UVC-Emitting LuPO$_4$:Pr$^{3+}$ Nanoparticles Decrease Radiation Resistance of Hypoxic Cancer Cells

Matthias Müller,a Sara Espinoza,a Thomas Jüstel,a Kathryn D. Held,a R. Rox Andersona and Martin Purschkea,1

a Wellman Center for Photomedicine and b Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts; and c Department of Chemical Engineering, Münster University of Applied Sciences, Steinfurt, Germany

INTRODUCTION

Cancer is a major cause of mortality worldwide. In 2018, there were an estimated 18.1 million new cancer cases and 9.6 million deaths attributed to cancer (1). Currently, radiation therapy is the gold standard for many inoperable malignant tumors. Nearly 50% of patients with solid tumors undergo radiation therapy during the course of their disease (2). For the successful outcome of the treatment, the oxygen level within regions of the tumor microenvironment plays a crucial role. Hypoxic areas of the tumor are more radiation resistant and are thought to be responsible for poor treatment outcome, formation of metastasis and tumor recurrence (3–5). Currently, fractionated irradiation and complex treatment plans are employed to overcome radiation resistance and minimize side effects.

Combining nanoparticles (NPs) as radiosensitizers with X rays is a promising approach for increasing tumor control. In particular, gold NPs have been shown to increase the local dose of ionizing radiation at the tumor site, causing increased DNA damage (6–9). The high atomic number of gold (Z = 79) provides a large absorption cross section for X-ray irradiation, which leads to emission of radiation of lower energy but higher absorbance in tissue. Nevertheless, the mechanism of the generation of DNA damages using gold NPs and X rays still relies on oxygen and their effect is reduced by tumor hypoxia (10).

This study focused on the reduction of the radiation resistance of hypoxic cancer cells. Unlike ionizing radiation, ultraviolet (UV) radiation between 200 and 300 nm targets cellular DNA directly via an oxygen-independent mechanism (11–14). We combined traditional X-ray irradiation with the UV-emitting scintillator LuPO$_4$:Pr$^{3+}$ to generate localized UV photons at the cellular level. LuPO$_4$:Pr$^{3+}$ efficiently converts X rays into UV radiation due to interconfigurational [Xe]4f55d2-[Xe]4f6 ($^{1}F_2$, $^{3}H_6$, $^{3}H_5$-terms) transitions of Pr$^{3+}$ resulting in four narrow emission bands in the range of 220–285 nm (15, 16).

Ultraviolet radiation produces two major types of DNA damage, cyclobutane pyrimidine dimers (CPDs) and 6–4 photoproducts, which can lead to permanent cell cycle arrest followed by cell inactivation (13, 17, 18). UV photons are strongly absorbed within a few micrometers, so that only cells in the immediate vicinity of NPs would be affected, while surrounding healthy tissue would be spared (19). Due to fenestrated blood vessels within the cancer which result in enhanced permeability and retention (EPR effect), intravenously-injected NPs accumulate preferentially in solid tissue tumors (20). In vitro experiments were performed to test the hypothesis that UV-scintillating NPs can radiosensitize cells under normoxic and hypoxic conditions.

1 Address for correspondence: Wellman Center for Photomedicine, Their 201A, Massachusetts General Hospital/Harvard Medical School, 40 Blossom St., Boston, MA 02114; email: mpurschke@mgh.harvard.edu.
MATERIALS AND METHODS

Preparation of LuPO₄:Pr³⁺

LuPO₄:Pr³⁺ particles were obtained from Radiation Monitoring Devices, Inc. (Watertown, MA). The particles were synthesized via a coprecipitation method as described elsewhere (21). For cell experiments, the particles were dispersed in Dulbecco’s modified Eagle’s medium (DMEM; Gibco, Grand Island, NY). Darvan C (0.01%) was added to prevent agglomeration of the particles in the media. The mixture was blended thoroughly and subsequently sonicated for 15 min. The particle dispersion was freshly prepared immediately prior to the experiment.

