# Nanotechnology

### Outline

#### Introduction

- **1.1** Motivation
- **1.2 Economical Relevance**
- **1.3 Definition**
- **1.4 Historical Milestones**
- **1.5 Properties of Nanoscale Matter**
- **Preparation of Nanostructures** 2.
- 2.1 **Approaches to Nanoscale Structures**
- 2.2 Ball Milling
- 2.3
- Photolithography Gas Phase Processes 2.4
- 2.5 Liquid Phase Processes

#### **Application Areas** 3.

- 3.1 Material Synthesis
- **3.2 Functional Coatings and Layers**
- MR Contrast Enhancement and Hyperthermia 3.3
- 3.4 **Medical Therapy**
- 3.5 Optical Imaging
- **3.6** Biosensors and -assays

Nanotechnology Prof. Dr. Thomas Jüstel

### **1.1 Motivation**

Many Application Areas, e.g. Chemistry, Electronic, Materials, Medicine, Photonic



BAYER-FORSCHER EROBERN DEN NANOKOSMOS

### Aufbruch in den Nanokosmos

DER WEG IN DEN NANOKOSMOS erschließt Forschern völlig neue Welten. Die winzigen Dimensionen übersteigen die menschliche Vorstellungskraft und lassen neue Kräfte wirksam werden.



Nanotechnology Prof. Dr. Thomas Jüstel

### **1.2 Economical Relevance**



# **1.2 Economical Relevance**



# **1.2 Economical Relevance**



# **1.3 Definition**

### What is Nanotechnology?

Nano: Greek prefix which means dwarf

### Nanotechnology can be defined as

- 1. Research and technology development at the atomic, molecular or macromolecular levels, in the length scale of approximately 1 -100 nanometer
- 2. Creating and using structures, devices and systems that have novel properties and functions because of their small and/or intermediate size
- 3. Ability to control or manipulate on the atomic scale

#### According to the NNI, USA (http://www.nano.org)

# **1.3 Definition**

Nanoscale particles have an average particle size smaller than ~ 100 nm



# **1.3 Definition**

### **Dimensions of structures in biochemistry and material science**



# **1.4 Historical Milestones**

| Procaryontic cells with nano machines<br>Demokrit: Reasoning about atoms and matter<br>Albert Einstein: Calculate molecular diameter |
|--------------------------------------------------------------------------------------------------------------------------------------|
| Demokrit: Reasoning about atoms and matter<br>Albert Einstein: Calculate molecular diameter                                          |
| Albert Einstein: Calculate molecular diameter                                                                                        |
|                                                                                                                                      |
| Max Knoll & Ernst Ruska: Electron microscope                                                                                         |
| Richard Feynman: "There's Plenty of Room at the Bottom"                                                                              |
| Alfred Y. Cho & John Arthur (Bell Labs): MBE (atomic layer growth)                                                                   |
| Norio Taniguchi: Nanotechnology for fabrication methods below<br>1 µm                                                                |
| Gerd Binning & Heinrich Rohrer: Nobel Prize for Scanning<br>Tunneling Microscope                                                     |
| Robert F. Curl, Harold W. Kroto, Richard Smalley: Buckminster fullerenes (Bucky balls)                                               |
| K. Eric Drexler: Engines of Creation                                                                                                 |
| M. Eigler: Writing with a STM tool                                                                                                   |
|                                                                                                                                      |

# **1.4 Historical Milestones**

| 1991 | Sumio Iigima (NEC): Carbon nanotubes                                                     |
|------|------------------------------------------------------------------------------------------|
| 1993 | Warren Robinett, R. Stanley Williams: Combination of SEM and VR (virtual reality system) |
| 1998 | Cees Dekker et al.: Carbon nano tube transistor                                          |
| 1999 | James M. Tour & Mark A. Read: Single molecule switch                                     |
| 2000 | Eigler et al.: Construction of quantum corrals and quantum mirrors                       |
| 2001 | Florian Bamberg: Soldering of nanotubes with e-beam                                      |
| 2004 | Intel launches the Pentium IV "Prescott" processor based on 90 nm technology             |
| 2006 | Yi Lu et al.: Smart nanomaterials with DNA molecules                                     |

