10. OLEDs and PLEDs

Content

10.1 Historical Development
10.2 Electroluminescent Molecules
10.3 Structure of OLEDs and PLEDs
10.4 Working Principle of OLEDs
10.5 Luminescence of Metal Complexes
10.6 Iridium Complexes
10.7 White OLEDs
10.8 PLEDs - Construction
10.9 Operation of a PLED
10.10 Polymer LED Spectra
10.11 Development of the Lifetime of PLEDs
10.12 Application Areas
Some milestones

- **1953** Observation of the electroluminescence of acridine orange
- **1960ties** Studies of anthracene crystals
- **1987** Luminescent complexes: Al-8 hydroxychinolinate
- **1990** Luminescent polymers: poly(p-phenylenvinyliden)
- **2009** Universal Display Corp. 102 lm/W
 - Novaled/TU Dresden 90 lm/W
 - Konica 64 lm/W
 - Kodak 56 lm/W
- **2012** Samsung: 55 inch OLED TV

Lit.: M. Dreußen, H. Bässler, Chemie in unserer Zeit 31 (1997) 76
10.2 Electroluminescent Molecules

Anthracene

```
[Al(8-hydroxyquinolinate)_3]
```

Polyphenyl vinylidene

Eu-complexes
10.3 Structure of OLEDs and PLEDs

Layer preparation by
- Vapor deposition (sublimation) of the organic components and metals
- Spin-coating from solutions
10.4 Working Principle of OLEDs

Schematic construction

Hole conductor

Electron conductor

Emitter (organic phosphors)
10.4 Working Principle of OLEDs

Charge transport

Exponentially determined singlet fraction for Alq$_3$ based OLEDs = 22 ± 3%
10.4 Physical Principle of an OLED

Strong spin-orbit-coupling mixes singlet and triplet MLCT states, $M = \text{Ir, Pt, Os, Re, etc.}$

$\text{MLCT} = \text{metal to ligand charge transfer, } \text{LC} = \text{ligand centered}$
10.5 Luminescence of Metal Complexes

Energy level diagram of Eu\(^{3+}\)-complexes

Absorption (ligand)
- \(1\pi-\pi \rightarrow 1\pi-\pi^*\)
- \(1\pi-\pi^* \rightarrow 3\pi-\pi^*\)

Ligand-metal energy transfer
- \(3\pi-\pi \rightarrow 5D_1, 5D_0\ (Eu^{3+})\)

Emission (metal)
- \(5D_0\ (Eu^{3+}) \rightarrow 7F_J\ (Eu^{3+})\)
- \(5D_1\) and \(5D_2\) levels are quenched due to electron-phonon coupling (multi-phonon-relaxation)
Advantages of Ir$^{3+}$ complexes
• Strong spin-orbit coupling

Emission spectrum of Ir$^{3+}$ complexes
• MLCT and $3\pi-\pi^*$ transitions
• Position of the HOMO and thus the emission bands can be determined by the ligands and controlled by substitutents on the ligands
10.6 Iridium Complexes

[(4,6-F$_2$-ppy)$_2$Ir(L)] - Photoluminescence and color points

- (ppy)$_2$Ir(acac)
- (F$_2$-ppy)$_2$Ir(acac)
- (F$_2$-ppy)$_2$Ir(pic)

Incoherent Light Sources
Prof. Dr. T. Jüstel
Chapter OLEDs and PLEDs
Slide 10
Incoherent Light Sources

Prof. Dr. T. Jüstel

Chapter OLEDs and PLEDs

Slide 11

10.7 White OLEDs - Options

#### Emitter	Colour	Efficiency	Lifetime
Fluorescent	R	+	++
G	+	++	
B	+	+	
Phosphorescent	R	++	+
G	++	+	
B	+	0	

Expected external quantum efficiency without light outcoupling measures

<table>
<thead>
<tr>
<th>Source: Philips Lighting Aachen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full fluorescent RGB</td>
</tr>
<tr>
<td>Full phosphorescent RGB</td>
</tr>
<tr>
<td>Hybrid: B fluorescent</td>
</tr>
<tr>
<td>R+G phosphorescent</td>
</tr>
</tbody>
</table>

Diagram with CIE 1931 Chromaticity Diagram

| Al | n-EIL | ETL | Matrix:Blue | Matrix:Green | Matrix:Red | HTL | p-HIL | ITO | Substrate |
10.7 White OLEDs - Light Out-coupling

External radiation: about 20 - 30% only

Glass substrate
Organic layers
Emitter molecule
Guided modes
Cathode (mirror)

Source: Philips Lighting Aachen
10.8 Polymer LEDs - Construction

Poly(dialkoxy-p-phenylenevinylene) “PPV”

Source: Philips Lighting Aachen
10.9 Operation of a Polymer LED

1: Injection

2: Intrachain transport

3: Interchain transport

4: Recombination

Glass

ITO

PPV

Ca

Glass

ITO

PPV

Ca

Glass

Incoherent Light Sources
Prof. Dr. T. Jüstel
10.10 Polymer LED Spectra

Emission spectra of some polymers

Source: Philips Lighting Aachen
10.11 Development of the Lifetime of PLEDs

Degradation due to O_2 and $H_2O \Rightarrow$ Encapsulation is necessary

Data for 20 cd/m² brightness
Flexible displays without backlight

- Shaver displays
- Digital cameras
- Warning signs
- OLED TVs/monitors
- Light tiles
- Smart phones

Philips Lumiblade