Cell Culture

Experiments were performed using the lung cancer cell line A549 (ATCC®, Manassas, VA). Cells were cultured in DMEM supplemented with 1% Pen/Strep (10,000 U ml⁻¹ penicillin, 10,000 mg ml⁻¹ streptomycin; Life Technologies, Carlsbad, CA) and 10% fetal bovine serum (Life Technologies) in a humidified incubator at 37°C. The atmosphere was regulated to 95% air and 5% CO₂. Cells were incubated under normal cell culture condition (air/CO₂ 95%/5%) and flushed with a N₂/CO₂ mixture (95%/5%) during the incubation. The temperature was 37°C and the atmosphere was set to 95% air and 5% CO₂. One day before the experiment, 2,000 cells were seeded into each well of a 12-well plate. Immediately before the experiment, cells were treated with the NPs. Images were taken every 15 min over the course of 60 h. The cell number was determined manually by counting the cells in a randomly selected 1,069 μm × 677 μm section.

Calculation of the Oxygen Enhancement Ratios

To quantify the cytotoxic effect of the combined treatment under hypoxia, the oxygen enhancement ratio (OER) was calculated. The OER describes the enhancement of a therapeutic effect of ionizing radiation due to the presence of oxygen and is defined as:

\[
\text{OER} = \frac{D_{10 \ hypoxia}}{D_{10 \ normoxia}}. \tag{1}
\]

OERs were calculated for the dose at which 10% of the cells survived (D₁₀). Therefore, D₁₀ values were determined by fitting each survival dataset to the linear-quadratic model:

\[
y = y_0 \times \exp(-(a x + b x^2)). \tag{2}
\]

In Eq. (2), y and y₀ are the surviving fraction at a certain time as well as the initial surviving fraction at timepoint 0, x is the X-ray dose and a and b are arbitrary fitting parameters.

Statistical Analysis

All experiments were performed using at least three independent replicates. The results are presented as mean ± standard error of mean. For statistical analysis GraphPad Prism software version 8.1.1 for Windows (La Jolla, CA) was used. Statistically significant differences were calculated using two-way analysis of variance (ANOVA) corrected by Tukey’s multiple comparisons test. P < 0.05 was considered to be statistically significant.

RESULTS

Localization of the Particles within A549 Cells

TEM images were taken to investigate NP uptake by the cells. Figure 1 shows the TEM images of A549 cells incubated with LuPO₄:Pr³⁺ for 3 and 24 h. The images did not show large agglomerates of the LuPO₄:Pr³⁺ particles but small clusters of particles were observed. After 3 h incubation, the particles were accumulated outside of the cells along the cell membrane. After 24 h incubation, cellular uptake was observed with clusters of particles in close proximity to the cell nucleus.

Effect of the Cytotoxicity of LuPO₄:Pr³⁺ on Cell Growth

To determine the effect of the NPs on cell proliferation, cells were incubated with NPs and the cell number was assessed every 12 h. Figure 2 shows the cellular
proliferation of A549 cells over 60 h incubated with 0, 0.1, 0.25 and 1.0 mg × ml⁻¹ LuPO₄:Pr³⁺ under normoxic conditions. The cell number of the untreated control increased eightfold within 60 h. Statistically significant differences in the cell numbers were observed at all timepoints for the control cells. Cells treated with NPs showed a slower growth (sixfold), which was independent of the tested NP concentrations. However, no significant difference in the cell number for the control and treated cells was found after 60 h.

Cytotoxic Effect of the Combined Treatment of Hypoxic A549 Cells

To confirm the hypoxic atmosphere of the cell environment, the oxygen content was measured. Figure 3 shows the volume fraction of oxygen in the atmosphere and the cell culture media over time, while the hypoxic chamber was flushed with N₂/CO₂ (95%/5%). The oxygen concentration in the atmosphere decreased to 0.05% within 15 min, whereas the oxygen concentration in the media decreased to a minimum of 0.2% at 120 min.