| Nanoscale materials behave as surface matter |                                 |                          |                     |                                                                                                                                                                                             |  |  |
|----------------------------------------------|---------------------------------|--------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                              |                                 | Au-                      | Cluster (55 at      | toms)                                                                                                                                                                                       |  |  |
| n                                            | <b>Atoms/Cluster</b>            | Percentage surface atoms | <b>Cluster size</b> |                                                                                                                                                                                             |  |  |
| 1                                            | 13                              | 92 %                     | 0.58 nm             |                                                                                                                                                                                             |  |  |
| 2                                            | 55                              | 76 %                     | <b>1.4 nm</b>       |                                                                                                                                                                                             |  |  |
| 3                                            | 147                             | 63 %                     | 2.1 nm              | Ann Maganesies and Anorganische Chonne' (Brinneies, Jacker, Weber, Rayner Carlinet) ancheren bei Speitrum<br>Alademischer Verlig, Neichberg, © 2014 Elsever Geld Narcher, Albeitung/6-47 pp |  |  |
| 4                                            | 309                             | 52 %                     | 2.8 nm              |                                                                                                                                                                                             |  |  |
| 5                                            | 561                             | 45 %                     | 3.5 nm              |                                                                                                                                                                                             |  |  |
| 7                                            | 1415                            | 35 %                     | 5 nm                |                                                                                                                                                                                             |  |  |
| 9                                            | 2869                            | 28 %                     | 6.5 nm              |                                                                                                                                                                                             |  |  |
| Conse                                        | equences for                    | solid state chemistry    | catalysis           | optical properties                                                                                                                                                                          |  |  |
| React                                        | ivity                           | +                        | +                   | -                                                                                                                                                                                           |  |  |
| Defect density                               |                                 | +                        | +                   | -                                                                                                                                                                                           |  |  |
| Band                                         | gap                             | <b>-/</b> +              | -                   | -/+                                                                                                                                                                                         |  |  |
| Nano<br>Prof.                                | technology<br>Dr. Thomas Jüstel |                          |                     | Material Science<br>Slide 11                                                                                                                                                                |  |  |

### Nanoscale materials can show quantum confinement effects

Very small nanoparticle show strong confinement of excitons (weakly bound electron-hole pairs) and thus dependence of absorption and luminescence on particle size



### **CdSe Nanocrystals**

#### Absorption and luminescence spectra



### **Colour under UV-A Excitation**



### Nanoscale luminescent materials are mostly less efficient than microscale materials



#### **Result: Quenching of luminescence**

Problem solution: Epitactical growth of a material with a higher band gap onto the surface

| Nanotechnology          | Material Science |
|-------------------------|------------------|
| Prof. Dr. Thomas Jüstel | Slide 14         |

### **Top-down or Bottom-up**

| millimeter               | Ta<br>Da             | op-<br>own | Material Science<br>Bulk materials |                   |                                  |         |
|--------------------------|----------------------|------------|------------------------------------|-------------------|----------------------------------|---------|
| eter                     | п                    |            | Thin films                         | Material Science  | Biology                          |         |
| rome                     | atio                 |            | Heterostructures                   | Photonic crystals | Tissue                           | 1       |
| micı                     | micr<br>uris         |            |                                    |                   | Eucaryontic cells                |         |
| iter                     | mmia                 |            | Lithographic<br>wires              |                   | Procaryontic cells<br>(Bacteria) | anizati |
| lome                     |                      |            |                                    | Molecular wires   | <b>Ribosomes + viruses</b>       | f org   |
| nan                      |                      | •          | Quantum Dots                       | Quantum Dots      | Macromolecules                   | seli    |
| ter                      |                      |            |                                    | Molecules         | Biomolecules                     | Bottom- |
| picome                   |                      |            |                                    | Atoms             | Atoms                            | _ սի    |
| Nanotechr<br>Prof. Dr. T | nology<br>Thomas Jüs | stel       |                                    |                   | Material Science<br>Slide 15     |         |

