9th European Symposium on Thermal Analysis and Calorimetry August 27-31, 2006, Kraków, Poland

Phase Transition of YBO₃

J. Plewa, T. Jüstel

Münster University of Applied Sciences, 48565 Steinfurt, Germany

Introduction

YBO₃ is one of the members of the orthoborate family and a widely applied host material for luminescent dopants, such as Eu^{3+} and Tb^{3+} .

The rare earth borates $REBO_3$ constitute a group of compounds isostructural with the minerals of calcium carbonate $CaCO_3$. Depending on the cation size of RE, the orthoborates crystallize with the aragonite, vaterite or calcite type structure.

Yttrium orthoborate exhibits the vaterite structure and shows a phase transition (LT \rightarrow HT) with a pronounced thermal hysteresis during the cooling. The hexagonal structure consists of a three-dimensional network made up of 8-fold coordinated yttrium atoms and 4- or 3-fold coordinated boron atoms. The LT-phase of YBO₃ consists of tetrahedral polyborate groups B₃O₉⁹⁻ and the HT-phase triangular comprises borate group BO₃³⁻.During the phase transition the borate groups changes from B₃O₉⁹⁻ ring to BO₃³⁻ single units.

Fachhochschule Münster University of Applied Sciences

The crystal structure of the LT phase of YBO₃ (left) and the B_3O_9 sheet

Transition temperature vs. ionic radii of the $REBO_3$.

The material undergoes a first-order phase transition with a large thermal hysteresis.

Powder Preparation and Characterization

All investigated samples have been made from Y_2O_3 and H_3BO_3 (excess 10%) by using conventional solid state-reaction at 1100°C and 1350°C for 4 h in air. The formation of the ortho-borate phase can be identified by an exothermic reaction at about 712°C and by the change in the XRD patterns.

The yttrium orthoborate shows a thermal stability up to about 1200°C and undergoes the phase transition into the HT-Phase at

The cyclic thermal treatment (heating/cooling) of YBO₃.

DTA /(uV/mg)

Thermogramm of YBO₃ sample

The powder shows x-ray high purity and IR spectra exhibit that no three coordinate boron is present due to the lack of an absorption line at 1200 cm⁻¹.

The peak shifts toward higher (heating) and lower (cooling) temperature with the cycle number.

Cycling effect on the characteristic temperatures of phase transition

The values of E_a evaluated using Kissinger's equation are: $E_a = 1386$ kJ/mol for heating and $E_a = 568$ kJ/mol for cooling, respectively

The shift of the characteristic temperatures with heat rate

10 20 30 40 50 2 Theta

00 1200 800 cm⁻¹

1063

100

X-ray pattern (left) and IR spectrum (right) of YBO₃ sample

The True Transition Points

The extrapolation of the experimental data to zero β give true transition points at 986,8°C for heating and at 596,5°C for cooling, respectively ($T_{onset} = a+b*ln(\beta+1)$).

For samples with a different "thermal history" other phase transition temperatures are observed.

Morphological observation of the real phenomenon occurring during phase transition

before thermal cycling

after thermal

cycling

SEM images of YBO₃ powder

This work is supported by the Philips Research Laboratories Aachen, Germany