

Overview of Ozone and UV Products and Applications

LUDWIG DINKLOH, MANAGER OF GLOBAL WEDECO PRODUCT MANAGEMENT

Topics to be covered

- 1. Introduction: global Ozone and UV Markets
- 2. Ozone
 - 1. Ozone Generator Set-up
 - 2. Wedeco Portfolio
 - 3. Municipal Applications
 - 4. Industrial Applications
- **3**. UV
 - 1. Basics on UV
 - 2. Wedeco Portfolio for Drinking Water
 - 3. Wedeco Portfolio for Wastewater

Ozone Market Volume & CAGR 2015-2020 CAGR= Compound Annual Growth Rate

UV Market Volume & CAGR Rate 2015-2020

Communalities (a Selection)

UV (Disinfection)

"Chemical-free" water treatment

by conversion of electrical energy

Differences (a Selection)

UV (Disinfection)	O3 (Oxidation)
Mainly disinfection	Mainly oxidation (but always with disinfection) => many diverse applications

Welcome to WEDECO's Ozone World

Main Requirements for Ozone Production

The Ozone Generator

A Shell & Tube Heat Exchanger Vessel and a Power Supply Unit

Ozone Generator containing Electrodes

Inside the Ozone Generator: the Electrode

Wedeco's Effizon® 2G evo Electrode Module

a xylem brand

Details of Electrodes inside Ozone Generator

a xylem brand

Simulation of the total Assembly

Wedeco's Portfolio for Ozone

PDOevo SMOevo 410-960 up to 300,000 g/h O3 (up to 15,800 PPD

SMO100-200 300 – 21,400 g/h O3 400 – 1,100 g/h O3 ^(16 -1,130 PPD) (21 - 58 PPD)

GSO 40-50

200 – 400 g/h O3 (11 – 21 PPD)

GSO 10-30

3 – 100 g/h O3 (1 – 5 PPD)

Modular

0.2 – 8 g/h O3 (0.01 – 0.42 PPD)

WEL

01

ARCIECT

0 – 4 g/h O3 (0.05 -0.21 PPD) Note: This product is using the electrolytic process to produce ozone

Ozone in Municipal Drinking Water

O₃

Applications

- Improved flocculation
- Color removal
- Taste & odor control
- Fe/Mn oxidation
- Disinfection
- Algae control
- TOC reduction
- Oxidation of emerging contaminants / micro-pollutants
- (TOC=Total Organic Carbon))

Example of a Surface Water Treatment Plant

a xylem brand

BAC= **B**iological **A**ctivated **C**arbon

Ozone Application Points Pre & Intermediate Ozonation

Pre-Ozone: Intermediate Ozone: Color removal Iron & manganese oxidation • Taste & odor oxidation Hydrogen sulfide oxidation 0 \bullet Pesticide, phenol removal THM & HAA pre-cursor oxidation Enhanced particle removal Algae control 0 Intermediate **Pre-Ozone** Ozone Flocculation Sedimentation **Post-Ozone** Residual Disinfection (Distribution) THM=TriHaloMethanes Primary Disinfection GAC / BAC Filters Clear Well WEDECC

a xylem brand

HAA=HaloAceticAcids

Ozone Application Points Post Ozonation

a xylem brand

Waterworks Am Staad Düsseldorf, Germany

Application/Challenge: Pre-treatment of river bank filtrate prior to activated carbon filtration for the city of Düsseldorf (treatment capacity at Am Staad: ~ 21 million m³/a)

Design Data: 3,000 m³/h (~ 19 MGD) of pre-filtered drinking water with max. 1 mg/l of ozone = **6 kg of ozone/hr** from oxygen

Wedeco Solution: 2 x LWO 3000 ozone systems

Start-up Date: April 1995

Waterworks Am Staad Düsseldorf, Germany

Over 20 years clean water thanks to the "Düsseldorf Method"

