

Am Ende der Lehrveranstaltungen sollen Studierende

- logische Prozesse von Baustellen erarbeiten können
- kalkulatorische Prozesse verstehen
- Selbständigkeit, Eigenverantwortung, Kommunikationsgeschick, Konflikt- und Problemlösefähigkeit, Teamfähigkeit besitzen

Prüfungsform

Klausur oder mündliche Prüfung

Prüfungsvoraussetzungen

Teilnahmevoraussetzung

Sonstige Information

Empfohlene Literatur:

Hoffmann / Baubetriebliche Zahlentafeln

BGB, VOB

Modul: BM17	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs : Sanierung von Gebäuden			
An	zahl	Workload 120 h Mod		dul	
СР	SWS	Kontaktzeit	Selbststudium/Prüfung	Dauer	Turnus
6	8 V/Ü	120 h	120 h	2 Sem	WS/SS

Dozent/Dozentin

Prof. Dr.-Ing. W. Fix, Dr. rer. nat. C. Messal,

Modulinhalte

- Grundlagen Regelwerke Normen Richtlinien Merkblätter der Bauwerksabdichtungen erdberührter Bauteile
- Lastfälle nach Technischen Regelwerken
- Bauwerksdränung nach DIN 4095
- Schadensbilder und deren Erscheinungsformen, Untersuchungen zur Schadensfindung
- nachträgliche Abdichtung erdberührter Bauteile
- Verfahrenstechniken: Außenabdichtung Innenabdichtung Injektionsabdichtungen Abdichtung gegen hygroskopische Salze
- nachträgliche Querschnittsabdichtungen
- Verfahrenstechniken: mechanische Horizontalsperren Injektionsabdichtungen

Flachdachsanierung

Sanierung von Außenwänden

- Thermisch hygrische Analyse von Außenwänden
- Mauerwerksanierung
- Sanierputz WTA: Fallbeispiele Ausführungstechniken
- Bauzustandsanalyse bauschädliche Salze Sanierputzsystemlösungen

Schadstoffe und Schimmelproblematik in Gebäuden

- Biologie der Schimmelpilze, gesundheitliche Relevanz
- Ursachen für Schimmelpilzbildung; Sanierung von Schimmelpilzbefall

Betonsanierung

Qualifikationsziele

Am Ende der Lehrveranstaltungen soll der Studierende

- Feuchtigkeits- und Salzschäden poröser Baustoffe erkennen
- gezielt objektbezogene Untersuchungsplanungen durchführen
- Untersuchungsergebnisse bewerten
- objektbezogene Instandsetzungstechniken planen
- Sanierungsausführungen kontrollieren und sachverständig beurteilen
- Instandsetzungs- und Abdichtungstechniken unterscheiden
- Sanierungsmaßnahmen ganzheitlich betrachten und optimieren
- Schadensbeispiele diagnostizieren
- Schimmelpilzbefall erkennen u. bewerten sowie Sanierungskonzepte aufstellen können

Prüfungsform

Klausur oder mündliche Prüfung, Präsentation

Prüfungsvoraussetzungen

Teilnahmevoraussetzung

Modul: BM18	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs: Baukonstruktion III			
An	zahl	W	Workload 120 h Mod		dul
СР	SWS	Kontaktzeit	Selbststudium/Prüfung	Dauer	Turnus
5	5 V/Ü	75 h	75 h	1 Sem	WS

Dozent/Dozentin

Dipl.-Ing. E. Heidhoff, M.A. (Arch.) A. Pier-Eiling, Dipl.-Ing. Postel

Modulinhalte

- Treppenkonstruktionen in Gebäuden
- Technische Regelwerke für Treppenkonstruktionen
- Fassadenkonstruktionen und Außenwände
- Energieeffiziente Wandkonstruktionen
- historische Baukonstruktionen
- •

Qualifikationsziele

Am Ende der Lehrveranstaltungen soll der Studierende

- Treppen konstruieren können
- Detailzeichnungen unter Berücksichtigung des Wärme- und Feuchteschutzes prüfen und ggf. neu entwickeln können
- historische Baukonstruktionen einordnen und beurteilen können
- Sanierungsvorschläge erarbeiten können.