To evaluate the cytotoxicity of the combined treatment under hypoxic conditions, clonogenic survival of normoxic and hypoxic A549 cells was compared. Figure 4 shows the survival curves of A549 cells X-ray irradiated with and without LuPO₄:Pr³⁺ NPs. The fitting parameters (a, b) and the coefficient of determination (R²) are summarized in Table 1. The surviving fractions of the control as well as of treated cells decreased with increasing X-ray dose. The black curves represent the surviving fraction of cells incubated with 0, 2.5 and 5.0 mg × ml⁻¹ LuPO₄:Pr³⁺ NPs for 4 h under normoxic conditions. The clonogenic survival of the untreated control decreased to 1.3% after 12 Gy X-ray irradiation. For NP concentrations of 2.5 and 5.0 mg × ml⁻¹, the surviving fraction for 12 Gy X-ray irradiated cells decreased further to 0.04% and 0.02%, respectively. The survival curves of the hypoxic cells are indicated by the gray curves. The surviving fraction of the hypoxic control decreased to 17% at a radiation dose of 12 Gy. The clonogenic survival of the hypoxic cells treated with 2.5 and 5.0 mg × ml⁻¹ LuPO₄:Pr³⁺ decreased to 2.2 and 1.2% for 12 Gy irradiation.
The D_{10} values for the normoxic and hypoxic controls were calculated to be 7.9 and 14.2 Gy (Table 1). The latter value was extrapolated from data derived from the fitting function. The OER was calculated to be 1.8 at that survival level. Furthermore, the D_{10} values for 2.5 and 5.0 mg \times ml$^{-1}$ LuPO$_4$:Pr$^{3+}$ were 4.8 Gy and 3.6 Gy for normoxic and 8.5 and 8.0 Gy for hypoxic samples. Therefore, the OER was calculated to be 1.8 for a concentration of 2.5 mg \times ml$^{-1}$ LuPO$_4$:Pr$^{3+}$ and 2.2 for a concentration of 5.0 mg \times ml$^{-1}$ LuPO$_4$:Pr$^{3+}$ at 10% survival.

DISCUSSION

Hypoxic tumor regions are challenging to treat with conventional radiation therapy due to the critical role of oxygen for the fixation of X-ray-induced DNA damages (22, 23). The oxygen-independent mechanism of UVC to produce DNA damages could be a promising tool to overcome radiation resistance of hypoxic regions. In a previously published study, we demonstrated increased cell death after the combined treatment of UVC NPs and X rays compared to X rays alone. We also confirmed the presence of UV-specific DNA damages for the combined treatment under normoxic condition (16, 21, 24). In the current study we showed that radiation resistance of normoxic and hypoxic A549 cells can be reduced by combining LuPO$_4$:Pr$^{3+}$ NPs and X rays.

The distance of the NPs to the DNA is important for an efficient outcome of the combined approach. With decreasing distance between NPs and nucleus, the efficacy of the combined treatment is expected to increase. For our experiments we assume that the NPs were located mainly outside the cells as indicated by the TEM images (Fig. 1A). Within the first 3 h, no cellular uptake of the NPs was observed. Incubation time of 24 h showed an increased uptake of NPs (Fig. 1B), as evidenced by the TEM images taken after 24 h of incubation (Fig. 1B), which suggests an improved efficacy of the combined treatment for longer incubation periods prior to radiation. A549 cells incubated with 0.1, 0.25 and 1.0 mg \times ml$^{-1}$ LuPO$_4$:Pr$^{3+}$ NPs were found to have a transient growth delay, which is expressed by a 25% slower growth rate within the first 60 h with no effect on cell survival (Fig. 2). Therefore, the slower proliferation of the treated cells did not lead to a significant difference in the cell number after 60 h compared to the control.

The cell culture experiments confirmed an increased cell death of normoxic and hypoxic A549 cells after the combined treatment with X rays and LuPO$_4$:Pr$^{3+}$ NPs (Fig. 4). The decrease in radiation resistance became more distinct with increasing NP concentration. The tested concentrations of 2.5 mg \times ml$^{-1}$ and 5.0 mg \times ml$^{-1}$ LuPO$_4$:Pr$^{3+}$ NPs reduced the surviving fraction of hypoxic A549 cells similar to the level of normoxic cells. The increasing α value with increasing NP concentration suggests a higher sensitivity to radiation, which is attributed to an increased generation of UVC radiation.