### Methods to achieve nanostructures

Zero dimensional structures  $\rightarrow$  nanoparticles, quantum dots

- Precipitation in confined structures
- Physical treatment of targets

One dimensional structures  $\rightarrow$ 

 $\rightarrow$  tubes, wires

- Electro deposition
- Chemical Vapour Deposition

Two dimensional structures

 $\rightarrow$  wells, layers

- Chemical Vapour Deposition
- Photolithography

Three dimensional structures

 $\rightarrow$  photonic crystals, superlattices

- Replacement reactions
- Crystallisation of nanocrystals
- DNA based assembly

Nanotechnology Prof. Dr. Thomas Jüstel

### **Driving force for particle growth**

Gibbs energy minimization by reducing the surface/volume ratio

Surface energy increases quadratically, but volume energy decreases cubically

Very small particles  $(r_c)$  are highly reactive, due to their high chemical potential

#### **Comment**

5 nm particles ~ 50% surface atoms 1 μm particles ~ 0.6% surface atoms



Nanotechnology Prof. Dr. Thomas Jüstel

### **Stabilisation of small colloidal particles**



### **b)** Thermordynamic stabilisation of nanoparticles



Ligandmoleküle fest an der Oberfläche gebunden Energie-Bilanz bei der Verdopplung des Teilchenradius:

 $(AX)_n L_k \rightarrow (AX)_{8n} L_{4k} + 4k L \text{ (free Ligands)} \Rightarrow \text{Cleavage of the metal-ligand bond}$ required for particle growth

- Strong metal-ligand bond small cluster
- Weak metal-ligand bond large cluster

### $\Rightarrow$ Cluster size scales with metal-ligand bond strength

Nanotechnology Prof. Dr. Thomas Jüstel

# 2.2 Ball Milling

### **Top-down: Mechanical crushing of solids into nanocrystallites**

#### **Advantages**

- Inexpensive
- Large scale process
- Old well-established process
- Down to 2 20 nm possible

#### **Disadvantages**

- Irregular nanoparticles
- Introduction of defects
- Introduction of impurities from balls and milling additives



A ball mill being used as part of a gold mining operation in Peru

# **2.2 Ball Milling**

L

### **Top-down: Mechanical crushing of solids into nanocrystallites**

#### Milling process

- Dry
- Dry + solid additive (salt) .
- Wet (slurry) ٠



**ZnO nanoscale particles** from a milling process



# Top-down: Photochemical manufacturing of micro- and nanostructures for integrated circuits

#### **History of integrated circuit development**

- **1947** Invention of the transistor
- **1961** First integrated circuit
- 1965 Moore's law published
- 1975 Intel 8080 chip: 4500 transistors
- 1981 "640 kByte ought to be enough for anybody" (Bill Gates)
- **1993 Pentium I: 3.1 Mio. transistors**
- 1997 Pentium II: 7.5 Mio. transistors 250 nm line width
- 2000 180 nm line width
- 2002 130 nm structures
- 2005 45 nm technology

Nanotechnology Prof. Dr. Thomas Jüstel





### **Top-down: Photolithography**

#### **Process**

- 1. Photoresist layer deposition by spin coating
- 2. Exposure to UV Radiation
- 3. Removal of photoresist
- 4. Etching of unprotected areas
- 5. Doping by ion implantation
- 6. Repeat cycle to deposit metal connector



### **Top-down: Photolithography**

**Evolution of the lithography process** 

| Stepper        | λ [nm] | <b>Radiation source</b>             |
|----------------|--------|-------------------------------------|
| Visible g-line | 436    | high-pressure Hg                    |
| Visible i-line | 365    | high-pressure Hg                    |
| High deep UV   | 248    | KrF Excimer LASER                   |
| Deep UV        | 193    | ArF Excimer LASER                   |
| Deep UV        | 157    | <b>F</b> <sub>2</sub> Excimer LASER |
| Extreme UV     | 13.7   |                                     |
| Electron beam  |        |                                     |
|                |        |                                     |
|                |        |                                     |