Prüfungsform

Klausur oder mündliche Prüfung; Präsentation

Prüfungsvoraussetzungen

Hausarbeiten

Teilnahmevoraussetzung

Voraussetzung: Grundkenntnisse der Baukonstruktion

Sonstige Information

Empfohlene Literatur: Ahnert/Krause: Typische Baukonstruktionen von 1860-1960

Modul: BM19	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs : Projekt P2 Bausanierung			
An	zahl	Workload 240 h Mod		dul	
CP	SWS	Kontaktzeit	Selbststudium/Prüfung	Dauer	Turnus
8	4 V/Ü	60 h	180 h	1 Sem	SS

Lehrformen: Vorlesung / Übung / angeleitete Eigenarbeit

Dozent/Dozentin

Prof. Dr.-Ing. W. Fix, Dipl.-Ing. G. Brückner, Dipl.-Ing. E. Heidhoff, Dipl.-Ing. F. Postel

Modulinhalte

- Verformungslastfälle bei Hochbauten (Setzungen, Temperatur, Schwinden, Kriechen)
- Analyse von Schäden aus Verformungslastfällen an Hochbauten
- Riss- und Feuchteschäden -
- Schadensanalyse eines Gebäudes einschl. Dokumentation
- Bestandsaufnahme eines zu sanierenden Gebäudes
- Erarbeiten von Sanierungsvorschlägen
- Auswahl und Begründung einer Alternative
- Erstellen eines Gesamtkonzeptes mit exemplarischen Detailvorschlägen
- Ausschreibung mit Leistungsverzeichnis und überschlägige Kalkulation
- Praktische Übungen an Bauvorhaben oder Exponaten

Qualifikationsziele

- Bauartübergreifendes Erfassen einer Gebäudesituation
- Verfassen der Dokumentation einer Bestandsaufnahme
- Methoden der Bausanierung anwenden können
- Erstellen eines marktorientierten Sanierungskonzeptes
- Erkennen des statischen Systems eines Gebäudes
- Teamfähigkeit, Denken in Zusammenhängen

Prüfungsform

Projektpräsentation und Dokumentation

Prüfungsvoraussetzungen

Teilnahmevoraussetzung

Modul: BM20	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs : Baumanagement I			
An	zahl	W	Workload 150 h Mod		dul
СР	SWS	Kontaktzeit	Selbststudium/Prüfung	Dauer	Turnus
5	5 V/Ü	75 h	75 h	1 Sem.	WS

Dozenten

Prof. Dr.-Ing. S. Friedrichsen, Dipl.-Ing. (Arch.) M.Sc. (REM+CPM) Y. Brandenburger,

Prof. Dr.-Ing. S. Flamme, Dipl.-Ing. H. Kulka

Modulinhalte

Potenziale zur Qualitätsverbesserung:

- Allgemeine Planungsgrundsätze bei der Gebäudeerneuerung
- Ökologische Qualität bei der Gebäudeerneuerung
- Soziokulturelle Qualität bei der Gebäudeerneuerung
- Wirtschaftliche Qualität bei der Gebäudeerneuerung

Qualitätsmessung mit Nachhaltigkeitszertifikaten

Stoffstrom-Management, Urban Mining Schadstoffe in Baustoffen/Bauteilen/Gebäuden, Rückbau-Konzepte

Baustellenmanagement

- Baustelleneinrichtung im Bestand
- Abrechnung von Bauleistungen

Qualifikationsziele

Am Ende der Lehrveranstaltungen sollen die Studierenden

- ein Gebäude im Hinblick auf seine ökologische, wirtschaftliche und soziale Qualität beurteilen sowie die Potenziale erkennen können
- Wertstoff- und Schadstoffaspekte in Planungs- u. Rückbaukonzepte integrieren können
- die Besonderheiten der Baustelleneinrichtung bei Bestandsmaßnahmen kennen
- die wichtigsten Regeln bei der Abrechnung von Bauleistungen kennen und die Abrechnungssummen von einfachen Bauleistungen ermitteln können
- selbstständig arbeiten, Eigenverantwortung übernehmen, Kommunikationsgeschick Konflikt- und Problemlösefähigkeit sowie Teamfähigkeit besitzen