Ozone Dosages for first Evaluation Drinking Water Applications

Application		Ozon Dosage	Retention time [min.]
Pre-oxidation			
improved Coagulation		0,5 - 1,5 gO3/m ³	2-5
Iron oxidation		0,45 gO3/gFe	2-3
Manganese oxidation		0,9 gO3/gMn	2-3
taste and odour removal		0,5 - 2 gO3/m ³	2-5
Algae and algae by-products			
pre-ozonati	on	2 gO3/m ³	3
inter-ozonati	on	3 – 5 gO3/m ³	10
Nitrite oxidation (ground water)		1.04 gO3 / g NO2	1-3
Hydrogen sulfide (ground water))	3.5 mgO3 / mg NO2	1-3
Main-oxidation			
Reduction of organic matters		3 gO3/m ³	15
Iron oxidation		0,45 gO3/gFe	2-3
Manganese oxidation		0,9 gO3/gMn	2-3
Algae and algae by-products			
pre-ozonati	on	2 gO3/m ³	3
inter-ozonati	on	3 – 5 gO3/m ³	10
Nitrite oxidation (ground water)		1.04 gO3 / g NO2	1-3
Colour reduction		2 - 4 gO3/m ³	3
Presticides		3 gO3/m ³	15
Disinfection	3 log TC	3 gO3/m ³	4

TC=TotalCarbon

Ozone in Municipal Wastewater

- **COD** reduction
- Color removal
- Excess sludge reduction
- Elimination of phenols and/or cyanides
- Disinfection
- Reduction of emerging contaminants (e.g. endocrine disruptors, dioxanes, etc.)

Dioxane:

Typical Wastewater Treatment Process

Typical Wastewater Treatment Process

Ozone Dosages for first Evaluation Waste Water Applications

Retention time Application **Ozon Dosage** [min.] COD - reduction < 20% 2 gO3/gCODelim. 15 3 gO3/gCODelim. < 50% 30 4 gO3/gCODelim. 45-60 < 80% Disinfection 3 log TC 15 gO3/m³ 15 2 log TC 7 gO3/m3 10 (90 % reduction @ 1 µg/l inlet) Micropollutants Reuse ww quality 3 gO3/m³ 5-10 **Discharge ww quality** 7 gO3/m3 Decoloration Reuse ww quality 10 gO3/m³ 5-10 Discharge ww quality 20 gO3/m³ 5-10 Sludge Reduction 40% reduction rate 0,07 gO3/gdrySludge Tbd

Eastern Treatment Plant Melbourne, Australia

Application/Challenge: Improve water quality for ocean discharge and provide class A water for reuse of municipal waste water.

This includes: colour reduction, increase UV light transmittance, disinfection, foam prevention and oxidation of emerging contaminants

Design Data: 29,166 m³/h (185 MGD)

Wedeco Solution: 5 x 122 kg/h Wedeco PDO Ozone generators plus ozone destruction, ozone injection, oxygen generation incl. process controls and monitoring

Start-up Date: 08/2012

(PDO=Projekt spezifisches Design Oxygen)

Eastern Treatment Plant Melbourne, Australia

Overview of Industrial Ozone Applications

Ozone oxidation for industrial wastewater treatment

- COD-reduction
- AOX-reduction
- Reduction of toxic substances in water, e.g.: Cyanides, Pesticides
- Decoloration / De-odorization
- Disinfection
- Improvement of filtration processes
- Improvement of biodegradability

Ozone oxidation for industrial product treatment

- Bleaching (e.g. of kaolin, pulp and paper)
- Synthesis of chemical and pharmaceutical products, etc.
- Improvement of product shelf-life of food, etc.
- Washing of bottles, products, etc.
- Modification of starch, surfaces, etc.

AOX=Adsorbable Organic Halides

1. Example: Industrial Wastewater Treatment

Everlight Chemical (Taiwan): Color Removal & COD Reduction

Wastewater discharge before ozone treatment

Oxidation Results for Color & COD Reduction

O₃ Oxidation applied for tailored water quality meeting customers discharge consent

a xylem brand

Ozone Process Flow for Everlight

Containerized Ozone Equipment Everlight

Everlight Chemical

Customer:Everlight ChemicalLocation of Project:TaiwanApplication:Waste water treatmentTreatment Goal:Decoloration & CODOzone Capacity:13 kg O₃/hMaximum flow rate:25 m³/h

2. Example: Bottle Rinsing Water at Beverage Industry

Ozone utilized at Adelholzener (Germany)

