Phase Transition of YBO₃

J. Plewa, T. Jüstel
Münster University of Applied Sciences, 48565 Steinfurt, Germany

Introduction

YBO₃ is one of the members of the orthoborate family and a widely applied host material for luminescent dopants, such as Eu³⁺ and Tb³⁺. The rare earth borates REBO₃ constitute a group of compounds isostructural with the minerals of calcium carbonate CaCO₃. Depending on the cation size of RE, the orthoborates crystallize with the aragonite, vaterite, or calcite type structure. Yttrium orthoborate exhibits the vaterite structure and shows a phase transition (LT→HT) with a pronounced thermal hysteresis during the cooling. The hexagonal structure consists of a three-dimensional network made up of 8-fold coordinated yttrium atoms and 4- or 3-fold coordinated boron atoms. The LT-phase of YBO₃ consists of tetrahedral polyborate groups B₃O₉⁹⁻ and the HT-phase triangular comprises borate group BO₃⁻. During the phase transition the borate groups changes from B₃O₉⁹⁻ ring to BO₃⁻ single units.

Powder Preparation and Characterization

All investigated samples have been made from Y₂O₃ and H₃BO₃ (excess 10%) by using conventional solid state-reaction at 1100°C and 1350°C for 4 h in air. The formation of the ortho-borate phase can be identified by an exothermic reaction at about 712°C and by the change in the XRD patterns. The yttrium orthoborate shows a thermal stability up to about 1200°C and undergoes the phase transition into the HT-Phase at 980.9°C with \(\Delta H° = 12.1 \pm 1.3 \) kJ/mol. The powder shows x-ray high purity and IR spectra exhibit that no three coordinate boron is present due to the lack of an absorption line at 1200 cm⁻¹.

The extrapolation of the experimental data to zero \(\beta \) give true transition points at 986.8°C for heating and at 596.5°C for cooling, respectively (\(T_{\text{onset}} = a + b \ln(\beta + 1) \)).

The True Transition Points

The values of \(E_a \) evaluated using Kissinger’s equation are: \(E_a = 1386 \) kJ/mol for heating and \(E_a = 568 \) kJ/mol for cooling, respectively.

The cyclic thermal treatment (heating/cooling) of YBO₃

The ytrrium orthoborate shows a thermal stability up to about 1200°C and undergoes the phase transition into the HT-Phase at 980.9°C with \(\Delta H° = 12.1 \pm 1.3 \) kJ/mol.

The peak shifts toward higher (heating) and lower (cooling) temperature with the cycle number.

Thermogramm of YBO₃ sample

The powder shows x-ray high purity and IR spectra exhibit that no three coordinate boron is present due to the lack of an absorption line at 1200 cm⁻¹.

X-ray pattern (left) and IR spectrum (right) of YBO₃ sample

For samples with a different “thermal history” other phase transition temperatures are observed.

SEM images of YBO₃ powder

For samples with a different “thermal history” other phase transition temperatures are observed.

Morphological observation of the real phenomenon occurring during phase transition

Transition temperature vs. ionic radii of the REBO₃.

9th European Symposium on Thermal Analysis and Calorimetry
August 27-31, 2006, Kraków, Poland

This work is supported by the Philips Research Laboratories Aachen, Germany