Prüfungsform

Klausur oder mündliche Prüfung

Prüfungsvoraussetzungen

Hausarbeit (inkl. Präsentation)

Teilnahmevoraussetzung

Modul: BM21	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs : Baumanagement II			
An	zahl	W	Vorkload 150 h Modu		dul
СР	SWS	Kontaktzeit	Selbststudium/Prüfung	Dauer	Turnus
5	5 S/Ü	75 h	75 h	1 Sem.	SS

Dozenten

Prof. Dr.-Ing. S. Friedrichsen, Dipl.-Ing. Dipl. Wirtsch.-Ing. B. Noppen,

Dipl.-Ing. F. Postel, N.N.

Modulinhalte

Management einer Bauunternehmung

- Unternehmensfinanzierung und Liquiditätsplanung
- Verkehrswertermittlung
- Building Information Modeling

Bauverfahrenstechnik

- Betonbau
- Schalung und Rüstung
- Bewehrung

Qualifikationsziele

Am Ende der Lehrveranstaltungen sollen die Studierenden

- die wichtigsten Finanzierungsformen für kleine und mittelständische Bauunternehmen und Hilfsmittel zur Liquiditätsplanung kennen und in begrenztem Umfang auch anwenden können,
- den Verkehrswert von einfachen Immobilien ermitteln können
- einen ersten Einblick in das Building Information Modeling haben
- die wichtigsten Bauverfahren im Betonbau kennen
- selbstständig arbeiten, Eigenverantwortung übernehmen, Kommunikationsgeschick, Konflikt- und Problemlösefähigkeit sowie Teamfähigkeit besitzen

Prüfungsform

Klausur oder mündliche Prüfung

Prüfungsvoraussetzungen

Teilnahmevoraussetzung

Modul: BM22	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs: Ingenieurhochbau I			
Anzahl		Workload 150 h		Modul	
СР	SWS	Kontaktzeit Selbststudium/Prüfung		Dauer	Turnus
5	5 V/Ü	75 h	75 h	1 Sem	WS

Dozent/Dozentin

Prof. Dr.-Ing. M. Waltering, Dipl.-Ing. Giljohann, Dipl.-Ing. F. Postel

Modulinhalte

Beanspruchungen:

Lasten, Lastannahmen nach DIN 1055-100, Zwängungen (inf. Setzungen, Temperatur)

Statische Systeme:

- Stabtragwerke
 - o statisch bestimmte Systeme (Einfeldträger, Kragträger)
 - o statisch unbestimmte Systeme (Durchlaufträger, Rahmen, Trägerroste)
- Flächentragwerke
 - o Platten, Scheiben, Faltwerke, Schalen

Bemessung im Ingenieurhochbau:

- Mauerwerksbau
- Holzbau
- Stahlbetonbau
- Stahlbau

Qualifikationsziele

Am Ende der Lehrveranstaltungen soll der Studierende

- statische Systeme im Hochbau kennen
- den Kraftfluss bei einfachen stat. Systemen nachvollziehen können
- Lastermittlungen für gebräuchliche Konstruktionen durchführen können
- Bemessung im Ingenieurhochbau beherrschen
- in Zusammenhängen denken.

Prüfungsform

Klausur oder mündliche Prüfung

Prüfungsvoraussetzungen

Teilnahmevoraussetzung

Modul: BM23	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs: Ingenieurhochbau II			
Anzahl		Workload 150 h		Modul	
СР	SWS	Kontaktzeit	Selbststudium/Prüfung	Dauer	Turnus
5	5 V/Ü	75 h	75 h	1 Sem	SS

Dozent/Dozentin

Prof. Dr.-Ing. M. Waltering, Dipl.-Ing. Giljohann, Dipl.-Ing. F. Postel

Modulinhalte

Grundbau:

- Grundlagen der Bodenmechanik
- Bodenarten, Bodenklassifikation f
 ür bautechnische Zwecke
- Grundwasser, Schichtenwasser, Niederschlagswasser, Hydrologie
- Baugruben, Gräben
- Gründungen Flachgründungen, Tiefgründungen
- Abfangungen
- Interaktion Boden/Bauwerk

Bemessung im Ingenieurhochbau:

- Holzbau
- Mauerwerksbau
- Stahlbau
- Stahlbetonbau
- Historische Entwicklung der Bemessungsvorschriften

Qualifikationsziele

Am Ende der Lehrveranstaltungen soll der Studierende

- Bodenarten kennen
- Grundlagen des Grundbaus kennen
- Baugrubensicherungen entwerfen können
- Bauteile aus Mauerwerk, Stahlbeton, Stahl und deren Fundamente bemessen können
- Historische Bemessungsansätze nachvollziehen können

Prüfungsform

Klausur oder mündliche Prüfung

Prüfungsvoraussetzungen

Hausarbeiten

Teilnahmevoraussetzung

Modul: BM24	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs: Technische Gebäudeausrüstung (TGA)			
Anzahl		Workload 150 h		Modul	
CP	SWS	Kontaktzeit	Selbststudium/Prüfung	Dauer	Turnus
5	5 V/Ü	75 h	75 h	1 Sem	WS

Dozent/Dozentin

Prof. Dr.-Ing. M. Homann, Dipl.-Ing. J. Lugowski

Modulinhalte

Heizungsanlagen und Anlagen zur Trinkwassererwärmung

- Wärmeerzeuger (Niedertemperatur- und Brennwerttechnik, Wärmepumpen, Blockheizkraftwerke, Holzfeuerungsanlagen, solarthermische Anlagen)
- Wärmespeicherung (Arten von Wärmespeicherung)
- Wärmeverteilung (Dämmung von Leitungen, Zirkulation)
- Wärmeübergabe (freie Heizflächen und Flächenheizungen)

Elektrische Anlagen

- Bauteile einer elektrischen Anlage
- Schutzeinrichtungen
- Installationsrichtlinien
- Prüfung und Abnahme

Lüftungsanlagen

- Lüftungssysteme, Anlagentechnik
- DIN 1946-6

Gasanlagen

Entwässerungsanlagen

Qualifikationsziele

Am Ende der Lehrveranstaltungen soll der Studierende in der Lage sein zur

- Beurteilung bestehender Anlagentechnik und Auswahl sinnvoller Möglichkeiten für die Sanierung
- Beurteilung der im Bestand installierten Wärmeverteilsysteme.

Prüfungsform

Klausur oder mündliche Prüfung

Prüfungsvoraussetzungen

Teilnahmevoraussetzung

Modul: 25	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs : Energetische Bewertung und Sanierung im Bestand			erung
Anzahl		Workload 180 h		M	odul
СР	SWS	Kontaktzeit Selbststudium/Prüfung		Dauer	Turnus
8	6 S/Ü	90 h	90 h	1 Sem	SS

Lehrformen: Seminaristischer Unterricht / Übung / Praktikum

Dozent/Dozentin

Prof. Dr.-Ing. M. Homann, Dipl.-Ing. A. Bachor

Veranstaltungsinhalte

- Verfahren zur Ermittlung von bau- und anlagentechnischen Kenngrößen
- Benutzung von Pauschalwerten für die Bau- und Anlagentechnik
- Strukturierte Bestandsaufnahme von Wohngebäuden
- Bewertung der energetischen Qualität von Wohngebäuden nach DIN V 18599
- Konzepte zur energieeffizienten, ganzheitlichen Sanierung von Gebäudehülle und Anlagentechnik im Bestand
- Optimierung der Gebäudehülle, Einsatz nachhaltiger Materialien
- Typische Schwachstellen der Bautechnik, Wärmebrückenberechnung
- Optimierung der Anlagentechnik, Einsatz erneuerbarer Energien
- Lüftungskonzepte für Bestandssanierungen
- Betrachtungen zur Wirtschaftlichkeit, zu Fördermitteln
- Energieausweise f
 ür Bestandsgeb
 äude
- Vorstellen von Computerprogrammen zur Bilanzierung der Energieeffizienz von Gebäuden
- Vorstellen von Computerprogrammen zur Simulation von Wärmebrücken
- Vorstellen von Computerprogrammen zur Erstellung von Lüftungskonzepten
- exemplarische Anwendung von Computerprogrammen für energetische Aufgaben

