6. High Pressure Discharge Lamps

Content

6.1 Overview of Low- and High-Pressure Discharge Lamps
6.2 Spectrum of a Hg Discharge
6.3 The High-Pressure Mercury Lamp (HP)
6.4 Phosphors for High-Pressure Mercury Lamps
6.5 The Electrode
6.6 The Electrode Feed Through
6.7 Types of Reflectors
6.8 Application of HP-Lamps
6.9 The High-Pressure Sodium Lamp (HPS)
6.10 Application of HPS Lamps
6.11 Metal-Halide Lamps (MH)
6.12 Photometric Data in Comparison
6.13 Applications of MH Lamps
6.14 UHP-Lamps
6.15 New Developments
6.1 Overview of Low- and High-Pressure Discharge Lamps

<table>
<thead>
<tr>
<th>HID = High Intensity Discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hg low-pressure (TL)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Hg high-pressure (HPMV = high pressure metal vapour)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Hg low-pressure (CFL, PL)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Na high-pressure (HPS = high pressure sod.)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Na low-pressure (SOX)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Metal-halide high-pressure (MH)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Incoherent Light Sources
Prof. Dr. T. Jüstel

Chapter High Pressure Discharge Lamps
Slide 2
6.2 Spectrum of Hg Discharges

Energy level scheme of Hg

Ionization level (~ 10.4 eV)

Schematic emission spectrum of a Hg-discharge at a low pressure [~ mbar]

Incoherent Light Sources
Prof. Dr. T. Jüstel

Chapter High Pressure Discharge Lamps
Slide 3
6.2 Spectrum of Hg Discharges

Pressure dependence of the lumen output

60 lm/W ⇒ Why is this of interest for lamps?

Good imaging properties

High luminance

Pressure increase

Incoherent Light Sources
Prof. Dr. T. Jüstel

Chapter High Pressure Discharge Lamps
Slide 4
6.2 Spectrum of Hg Discharges

Measured spectra of water-cooled capillary mercury discharge lamps

Source: W. Elenbaas, Quecksilberdampf-Hochdrucklampen (1966)
6.3 The High-Pressure Mercury Lamp (HP)

Evacuated outer bulb
Melting
Electrode
Burner (Hg, noble gas = starting Gas, mostly Xe)

Ballast

Incoherent Light Sources
Prof. Dr. T. Jüstel

Chapter High Pressure Discharge Lamps
Slide 6
6.4 Phosphors for High-Pressure Mercury Lamps

Incoherent Light Sources
Prof. Dr. T. Jüstel

Blue-white light due to the lack of red radiation in the emission spectrum
Solution: Phosphor!

\[\eta = 60 \text{ lm/W} \]
\[R_a = 20 \]
Lifeime = 20,000 h
6.4 Phosphors for High-Pressure Mercury Lamps

Suitable phosphors
(Sr,Mg)$_3$(PO$_4$)$_2$:Sn 620 nm Broadband emission
Mg$_4$GeO$_{5.5}$F:Mn 660 nm Line emission
YVO$_4$:Eu 620 nm Line emission
Y(V,P)O$_4$:Eu 620 nm Line emission

$\eta = 60 \text{ lm/W}$
$R_a = 50$
Lifetime = 20,000 h
6.4 Phosphors for High-Pressure Mercury Lamps

Sn$^{2+}$ or Mn$^{4+}$ phosphors as UV → Red converter

Problem: Low lumen equivalent of these phosphors

Incoherent Light Sources
Prof. Dr. T. Jüstel

Chapter High Pressure Discharge Lamps
Slide 9
6.4 Phosphors for High-Pressure Mercury Lamps

YVO$_4$:Eu$^{3+}$ phosphors - Thermal behavior

The luminous efficacy under UV-A excitation increases up to about 300 °C
Cause: Increase in spectral overlap with Hg high-pressure discharge spectrum

Luminescence intensity as a function of temperature and excitation wavelength
6.5 The Electrode

Hg low-pressure

![Image of low-pressure electrode](image1.png)

- Power: 36 W
- Current: I = 0.36 A
- Materials: Tungsten + emitter
- Ions: BaO / SrO / CaO
- Temperature: T = 1350 K

Hg high-pressure

![Image of high-pressure electrode](image2.png)

- Power: 400 W
- Current: I = 4 A
- Materials: Tungsten + emitter
- Ions: BaO / SrO / Y$_2$O$_3$ / ThO$_2$
- Temperature: T = 2000 - 3000 K
6.6 The Electrode Feedthrough

