

Novel NIR Emitting Phosphors

B. Koziara¹, A. Meijerink², and T. Jüstel¹

¹Münster University of Applied Sciences, Department of Chemical Engineering Stegerwaldstr. 39, 48565 Steinfurt, Germany ²Utrecht University, Institute for NanoMaterials Research Princetonplein 1, 3508 TA Utrecht, The Netherlands

Introduction

In recent years near-infrared luminescence attracted considerable attention because of the following important applications areas. Firstly, NIR-Lasers are used for medical purposes, as human tissue show high absorbance in the range between 650 and 1000 nm, 1200 and 1350 nm, 1500 and 1700 nm. Secondly, in telecommunication optical networks based on silica fibers, NIR radiation is used as silica hardly absorbs in the spectral range between 1000 and 1800 nm.

This work deals with luminescence of LiGdMo₂O₈ doped with Yb³⁺ and Tm³⁺ ions and LiTbMo₂O₈ doped with Yb³⁺. Molybdates activated with Yb³⁺ are already described as potential laser crystals in literature [1] and the ion couples Tm³⁺/Yb³⁺ and Tb³⁺/Yb³⁺ are known to show cooperative down-conversion i.e. NIR luminescence upon near UV or blue excitation with a quantum efficiency larger than 100% [2]. All samples were synthesized by conventional solid-state methods under ambient atmosphere. The luminescence properties were investigated with regard to energy transfer between above mentioned ion couples.

Results and Conclusions

and Tm3+

Fig. 3. Emission spectra of LiGdMo₂O₈ doped with Yb3+ and Tm3+

LiGdMo₂O₈ :Tm³⁺ shows emission from Tm³⁺ : ${}^{1}G_{4} - {}^{3}F_{4}$ (650 nm) and ${}^{1}G_{4} - {}^{3}H_{5}$ (800 nm) upon excitation at 475 nm (${}^{3}H_{6} - {}^{1}G_{4}$ transition of Tm³⁺). This material co-doped with Yb³⁺ exhibits additionally emission from Yb^{3+, v}iz. the ²F_{5/2} - ²F_{7/2} transition and a decrease in intensity of the peak at 800 nm. This result thus indicates ¹G₄ – ²F_{5/2} energy transfer from Tm³⁺ to Yb³⁺, as it was already observed for GdAl₃(BO₃)₄:Tm,Yb [2] and therefore NIR luminescence at 1000 nm occurs.

Cour

Tb³⁺: ⁵D₄ - ⁷Fe

Fig. 5. Reflection spectrum of LiTbMo2O8 doped with Yh

Fig. 6. Emission spectrum of LiTbMo₂O₈ doped with

 $\lambda = 487 \text{ nm}$ = 300 nm

LiTbMo₂O₈:Yb³⁺ shows NIR emission upon band gap excitation with a peak maximum at 1000 nm. Upon excitation into the ⁷F₀ - ⁵D₄ transition of Tb³⁺ at 487 nm only ⁵D₄- ⁷F_J transitions of Tb³⁺ occur. There is no luminescence from the ²F_{5/2} level of Yb³⁺, as it was claimed in literature [2]. Energy transfer from Tb³⁺ to Yb³⁺ ion in all prepared molybdate samples with Yb³⁺ concentration between 0,1% and 10% does not take place and therefore no NIR emission is observed.

References

1] Yu. K. Voron'ko, K. A. Subbotin, V. E. Shukshin , D. A. Lis, S. N. Ushakov, A. V. Popov, E. V. Zharikov, Optical Materials 29 (2006), 246–252 [2] Q. Y. Zhang, G. F. Yang, Z.H. Jiang, Applied Physics Letters 91 (2007), 051903 – 051903-3