Schematic process flow



### Limititations of photolithography and miniaturisation of transistors

#### **Technical limitations**

- Wavelength of radiation source
- Focussing of radiation

### **Fundamental limitation**

- Typically a semiconductor of 1000 nm<sup>3</sup> comprises one free electron
- Extrapolation of the present development shows that "single electron transistors" will be reality at ~ 2020

### Vanishing Electrons



### **Top-down: LASER-Ablation for the synthesis of Carbon Nano Tubes (CNTs)**

The vaporization of a target at a fixed temperature by a continuous  $CO_2$  laser beam ( $\lambda = 10.6 \mu m$ ) is shown in the bottom figure.

The power can be varied from 100 W to 1600 W. The temperature of the target is measured with an optical pyrometer.

These measurements are used to regulate the laser power to maintain a constant vaporization temperature. The gas, heated by the contact with the target, acts as a local furnace and creates an extended hot zone, making an external furnace unnecessary.

The gas is extracted through a silica pipe, and the solid products formed are carried away by the gas flow through the pipe and then collected on a filter.

Nanotechnology Prof. Dr. Thomas Jüstel



### **Bottom-up: CNT growth synthesis by DC Plasma Chemical Vapour Deposition**



W. Milne, J. Robertson, K. Teo, Cambridge U. UK (FP5-EU-Program CARDECOM Partner)

Nanotechnology Prof. Dr. Thomas Jüstel



- 2. Formation of catalyst nanoparticles at 500 900 °C (growth temp.): Catalyst film breaks into nanoparticles
- **3.** Plasma CVD: C-carrier (CH<sub>4</sub>, C<sub>2</sub>H<sub>2</sub>) provides C for tube growth, etchant (NH<sub>3</sub>, N<sub>2</sub>, H<sub>2</sub>) removes unwanted amorphous carbon

Nanotechnology Prof. Dr. Thomas Jüstel



#### Source: Peter K. Bachmann Philips Research Laboratories Aachen

Nanotechnology Prof. Dr. Thomas Jüstel





### Allotropic forms of elemental carbon



### **Carbon Nano Tubes: Structures and properties**



n and m determine the chirality and thus conductance, density, lattice structure, etc.