Problem: Different thermal expansion coefficients

- SiO₂ \(\alpha = 0.5 \times 10^{-6} \text{ K}^{-1} \)
- W \(\alpha = 4.3 \times 10^{-6} \text{ K}^{-1} \)
- Mo \(\alpha = 2.8 \times 10^{-6} \text{ K}^{-1} \)

Incoherent Light Sources
Prof. Dr. T. Jüstel

Chapter High Pressure Discharge Lamps
Slide 12
6.7 Types of Reflectors

Parabolic reflectors

- Focal point (light source)
- Only possible if the light source is point like

Elliptical reflectors

- An ellipse has two focal points
- HID-lamps

Mathematical equation: $y = x^2$
6.8 Application of HP-Lamps

In street lighting (outdoor lighting)

\[\eta = 60 \text{ lm/W} \]
\[R_a = 50 \]
\[\text{Lifetime} = 20,000 \text{ h} \]
\[P = 100 \text{ W} - 2000 \text{ W} \]
6.9 The High-Pressure Sodium Lamp (HPS)

Pressure dependence of the lumen output

Na low-pressure Lamp (0.01 mbar)

Na high-pressure Lamp (100 mbar)

Pressure increase

Incoherent Light Sources
Prof. Dr. T. Jüstel

Chapter High Pressure Discharge Lamps
Slide 15
Problem: Na reacts at high temperatures with the quartz glass wall

\[4 \text{Na} + \text{SiO}_2 \rightarrow 2 \text{Na}_2\text{O} + \text{Si} \]

Solution: Transparent, high temperature resistant material, which does not react with Na

Al\(_2\)O\(_3\)-ceramics (corundum): MgO, CaO, B\(_2\)O\(_3\)-Additives (DSA = densely sintered alumina)

![Polycrystalline structure](image)
Widening of the Na-line and self-absorption leads to a spectral hole in the emission spectrum at around 589 nm
\[p_{Na} = 150 \text{ mbar (saturated)} \]
\[p_{Hg} = 1000 \text{ mbar (buffer gas)} \]
\[p_{Xe} = 100 \text{ mbar (start gas)} \]
\[\eta = 90 - 120 \text{ lm/W} \]
\[R_a = 20 - 50 \text{ (pressure dependent)} \]
\[T_c = 1930 \text{ K} \]
6.10 Application of HPS Lamps

Architectural and street lighting
6.11 Metal-Halide High-Pressure Lamps

Filling:
- NaI - TlI - InI
- SnBr₂ - SnI₂
- NaI - DyI₃ (SSTV)
- NaI - ScI₃ (automobile headlight)

Goal: High \(\eta \) & color rendering
6.11 Metal-Halide High-Pressure Lamps

HPI (High Pressure Iodide) lamps

Fig. 42 The CIE colour triangle, containing the spectrum locus, the system of chromaticity coordinates, the black-body locus and the lines of constant correlated colour temperature for values from 2000 K to 20 000 K.

- 451 nm (In)
- 535 nm (Tl)
- 589 nm (Na)

Incoherent Light Sources
Prof. Dr. T. Jüstel
6.11 Metal-Halide High-Pressure Lamps

Spectrum of a MH lamp

Hg / NaI / TlI / DyI₃ / Ar

P = 75 W

P_{rad} / P \approx 60 \%
P_{rad,vis} / P \approx 33 \%

atomic line and molecular radiation

Incoherent Light Sources
Prof. Dr. T. Jüstel

Chapter High Pressure Discharge Lamps
Slide 21
6.11 Metal-Halide High-Pressure Lamps

Filling of metal halide lamps

Lamp starting (starting gas)
Noble gases: Ar or Xe (xenon lamps) → Penning effect
Radioactive substances: 85Kr, 147Pm

Operating voltage
• Hg
• Trend towards the substitution of Hg (environmental aspect) → Zn

Light emission
• Hg
• Metal halides MeX_n ($\text{Me} = \text{Na}, \text{In}, \text{Tl}, \text{Sc}, \text{Sn}, \text{Dy}, ...$)
6.12 Photometric Data in Comparison