Qualifikationsziele

- Die Studierenden sollen in die Lage versetzt werden, bestehende Gebäude energetisch bewerten zu können sowie Lösungen für energiesparende und wirtschaftliche Modernisierungen im Rahmen planerischer Gesamtkonzepte zu entwickeln.
- Besonderer Wert wird auf die Anwendung systematischer Arbeitsmethoden gelegt
- Erwerb der Kompetenz, computergestützte Planungsinstrumente zur Energieeffizienz einzusetzen

Prüfungsform

Projektarbeit / Präsentation / Kolloguium

Prüfungsvoraussetzungen

Teilnahmevoraussetzungen

Modul: BM26	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs: Betriebswirtschaftslehre (BWL)			
Anzahl		Workload 150 h		Modul	
СР	SWS	Kontaktzeit	Selbststudium/Prüfung	Dauer	Turnus
5	5 V/Ü	75 h	75 h	1 Sem	SS

Dozent/Dozentin

Dipl.-Vo.w. R. Göttker, Dipl.-Fin.w. N. Johannwiemann, Dipl.-Betr.w. D. Gerdes

Modulinhalte

- RWI
- Unternehmensziele, Unternehmensführung/-organisation
- Planungs-, Steuerungs- und Kontrollsysteme; Personalmanagement
- Rechtsformen der Unternehmen/ Unternehmenszusammenschlüsse
- Produktion
- Marketingziele, Marketingstrategien; Marktforschung
- Sozialrecht (Versicherungsrecht, Melde- u. Beitragspflicht, Leistungen der Sozialversicherung)
- Grundlagen betriebswirtschaftlicher Investitionsentscheidungen
- Ermittlung des Kapital- und Liquiditätsbedarfs; Formen der Finanzierung
- Grundlagen des betrieblichen externen Rechnungswesens
- Grundlagen der Jahresabschlussanalyse
- Einführung in die Kostenrechnung
- Deckungsbeitrags-, Kostenarten-, Kostenstellen- /Kostenträgerrechnung

Steuerrecht (Umsatz-, Einkommen-, Lohn-, Körperschaft- und Gewerbesteuer)

Qualifikationsziele

Am Ende der Lehrveranstaltungen soll der Studierende

- Grundlagen der BWL verstehen und auf die betriebliche Praxis anwenden können.
- Gesamtzusammenhang von güter-, leistungs- und finanzwirtschaftlichen Prozessen verstehen.
- einen Überblick über Inhalte des Sozialrechts gewinnen.
- Methodensicherheit, Eigenverantwortung, Initiative, Kommunikationsgeschick den Kapitalbedarf zur Sicherstellung einer ausreichenden Liquidität ermitteln können, Instrumente zur Kapitalbeschaffung und die Strukturierung der Kapitalbeschaffung beurteilen können
- Aufbau und Inhalt des externen Rechnungswesens verstehen, Praxis-Anwendungen der Kostenrechnung kritisch beurteilen und auswerten
- einen Überblick über Inhalte des Steuerrechts gewinnen
- Methodensicherheit, Eigenverantwortung, Initiative, Kommunikationsgeschick erlangen.

•

Prüfungsform

Klausur oder mündliche Prüfung

Prüfungsvoraussetzungen

Teilnahmevoraussetzung

Modul: BM27	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs: Sanierung von Holzkonstruktionen			
Anzahl		Workload 180 h		Modul	
СР	SWS	Kontaktzeit	Selbststudium/Prüfung	Dauer	Turnus
5	5 V/Ü	75 h	75 h	1 Sem	WS