Semiconducting

(n,m) where n-m  $\neq$  3x

band gap ~ 0.5 eV

(n,0) zigzag



Nanotechnology Prof. Dr. Thomas Jüstel

(n,m) where n-m = 3x

Metallic

(n,n) armchair



### **Carbon Nano Tubes: Physical properties**

| Average diameter of Single W | /all Nano Tubes (SWNTs)    | 1.2 -   | • 1.4 nm            |  |  |  |  |
|------------------------------|----------------------------|---------|---------------------|--|--|--|--|
| Lattice parameter            |                            |         | 0                   |  |  |  |  |
| ( <b>10,10</b> ) Armchair    |                            | 16.78 Å |                     |  |  |  |  |
| (17,0) Zigzag                |                            | 16.5    | 2 Å                 |  |  |  |  |
| Density                      |                            |         |                     |  |  |  |  |
| (10,10) Armchair             |                            | 1.33    | g/cm <sup>3</sup>   |  |  |  |  |
| (17,0) Zigzag                |                            | 1.34    | g/cm <sup>3</sup>   |  |  |  |  |
| (12,6) Chiral                |                            | 1.40    | g/cm <sup>3</sup>   |  |  |  |  |
| <b>Optical band gap</b>      |                            |         | 0                   |  |  |  |  |
| For (n,m): n-m is divisi     | ible by 3 (metallic)       | 0.0 ¢   | eV                  |  |  |  |  |
| For (n,m): n-m is not d      | ivisible by 3 (semi-cond.) | ~ 0.4   | 5 eV                |  |  |  |  |
| Electrical transport         | Electrical transport       |         |                     |  |  |  |  |
| Conductance quantization     |                            | (12.    | 9 kΩ) <sup>-1</sup> |  |  |  |  |
| Resistivity                  |                            | 10-4    | Ωcm                 |  |  |  |  |
| Maximum current density      | $A/m^2$                    |         |                     |  |  |  |  |
| Thermal transport            |                            |         |                     |  |  |  |  |
| Thermal conductivity         |                            | ~ 20    | 00 W/m·K            |  |  |  |  |
| Elastic behavior             |                            | _ •     |                     |  |  |  |  |
| Young's modulus (SWNTs)      |                            | ~1′     | ГРа                 |  |  |  |  |
| Young's modulus (MWNT        | s)                         | 1.28    | <b>TP</b> a         |  |  |  |  |
| Maximum tensile strength     | ~)                         | ~ 10    | 0 GPa               |  |  |  |  |
| Nanotechnology               |                            |         | Material Science    |  |  |  |  |
| Prof. Dr. Thomas Jüstel      |                            |         | Slide 33            |  |  |  |  |





### **Carbon Nano Tubes: Application in electron guns of Cathode Ray Tubes (CRTs)**


### **Bottom-up: Chemical Vapour Deposition (CVD)**

Chemical process for depositing thin solid films of various materials onto a substrate

**Deposition material: Substrate:**  Diamond, metals, oxides, nitrides, borides, carbides ... Si, SiO<sub>2</sub>, Si<sub>3</sub>N<sub>4</sub>, Al<sub>2</sub>O<sub>3</sub> ...

**Application areas** 

- Coating of tools (W, Diamond)
- Metal contacts on semiconductors (Cu, Ag)
- Transparent conductors onto glass (ITO)
- Insulation layers (SiO<sub>2</sub>)
- Composite materials (Al)
- Preparation of semiconductors
  - (Al,In,Ga)N
  - (Al,In,Ga)P
  - Ga(As,P)



### **Bottom-up: Chemical Vapour Deposition (CVD)**

#### **Advantages of CVD**

- Ease of control of layer thickness
- Good layer homogeneity
- "Universal" process

#### **CVD** parameters

- Volatility of precursor
- Ease of decomposition & volatility of fragments
- Relative concentration
- Catalyst on target surface (e.g. Ni or Co)
- Crystallographic arrangement of surface
- Process temperature
- Gas pressure

#### • •••

#### **Bottom-up: Chemical Vapour Deposition (CVD) of Platinum layers**

**Precursor:** [**Pt**<sup>II</sup>(hfac)<sub>2</sub>]<sup>0</sup> hfac = hexafluoroacetylacetonate

Reductive thermal decomposition:  $[Pt^{II}(hfac)_2]^0 + H_2 \rightarrow Pt + 2 H_2 fac$ 

Result





#### **Bottom-up: Other CVD Methods**

Decomposition due to LASER beam (Microwave) plasma High temperature Method Laser assisted CVD Plasma enhanced CVD Thermal CVD, fluid bed CVD



#### **Bottom-up: Sol-Gel Process**



#### **Bottom-up: Sol-Gel Process**

### **Advantages**

- Ease of production of large area coatings
- Scalable
- Precise composition control
- Low temperature synthesis
- High homogeneity
- Tunable layer composition

### **Disadvantages**

- Sensitivity for atmosphere condition
- Cost of raw materials
- Use of toxic solvent system

#### **Bottom-up: Sol-Gel Process**



Nanotechnology Prof. Dr. Thomas Jüstel

#### **Bottom-up: Sol-Gel Process**



#### **Bottom-up: Sol-Gel Process**



#### **Particle size vs. reaction temperature**



Temperature  $\uparrow \Rightarrow$  Reaction rate  $\uparrow \Rightarrow$  Nucleation time  $\downarrow \Rightarrow$  Size Distribution  $\downarrow$ 