<table>
<thead>
<tr>
<th>Improvement</th>
<th>η (lm/W)</th>
<th>R_a</th>
<th>Color temperature T_c [K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Pressure Hg</td>
<td>60</td>
<td>20</td>
<td>6000</td>
</tr>
<tr>
<td>+ phosphor</td>
<td>60</td>
<td>50</td>
<td>3800</td>
</tr>
<tr>
<td>High Pressure Na</td>
<td>60 - 130</td>
<td>20</td>
<td>2000</td>
</tr>
<tr>
<td>Xe-pressure↑</td>
<td>80 - 150</td>
<td>20</td>
<td>2000</td>
</tr>
<tr>
<td>Na-pressure↑</td>
<td>60 - 90</td>
<td>60</td>
<td>2200</td>
</tr>
<tr>
<td>Metal Halide</td>
<td>HPI (NaI-TlI-InI) 70 - 80</td>
<td>70</td>
<td>3800 - 4200</td>
</tr>
<tr>
<td>SnBr$_2$-SnI$_2$</td>
<td>70</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>NaI-DyI$_3$</td>
<td>75 - 80</td>
<td>90</td>
<td>3800 - 5600</td>
</tr>
<tr>
<td>NaI-ScI$_3$</td>
<td>80 - 90</td>
<td>75</td>
<td>3600 - 4200</td>
</tr>
</tbody>
</table>
6.13 Applications of MH Lamps

<table>
<thead>
<tr>
<th>Compound</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPI (NaI-TII-InI)</td>
<td>Street lighting</td>
</tr>
<tr>
<td></td>
<td>Architectural lighting</td>
</tr>
<tr>
<td></td>
<td>Sports field lighting</td>
</tr>
<tr>
<td>Tin</td>
<td>Older type of lamp is replaced by MH</td>
</tr>
<tr>
<td>NaI-DyI₃</td>
<td>Sports field lighting</td>
</tr>
<tr>
<td>NaI-ScI₃</td>
<td>Shop lighting</td>
</tr>
<tr>
<td></td>
<td>Studio-stage-TV (SSTV)</td>
</tr>
<tr>
<td></td>
<td>Automotive headlights</td>
</tr>
<tr>
<td>NaI-ScI₃ + Hg + Xe (blue)</td>
<td></td>
</tr>
</tbody>
</table>

Incoherent Light Sources
Prof. Dr. T. Jüstel
Chapter High Pressure Discharge Lamps
Slide 24
SSTV market = Stage-Studio-TV

6.13 Applications of MH Lamps

Incoherent Light Sources
Prof. Dr. T. Jüstel

Chapter High Pressure Discharge Lamps
Slide 25
6.13 Applications of MH Lamps

In the „beamer“

Warum Projektion?

- Vorteile:
 - sehr große Bilder
 - kleines Volumen und Gewicht

Rückwärts-Projektion

 Professionelle Präsentationen

Heimkino

Incoherent Light Sources
Prof. Dr. T. Jüstel

Chapter High Pressure Discharge Lamps
Slide 26
Construction of a beamer

A projector is actually a slide projector (diascope)!

In a beamer the slide is replaced by a small LCD screen or by a DMD (Digital Mirror Device)
6.13 Applications of MH Lamps

Operating principle of a LCD (Liquid Crystal Display)

LCDs are based on liquid crystals, which rotate the polarization plane of polarised light by a rotational angle α.

- **Liquid crystal cell (with ITO)**
- **Analyzer foil (perpendicular to P)**
- **Polarizer-foil P**
- **Pixel on for $U = 0$**
- **Pixel off for $U > 0$**
6.14 UHP-Lamps

Requirements for light sources for projectors

- If possible punctual ⇒ A lot of light from a small volume
- High luminance (light density) ⇒ High Hg-pressure

UHP = **Ultra High Pressure** (Performance)
⇒ Approx. 200 bar Hg, electrode separation ~ 1 mm
⇒ Strong pressure-broadened lines of Hg
6.14 UHP-Lamps

Components of UHP-Lamps

- DGA Brenner (P = 70 W)
- Nb
- Schmelzglas
- Mo
- W Electrode

Incoherent Light Sources
Prof. Dr. T. Jüstel

Chapter High Pressure Discharge Lamps
Slide 30
6.14 UHP-Lamps

Description of UHP-lamp by

- Chemical equations
 - Vapor pressure of metal halides
 - Disintegration of the metal halides in the plasma

- Temperature distribution in the plasma
 - Energy balance
 - Loss via radiation
 - Loss due to chemical energy
 - Loss due to heat
 - Convection (flow)
 - Heat conduction

- Convection equation = Navier-Stokes-Equation

\[
\Rightarrow \frac{\partial^2 h}{\partial x'^2} + \frac{\partial^2 h}{\partial y'^2} = 0 \quad \text{Potential: } h = z + \frac{u}{\gamma w}
\]

- Energy balance of the electrodes and the wall
Temperaturbelastung des Quarzglases

Elektrodentemperatur und Belastung der Einschmelzung

Incoherent Light Sources
Prof. Dr. T. Jüstel

Chapter High Pressure Discharge Lamps
Slide 32
Sulfur lamp: In 1990 the first discharge lamp based on a molecular sulfur discharge ($\text{S}_4 - \text{S}_8$) was developed.