- Total of 8 filling lines:
 - 3 for PET recycled bottles
 - 2 for PET single use bottles
 - 3 for recycled glass bottles
- Total filling rate: 240,000 bottles per hour
- Product range: mineral water, flavored water, soft drinks, oxygen enriched water

a xylem brand

Ozone Rinsing & Filling Lines at Adelholzener

3. Example Process Water for Pharmaceutical Industry

Example of Ozone for Procter & Gamble (Italy)

Procter & Gamble

Procter and Gamble (P&G) plant Gattatico (Italy) produces detergents for cleaning purposes such as "Mr. Proper"

P&G decided to improve the sanitization of existing process water loops, while decreasing the consumption of chlorine based biocides

P&G – Sanitization of Process Water Loops

- Typical process water systems incorporate a water storage tank with recirculating main loop to distribute **DI water** to the process machines and applications
 DI=Delonized (HIGH Purity!)
- Problem: systems subject to biofilm development on pipe walls and in the storage tank
- Control of **biofilm** can only be achieved by circulating a disinfectant or biocide throughout the entire system
- Ozone is an excellent biocide to treat existing biofilm and prevent new formation
- Interestingly, once the ozonation solution is used, the ozone residual must be removed before using the water for product production (UV is used to destroy the ozone residual in the water!)

Ozone + UV Process Flow at P&G

a xylem brand

Packaged Ozone and UV Solution for P&G

Compact Ozone System type OCS-GSO30 (100 g O₃/h)

- Feedgas supply
- Ozone introduction
- Re-cooler for cooling water
- Ozone in water monitoring
- Ambient air monitoring
- Offgas destruction with COD 73 (70 m³/h filling rate of buffer tank)
- UV-system type LBA 80 (UV dose 850 J/m² at 80 m³/h)
- PLC system to control and monitor all system functions

COD=Cathalytic Ozone Destruction

PLC=Programmable Logic Controller

4. Example: Ozone for Cooling Water

Ozone for Water at Cooling Towers

Main Advantage: Prevention of Biofilms

Use of Chemical Biocide

Use of Ozone as Biocide

Heat Exchanger Plate before and after Ozone

Ozone Process Flow for Cooling Towers

Containerized Solution for INFRASERV (Germany)

Customer: INFRASERV GENDORF

- Industrial site for several chemical production plants
- Application goal: microbiological Control
- Ozone production capacity:
- 2.4 kg/h + 1.6 kg/h
- Treated cooling water flow:
 - 12,000 m³/h total (three loops)
- 4,800 m³/h (upgrade to 9,600 m³/h)
- Start-up: 8/2001 and 05/2005
- Returning customer over 20 ozone systems installed by 2016

5. Example: Pulp & Paper Industry

Where can Ozone be used in Pulp & Paper?

Example for Fibria Jacarei Pulp Mill, Sao Paulo, Brazil

Application/Challenge:

2 pulp bleaching lines for 3,600 tons of eucalyptus pulp per day

Design Data:

Line C: 3 x 175 kg/h Line B: 1 x 250 kg/h

Wedeco Solution:

Line C: 3 Z-Compact Systems type PDO Line B: 1 Z-Duo Z-Compact Systems type PDO

Start-up Date:

Line C: 10/2002 Line B: 06/2012

Fibria Jacarei Pulp Mill, Sao Paulo, Brazil

World's largest Ozone Plant for Pulp Bleaching with 99% Availability for up to 1,000 kg/h of Ozone

Welcome to WEDECO's UV World

Principle of UV – Light Spectrum

Inactivation of pathogenic microorganisms via photo-oxidation of DNA

Principle of UV – DNA Absorption Curve

UV-C irradiation @ 254 nm optimum for disinfection

DNA & RNA absorbing light in the UVC range emitted by UV lamps

The microorganisms are inactivated and rendered unable to reproduce or infect.

a xylem brand

In General: 2 different Types of UV Lamp

- Hg vapour pressure < 0,1mbar
- Power per lamp ≤ 1 kW
- Efficiency ~ 41%
- Lamp life up to 15,000 hrs
- Lamp temperature ~120°C
- No cool-down before re-start
- Liquid (conventional) or solid state (amalgam) mercury
- No solarisation of quartz sleeve

