On the Temperature and Time Dependent Photoluminescence of Lu₃Al₅O₁₂:Gd³⁺

Michael Laube and Thomas Jüstel

Münster University of Applied Sciences, Department of Chemical Engineering, Stegerwaldstr. 39, D-48565 Steinfurt, Germany michael.laube@fh-muenster.de, tj@fh-muenster.de

International Conference on UV LED Technologies & Applications Conference, April 22-25, 2018 · Berlin, Germany

Background

- **Presently, UV-B emitting LEDs with a sufficiently** high operational lifetime and wall plug efficiency are not available
- Use of mercury-vapor discharge lamps for UV applications
 - low lifetimes and limited efficiency
- Phosphor coated Xe excimer lamps for:
 - medical treatment (Vitiligo, Psoriasis)
 - life science (tanning)
 - chemistry (photochemistry)

Experimental Section

Combustion synthesis

- $AI(NO_3)_3 \cdot 9H_2O$ was dissolved in H_2O
- Metal oxides Gd_2O_3 , Lu_2O_3 were dissolved in boiling HNO₃
- The solutions were quantitatively added up \bullet
- Tris(hydroxymethyl)aminomethan (TRIS) was added in a molar ratio of 2:1 (TRIS:cations)
- Water was evaporated at 80 °C and a transparent gel was formed The gel was burned at 300 °C in a selfpropagating reaction and dried at 150 °C for several hours The black powder was pre-fired at 900 °C for 6 h to remove organic residuals

Structure

- Lu₃Al₅O₁₂ belongs to the garnet family and has a cubic crystal system
- General structure of garnets is $[8]X_{3}[6]Y_{2}[4]ZO_{4}]_{3}$
- Lu³⁺ cations occupy the X-sites
- Al³⁺ cations occupy the Y- and Z-sites
- Lu³⁺ was substituted by Gd³⁺
- Space group: $Ia\overline{3}d$ (#230)

• UV-curing (polymer hardening)

The received white powder was crushed and annealed at 1600 °C for 8 h

Fig. 2: Unit cell of $Lu_3Al_5O_{12}$:Gd³⁺. Red Fig. 3: SEM image of $(Lu_{2.85}Gd_{0.15})Al_5O_{12}$. balls \rightarrow O²⁻, Blue balls \rightarrow Lu³⁺/Gd³⁺, Green balls $\rightarrow Al^{3+}$

• LuAG has a band gap of 7.2 eV and thus a white body color. According to its band gap the excitation maximum peaks at 172 nm, which is where the Xe emission culminate.

LuAG:Gd³⁺ shows intense line emission peaking at 313.7 nm, which splits into four sublines due to the crystal field splitting. The emission is attributed to the ${}^{6}P_{7/2} \rightarrow {}^{8}S_{7/2}$ transition.

- A second and third emission band peaks at 302 and 307.5 nm. They belong to the ${}^{6}P_{3/2} \rightarrow {}^{8}S_{7/2}$ and ${}^{6}P_{5/2} \rightarrow {}^{8}S_{7/2}$ transitions, respectively. The emission intensity of the main emission band at 313.7 nm decreases with increasing temperature while the emission band at 307.5 and 302 nm rise with increasing temperature.
- As usual, emission intensity decreases from 77 to 500 K (thermal quenching).
- The excitation spectra show a continuous decrease in intensity with increasing temperature and no shift of the excitation band.
- Fig. 8: Energy level diagram of LuAG The decay times decrease in a linear way when the temperature is increased from 77 to 500 K. This holds true for the ${}^{6}P_{5/2} \rightarrow {}^{8}S_{7/2}$ as

Gd³⁺, which shows the and excitation of the host lattice and emission of the Gd³⁺ ion.

= 265 nm

2x10⁴

 1×10^{4}

0 -

_ = 314 nm

= 307 nm

= 302 nm

 Gd^{3+}

well as the ${}^{6}P_{7/2} \rightarrow {}^{8}S_{7/2}$ transition.

Conclusions

Host

- A series of LuAG:Gd³⁺ samples of single phase with a Gd concentration between 0.1 and 80 mol-% was obtained.
- LuAG:Gd³⁺ with 5 mol-% Gd³⁺ shows the highest emission intensity.
- LuAG:Gd³⁺ is an intense UV-B emitting material under VUV ($\lambda_{ex} = 160$ nm) excitation, which shows three emission lines peaking at 313.7, 307.5, and 302 nm.
- Xe excimer lamps comprising LuAG:Gd can be regarded as an alternative to mercury low-pressure lamps or UV-B emitting LEDs.
- LuAG:Gd might also be a material for temperature sensing applications due to the change of the line ratio.