The OER values derived from the survival curves were 1.8, 1.8 and 2.2 for 0, 2.5 and 5.0 mg \times ml$^{-1}$ LuPO$_4$:Pr$^{3+}$, respectively. These numbers indicate an increased radiation resistance for the hypoxic A549 cells by a factor of approximately two in our experimental setup. As the OER values with and without NPs only show minor differences, it is concluded that the combined treatment of NPs and X rays sensitizes normoxic and hypoxic cells to the same extent.

In our experiments, the calculated OER values of approximately two indicate that the hypoxic cells are approximately twice as resistant as the normoxic cells.
That is, the radiation-induced cytotoxic effect on the hypoxic cells is only 50% of the normoxic cells. Moreover, after 120 min incubation, the oxygen content in the culture media was below 0.2% (Fig. 3). These findings are in accordance with the literature, which describes these experimental conditions as radiobiological hypoxia. Radiobiological hypoxia is defined as the oxygen level at which the cytotoxic effect of radiation is half-maximal. Radiobiological hypoxia occurs at an oxygen concentration of approximately 0.4%, which is also the median O2 content in prostate and pancreatic tumors (25). The difference between oxygen concentration derived from the OER and the measured concentration in the media is assigned to a rather slow oxygen exchange between the cells and the culture media (26, 27).

To increase the cellular uptake of the NPs as well as to avoid the clearance by the mononuclear phagocyte system in future experiments, clustering of the NPs must be minimized. Therefore, the size, shape and surface of the NPs need to be optimized by coating them with steric tumor targeting ligands. Steric stabilization of the NPs can be achieved using polyethylene glycol, polysaccharides or liposomes to encapsulate the NPs (28, 29). These coatings prevent the NPs from interacting with each other as well as interacting with immune cells (30). To deliver the NPs selectively to the tumor site, antibodies are well-established reagents for tumor targeting. For example, the epidermal growth factor receptor (EGFR) is expressed at significantly higher levels in epithelial cancers. As a result, NPs can be selectively targeted to the tumor. Antibodies are well-established reagents for tumor targeting. For example, the epidermal growth factor receptor (EGFR) is expressed at significantly higher levels in epithelial cancers. As a result, NPs can be selectively targeted to the tumor. Antibodies are well-established reagents for tumor targeting. For example, the epidermal growth factor receptor (EGFR) is expressed at significantly higher levels in epithelial cancers. As a result, NPs can be selectively targeted to the tumor. Antibodies are well-established reagents for tumor targeting. For example, the epidermal growth factor receptor (EGFR) is expressed at significantly higher levels in epithelial cancers. As a result, NPs can be selectively targeted to the tumor.

Longer incubation could increase the uptake and efficiency of the NPs.

CONCLUSIONS

Radiation resistance of hypoxic A549 cancer cells can be decreased by a factor of two using the combined approach of UVC-emitting LuPO4:Pr3+ NPs and X rays. The oxygen-independent generation of UV-specific DNA damages reduces the surviving fraction of hypoxic A549 cells to the same level as their normoxic counterparts. In general, the effectiveness of radiation for both normoxic and hypoxic cells can be enhanced by applying LuPO4:Pr3+ NPs during X-ray irradiation. The observed effect of the combined treatment is mainly attributed to extracellularly located NPs due to their limited incubation time of 4 h. Longer incubation could increase the uptake and efficiency of the NPs.

ACKNOWLEDGMENTS

We are grateful to Yimin Wang and Michael R. Squillante from Radiation Monitoring Devices, Inc. for providing the LuPO4:Pr3+ NPs. We also thank H. Frederick Dylla and Ramtin Rahmanzadeh for fruitful discussions.

Received: August 12, 2019; accepted: October 21, 2019; published online: Month 0, 2019

REFERENCES