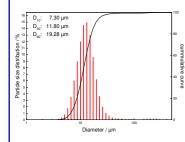

The Effect of X-ray Exposure on Ba₂SiO₄:Eu³⁺


Max-Fabian Volhard and Thomas Jüstel

Department of Chemical Engineering, Münster University of Applied Sciences, Stegerwaldstr. 39, D-48565 Steinfurt, Germany E-mail: m.volhard@fh-muenster.de, tj@fh-muenster.de

PGS 2018, March 13-15, 2018, San Diego, CA, USA

Results and Discussion

 $\begin{array}{c|c} Figure & 3: & Particle & size & distribution & of \\ (Be_{0.57}Eu_{0.09})_2SIO_4 & after & ultrasonic treatment (2x) \\ & & & & \\ \hline \\ I & & & & \\ \hline \\ I & & & & \\ \hline \\ I & & \\ I & \\ \hline \\ I & & \\ I & \\ I & \\ \hline \\ I & & \\ I & \\ I & \\ \hline \\ I & & \\ I & \\ I & \\ I & \\ I$

EI (506

100

20

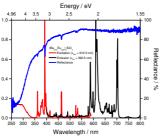
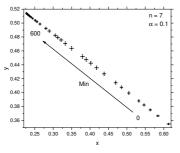
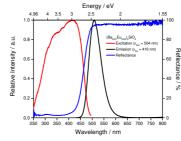



Figure 4: Room temperature PLE, PL and reflect spectra of Ba₂SiO₄:Eu³⁺.

 $\label{eq:time_min} Time \,/\, min \\ \mbox{Figure 7: Ratio of the integral of emission from the band at 506 nm and the intensity of the line at 610.5 nm as a function of irradiation time \\ \mbox{Higher}$

300 400 50

- Figure 8: CIE 1931 colour diagram showing the colour change as a function of irradiation time
- Eu³⁺ is a line emitter and emits in the range between 590 and 710 nm, which are caused by intraconfigurational [Xe]4f⁶-[Xe]4f⁶ transitions of Eu³⁺ (see Figure 4).


Intensity /

ative |

2 P

- The green band emission between 450 and 650 nm is arisen by the [Xe]4f⁶5d¹-[Xe]4f⁷ transition of Eu²⁺ (see Figure 5).
- High-energy radiation reduces Eu³⁺ cations to Eu²⁺. The ratio between the green and the red emission is formed. The strong raise between 0 and approx. 100 min (see Figure 7) is suitable for quantitative measurements.

The authors are grateful to Merck KGaA Darmstadt, Germany for

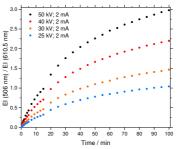
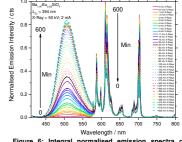



Figure 9: Integrated emission intensity ratio (Eu²⁺ / Eu³⁺)

as a function of time for different acceleration voltages

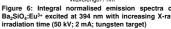


Figure 10: Plot of the integrated emission intensity ratio as a function of the acceleration voltages for different irradiation times

- The good visibility of the reduction phenomenon is ensured by converting the emission integrals to CIE 1931 color points and depicts them against time (see Figure 8).
- The reduction of the activator raises with increasing acceleration current and the resulting radiation dose (see Figure 9).
- Figure 10 shows that the relationship between green band and red line emission increases linearly with the acceleration voltage.

Acknowledgement

generous financial support.

H. Li, P. Hackenschmied, E. Epelbaum, M. Batentschuk, Mater. Sci. Eng. 94 (2002) 32–39.
P. Leblans, D. Vandenbroucke, P. Willems, Materials 2011, 4, 1034-1086
H.-P. Große, E. Tillmanns, Cryst. Struct. Commun. (1974) 599–602.

M.Sc. Max-Fabian Volhard Department of Chemical Engineering Research Group Prof. Dr. T. Jüstel Phone: +49-(0)2551-9-62392 E-Mail: m.volhard@fh-muenster.de

FH MÜNSTER University of Applied Sciences

References

The effect of X-ray exposure on Ba₂SiO₄:Eu³⁺, Max-Fabian Volhard and Thomas Jüstel, Opt. Communications 410 (2018) 617, DOI: 10.1016/j.optcom.2017.10.050