The energy coupling into the discharge takes place by means of a microwave generator (magnetron), because electrodes cannot be used.
6.15 New Developments

Sulfur lamp: To generate a very large luminous flux

<table>
<thead>
<tr>
<th>Typical operating parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input power: 1.400 W</td>
</tr>
<tr>
<td>Ball diameter: approx. 30 mm</td>
</tr>
<tr>
<td>Luminous flux: 135000 lm</td>
</tr>
<tr>
<td>Color temperature: 5700 K</td>
</tr>
<tr>
<td>Starting time: 25 s</td>
</tr>
<tr>
<td>Lifetime (lamp): 60.000 h</td>
</tr>
<tr>
<td>Lifetime (magnetron): 20.000 h</td>
</tr>
<tr>
<td>Light output: 95 lm/W</td>
</tr>
</tbody>
</table>

Light source with extremely high light output, about 140000 lm (~ 40 fluorescent tubes) and (almost) pure-white light (emission band of S_8, ..., S_2 molecules)

Efficiency: Similar to fluorescent lights (thus 90 - 100 lm/W)

Problems: EMC and lifetime of the microwave generator
6.15 New Developments

Sulfur lamp: Mechanism of light generation ⇒ Emission from molecules, e.g. S_2

Energy Levels

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Energy [eV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_3</td>
<td>10.6</td>
</tr>
<tr>
<td>S_3^+</td>
<td>2.1</td>
</tr>
<tr>
<td>S_2^+</td>
<td>0.8</td>
</tr>
<tr>
<td>S_2</td>
<td>9.36</td>
</tr>
<tr>
<td>S_2^+</td>
<td>1.67</td>
</tr>
<tr>
<td>S_2</td>
<td>4.46</td>
</tr>
<tr>
<td>S^+</td>
<td>10.36</td>
</tr>
<tr>
<td>S^-</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Reaction Products

<table>
<thead>
<tr>
<th>Reactants</th>
<th>Products</th>
<th>ΔE [eV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_2 + X$</td>
<td>$2S + X$</td>
<td>4.46</td>
</tr>
<tr>
<td>$S_2 + e$</td>
<td>$S_2^+ + e$</td>
<td>9.36</td>
</tr>
<tr>
<td>S_2^-</td>
<td>$S_2 + e$</td>
<td>1.8</td>
</tr>
<tr>
<td>$S + e$</td>
<td>$S^+ + e$</td>
<td>10.4</td>
</tr>
<tr>
<td>S^-</td>
<td>$S + e$</td>
<td>2.0</td>
</tr>
<tr>
<td>$Ar + e$</td>
<td>$Ar^+ + e$</td>
<td>15.76</td>
</tr>
</tbody>
</table>

6.15 New Developments

Substitution of Hg by Zn (e.g. in automotive headlamps)

Zn/Ar Discharge

- $W_{el} = 75\, \text{W}$
- $\text{LE} = 114 \, \text{lm/W}$
- $x = 0.228$, $y = 0.227$
- $T_c = 34000\, \text{K}$
- Efficacy = 20 lm/W
- $\epsilon = 0.174 \, \text{W}_{\text{opt}}/\text{W}_{\text{elek}}$
- $R_a = 0$

Ce$^{3+}$ Luminescence

Zn/Ar/metal halide Discharge

- $W_{el} = 75\, \text{W}$
- $\text{LE} = 280 \, \text{lm/W}$
- $x = 0.436$, $y = 0.387$
- $T_c = 3000\, \text{K}$
- Efficacy = 85 lm/W
- $\epsilon = 0.33 \, \text{W}_{\text{opt}}/\text{W}_{\text{elek}}$
- $R_a = 80$

Emission intensity [a.u.]

<table>
<thead>
<tr>
<th>Wavelength [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
</tr>
<tr>
<td>0,0</td>
</tr>
</tbody>
</table>

Incoherent Light Sources
Prof. Dr. T. Jüstel