

COMPARATIVE STUDY OF THE AFTERGLOW OF STRONTIUM ALUMINATES

Danuta Dutczak, Thomas Jüstel, Andries Meijerink, and Cees Ronda

University of Applied Sciences Münster, D-48565 Steinfurt, Germany Utrecht University, Budapestlaan 6, 3584 CD Utrecht, The Netherlands

Introduction

In recent years afterglow phosphors have attracted considerable attention due to their potential applications in various fields, including emergency signs, light sources, luminous paint or optical data storage [1]. At the beginning of the 20th century the ZnS:Cu phosphor were developed as a long afterglow pigment. In the last 20 years, research on persistent luminescent phosphors has been switched strongly to aluminates doped with rare earth ions, which show a much brighter and longer afterglow [2].

This work deals with persistent luminescence and thermoluminescence of Eu²⁺ in different strontium aluminate hosts, such as SrAl₂O₄, SrAl₄O₇, SrAl₁₂O₁₉, Sr₄Al₁₄O₂₅. All persistent phosphors were synthesized by conventional high temperature solid-state or combustion method under a reducing atmosphere. The photoluminescence (PL) and thermally stimulated luminescence (TSL) were recorded to characterize the type, intensity and duration of the afterglow .

Conclusions

It was found that the emission of Eu²⁺ ions varies from the blue to the green depending on the host lattice due to crystal-field splitting and covalent interaction with the surrounding Oxygen anions.

Bright and persistent afterglow at room temperature was only observed for $SrAl_2O_4$ and $Sr_4Al_{14}O_{25}$ phosphors doped with Eu^{2+} , while Eu2+ doped $SrAl_{12}O_{19}$ and $SrAl_4O_7$ show rather weak afterglow.

TL measurements showed that $SrAl_{12}O_{19}$:Eu and $SrAl_4O_7$:Eu show solely a single glow peak at 138 and 94 °C, respectively. In contrast to that, the more alkaline strontium aluminates exhibit two glow peaks, viz. at 90 and 235 °C for $Sr_4Al_{14}O_{25}$:Eu and at 125 and 200 °C for $SrAl_2O_4$:Eu. We attribute these high temperature glow peaks to the strong afterglow at room temperature.

[1] Sang-Do Han, Krishan C. Singh, Tai-Yeon Cho, Jihye Gwak, Journal

of Luminescence **2008** 128 301-305,

^[2] Yuanhua Lin, Zilong Tang, Zhongtai Zang Materials Letters 2001 51 14-18.