Dozent/Dozentin

Prof. Dr.-Ing. W. Fix, Dipl.-Ing. E. Flohr, Dipl.-Holzwirt.Ing. G. Brückner

Modulinhalte

Bautechnischer und chemischer Holzschutz

- Umgang mit Holzschutzmitteln; industrielle u. handwerkliche Imprägnier- u. Einbringverfahren
- Echte Hausschwamm (Systematik, Beschreibung, Biologie und Lebensweise)
- Holzzerstörende Nassfäulepilze (Systematik, Beschreibung, Biologie und Lebensweise)
- Holzzerstörende Insekten (Systematik, Beschreibung, Biologie und Lebensweise)
- Andere Organismen im Gebäude und deren Bewertung
- Flankierende Maßnahmen bei der Bekämpfung holzzerstörender Organismen
- Charakterisierung des Heißluft- und Begasungsverfahrens
- Untersuchungs- und Diagnoseverfahren; Sanierung von Altbauten
- Beispiele alternativer Bekämpfungsmöglichkeiten Grenzen und Möglichkeiten
- Bestimmungsübung

Qualifikationsziele

Am Ende der Lehrveranstaltungen soll der Studierende

- Sinn und Zweck des Holzschutzes erfasst haben
- Vergleichende Betrachtung zwischen chemischen und bautechnischen Holzschutzmaßnahmen
- Objektspezifische Auswahl von Holzschutzmitteln
- Imprägnierverfahren beschreiben und bewerten können
- Anhand von artspezifischen Merkmalen holzzerstörende Organismen erkennen und beschreiben
- Ganzheitliche Betrachtung und Optimierung von Sanierungsmaßnahmen
- Auswahl und Beurteilung einzelner Bekämpfungstechnologien
- Diagnose von Schadensbeispielen
- Erkennen, Bewerten und Aufstellen von Sanierungskonzepten

können

Prüfungsform

Klausur oder mündliche Prüfung, Präsentation

Prüfungsvoraussetzungen

Teilnahmevoraussetzung

Sonstige Information

Empfohlene Literatur Holzschutznorm 68800/4 mit Kommentar

Aktuelles Holzschutzmittelverzeichnis DIBt WTA-Merkblätter 1-2-05/D und E 1-1-06/D

Modul: BM28	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs : Projekt P3 Planung und Kalkulation eines Gebäudeumbaus			
Anzahl		Workload 510 h		Modul	
СР	SWS	Kontaktzeit	Selbststudium/Prüfung	Dauer	Turnus
20	10 V/Ü	150 h	360 h	2 Sem	WS/SS

Lehrformen: Vorlesung / Übung / angeleitete Eigenarbeit

Dozent/Dozentin

Prof. Dr.-Ing. R. Dellen, Dipl.-Ing. K. Grahl, M. A. (Arch.) A. Pier-Eiling, M.Sc. T. Heine Dipl.-Ing. E. Heidhoff, Dipl.-Ing. F. Postel

Modulinhalte

- Bestandsaufnahme und Aufmaß eines zu sanierenden Gebäudes
- Schadensanalyse einschl. Dokumentation
- Entwurf eines Umnutzungsvorschlages und Erarbeiten von Sanierungsvorschlägen
- Erstellen der Bauantragsunterlagen
- Ausführungsplanung, statisches Konzept, bauphysikalische Berechnung mit exemplarischen Detailvorschlägen
- Ausschreibung mit Leistungsverzeichnis und überschlägige Kalkulation
- Unternehmerkalkulation mit Angebotserstellung

Qualifikationsziele

- Bauartübergreifendes Erfassen eines Gebäudes
- Verfassen der Dokumentation mit Bestandsplänen
- Nutzungskonzept mit bauordnungsrechtlicher Genehmigungsfähigkeit
- Methoden der Bausanierung und Bauerhaltung
- Erstellen eines marktorientierten Sanierungskonzeptes
- selbstständige Erarbeitung einer Bauwerkssanierung

Prüfungsform

Projektpräsentation in mehreren Abschnitten und Schlussdokumentation

Prüfungsvoraussetzungen

Teilnahmevoraussetzung

Modul: BM29	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs: Gebäudekonstruktionen und Bauschäden			
Anzahl		Workload 120 h		Modul	
СР	SWS	Kontaktzeit	Selbststudium/Prüfung	Dauer	Turnus
5	4 V/Ü	60 h	60 h	1 Sem	SS