- Hg vapour pressure > 0,4 bar(a)
- Power per lamp up to 20 kW
- Efficiency ~ 12%
- Lamp life 3,000 8,000 hrs
- Lamp temperature 600 800°C
- Cool-down before re-start
- Liquid mercury
- Solarisation of quartz sleeve

General Concept of a UV System

In General: 2 different Types of UV Systems

Closed Reactors (pressurized)

- Main applications: drinking water, water reuse, industrial applications
- Typically standardized systems
- Installation in pipework
- Isolation valves required

Open Channel (Gravity fed)

- Main applications: wastewater, aquaculture
- Modular design
- Installation typically in concrete channels
- Water level control required

Components of Open Channel UV Systems

Components of a closed Vessel UV System

Key Design Parameters

- Flow rate / flow distribution
- UV transmittance
- Disinfection target
 - UV dose (definition?)
 - Type of pathogen
 - Inlet/outlet level => log reduction
 - Pathogen's UV sensitivity (D_L)
- Suspended solids (in wastewater)
- Fe content

UV Transmittance (UVT)

Typical drinking water UVT: ~ 85 - 95% / 1 cm @ 254 nm Typical wastewater UVT: ~ 50 - 65% / 1 cm @ 254 nm

UV Dose – Simple Concept...

Average Retention Time:

flow rate / reactor volume
min. velocity
max. velocity

Average Intensity:

 lamp output and age
 quartz sleeve transmittance + fouling
 reactor design
 water quality

(UV transmittance)

UV Dose = Retention Time x Intensity $[mJ/cm^2] =$ [s]x $[mW/cm^2]$

UV dose can NOT directly be measured

Traditional design based on UV dose calculation (PSS)

UV dose = Irradiation Time x UV Intensity

Will these systems deliver the same disinfection performance as they deliver the *same calculated* UV dose?

The client doesn't need a UV dose, but a log reduction!

=> Validation

Testing Results are compared to Dose Response Curve to calculate Reduction Equivalent Dose

Bioassay = UV Reactor Test

Example of a Bioassay Set-up

Complex and expensive but provides real microbiological data for design Test protocols exist acc. to USEPA, DVGW, NWRI, IUVA etc.

Overview of Wedeco Products Drinking Water Disinfection

Europe's largest plant located in a mountain cavern

New Oset Waterworks Oslo, Norway

Application/Challenge: Disinfection of pretreated and filtered drinking water from the Maridal lake to serve ~ 90% of Oslo's population (total 620,000 people)

Design Data: 16,500 m³/h (104.6 MGD), UV transmittance 90-92%, validated UV dose **40 mJ/cm²**

Wedeco Solution: 6 x K143 UV disinfection systems 12/8 (4 duty, 2 stand-by)

Start-up Date: Summer 2008

Seymour Capilano Filtration Plant British Columbia, Canada

Application/Challenge:

Primary disinfection barrier of surface water after filtration

Design Data:

94,620 m³/h (600 MGD) , 91% UVT, 21 mJ/cm² Tier 1 RED (2003 UVDGM draft)

Wedeco Solution:

24 UV Systems type K143 (4 rows with 12 lamps each, one additional row empty)

Start-up Date:

Summer 2008

Optimised Control Philosophy:

for 99% Crypto inactivation in summer 2016 (additional OPEX savings)

Overview of Wedeco Products Waste Water Disinfection

Chichester Wastewater Treatment Works West Sussex, United Kingdom

Application/Challenge: Reduce undisinfected spills due to stormwater into the Chichester Harbour, a designated shellfish area, of > 90% with a EA consented UV dose

Design Data: 1,080 m³/h (6.8 MGD) with highly variable UV transmittance (40-69%)

Wedeco Solution: Duron UV System with 10 UV Banks in Series in 1 Channel

Start-up Date: March 2014

Mangere Sewage Treatment Plant Manukau, New Zealand

Application/Challenge: Disinfection of the pre-treated effluent of the City of Auckland at the Mangere Sewage Treatment Plant prior to discharge into the Manukau Harbour

Design Data: 59,400 m³/h (377 MGD)

Wedeco Solution: TAK55 in 12 channels (total of 7,776 lamps)

Start-up Date: April 2003

Mangere Sewage Treatment Plant Manukau, New Zealand

The largest UV system in Wastewater Treatment

Thank You!