Dozent/Dozentin

Prof. Dr.-Ing. G. Schaper, Dipl.-Ing. F. Postel, Dipl.-Ing. E. Heidhoff

Modulinhalte

- Tragsysteme von Konstruktionen im Hochbau
- historische Deckenkonstruktionen (Holz, Stahlbeton, Kappendecken)
- Deckenkonstruktionen von Nachkriegsbauten
- Aktuelle Deckenkonstruktion mit Berücksichtigung der Wärmedämmung
- historische Dachtragwerke in Holzbauweise
- Balkone, Balkongeländer, nachträglich vorgesetzte Balkone
- Bauschäden an Hochbauten- Schadensanalyse und Sanierungsplanung

Qualifikationsziele

Am Ende der Lehrveranstaltungen soll der Studierende

- Kraftfluss bei häufig gebauten Tragwerken beschreiben können
- Detailzeichnungen von historischen Deckenkonstruktionen einordnen und beurteilen können
- Bauschäden analysieren und Sanierungsvorschläge erstellen können
- historische Dachtragwerke einordnen und beurteilen können
- Balkone in der Tragwirkung einordnen und beurteilen können

Prüfungsform

Klausur oder mündliche Prüfung; Präsentation

Prüfungsvoraussetzungen

Hausarbeiten

Teilnahmevoraussetzung

Voraussetzung: Grundkenntnisse der Baukonstruktion und des Ingenieurhochbaus

Sonstige Information

Empfohlene Literatur: Ahnert/Krause: Typische Baukonstruktionen von 1860-1960

Bargmann: Historische Bautabellen

Modul: BM33	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs: Bachelorarbeit			
Anzahl		Workload 240 h		Modul	
CP	SWS	Kontaktzeit	Kontaktzeit Selbststudium/Prüfung		Turnus
8	-	10 h	230 h	-	-

Lehrformen: angeleitete Eigenarbeit

Dozent/Dozentin

Dozenten des Studienganges

Modulinhalte

Anfertigen der Abschlussarbeit zur Erlangung des akademischen Grades B.Eng.

Qualifikationsziele

Mit der Bachelorarbeit soll der Studierende zeigen, dass sie oder er dazu befähigt ist, innerhalb einer vorgegebenen Frist eine praxisorientierte Aufgabe aus dem Fachgebiet des Studienganges sowohl in ihren fachlichen Einzelheiten als auch in den fachübergreifenden Zusammenhängen nach wissenschaftlichen und fachpraktischen Methoden selbständig zu bearbeiten.

Prüfungsform

Bewertete schriftliche Abschlussarbeit

Prüfungsvoraussetzungen

Der Prüfling hat der Betreuerin oder dem Betreuer der Bachelorarbeit während der Bearbeitungszeit mehrmals persönlich über die Ausgestaltung der Bachelorarbeit zu berichten

Teilnahmevoraussetzung

Erforderlich: Nachweis von mindestens 120 CP

Modul: BM34	Modus: P Pflicht/Wahlpflicht/Wahl	Kurs: Kolloquium			
Anzahl		Workload 60 h		Modul	
CP	SWS	Kontaktzeit	Selbststudium/Prüfung	Dauer	Turnus
2	-	5 h	55 h	-	-

Lehrformen: -

Dozent/Dozentin

Dozenten des Studiengangs

Veranstaltungsinhalte

Vorstellung und Erläuterung der Bachelorarbeit

Qualifikationsziele

Im abschließenden Kolloquium zur Bachelorarbeit soll der Studierende zeigen, dass sie oder er dazu befähigt ist, die Ergebnisse der Bachelorarbeit, ihre fachlichen Grundlagen, ihre fachübergreifenden Zusammenhänge sowie ihre außerfachlichen Bezüge mündlich darzustellen, selbstständig zu begründen und ihre Bedeutung für die Praxis einzuschätzen.

Prüfungsform

mündliche Prüfung

Prüfungsvoraussetzungen

Erstellen eines Posters zur Bachelorarbeit

Teilnahmevoraussetzung

Erfolgreich abgeschlossene Bachelorarbeit