Nanotechnology Prof. Dr. Thomas Jüstel

#### **Bottom-up: Sol-Gel Process "Stöber Process"**



### **Bottom-up: Synthesis of metal nanoparticles**

**Application of metal nanoparticles** 

- Electronic materials, e.g. Ni
- Magnetic materials, e.g. Fe
- Catalysts, e.g. Pt
- Explosives, e.g. Al
- Powder metallurgy, e.g. Cr
- Photographic films, e.g. Ag

Synthesis approach: Reduction of metal salts

a) In organic solvents (non noble metals)  $Co^{2+} + 2 BH_4^- \rightarrow Co + H_2 + B_2H_6$  in Dyglyme  $AlCl_3 + 3 K \rightarrow Al + 3 KCl$  in Xylene

b) In water (noble metals, i.e. Rh, Ir, Pd, Pt, Cu, Ag, Au)
6 HAuCl<sub>4</sub> + HOC(COOH)(CH<sub>2</sub>COOH)<sub>2</sub> + 24 OH<sup>-</sup> → 6 Au + 24 Cl<sup>-</sup> + 6 CO<sub>2</sub> + 19 H<sub>2</sub>O

Nanotechnology Prof. Dr. Thomas Jüstel

#### **Bottom-up: Synthesis of metal nanoparticles**

Example: Manufacturing of multi-layer ceramic capacitors (MLCCs)



Ongoing improvement of small high capacitance MLCCs require a continuous reduction of

• dielectric layer thickness

### **Commercial Ni nanoscale powders**



• internal Ni electrode layer thickness (80 ± 20 nm Ni particles)

Nanotechnology Prof. Dr. Thomas Jüstel

#### **Bottom-up: Synthesis of metal nanoparticles**

Reduction of Ni<sup>2+</sup> in solution

 $2 \operatorname{Ni}^{2+} + \operatorname{N_2H_4} + 4 \operatorname{OH^-} \rightarrow 2 \operatorname{Ni}^0 + \operatorname{N_2} + 4 \operatorname{H_2O}$ 

**Hydrazine = Reducing agent** 

#### **Result**

Particles with Random shape and size and a broad broad size distribution



**Advanced precipitation processes** 

- Application of an additive (dispersant, complex agent)
- Heterogeneous nucleation (seed)

#### **Bottom-up: Synthesis of metal nanoparticles**

#### Guideline for the reducing agent

| Metal                  | E <sup>0</sup> [V] vs. S    | SHE | Reducing agent                                                             |            | Conditions     |
|------------------------|-----------------------------|-----|----------------------------------------------------------------------------|------------|----------------|
| Au, Pd, Pt, Ag         | >+0.7                       |     | organic acids, ROH, polyols                                                |            | >70 °C         |
| Rh, Ir, Hg             |                             |     | aldehyds, sugars                                                           |            | < 50 °C        |
| _                      |                             |     | hydrazine, H <sub>2</sub> SO <sub>3</sub> , H <sub>3</sub> PO <sub>2</sub> |            | ambient temp.  |
|                        |                             |     | NaBH <sub>4</sub> , boranes, hydrated e <sup>-</sup>                       |            | ambient temp.  |
| Cu, Re, Ru             | < + <b>0.7</b> > <b>0</b> . | .0  | polyols                                                                    |            | > 120 °C       |
|                        |                             |     | aldehydes, sugars (Fehling so                                              | l.!)       | >70 °C         |
|                        |                             |     | hydrazine, hydrogen                                                        |            | < 70 °C        |
|                        |                             |     | NaBH <sub>4</sub>                                                          |            | ambient temp.  |
| Cd, Co, Ni, Fe         | < 0.0 > - 0.                | .6  | polyols                                                                    |            | >180 °C        |
| In, Sn, Mo, W          |                             |     | hydrazine, hydroxylamine                                                   |            | 70 – 100 °C    |
|                        |                             |     | NaBH <sub>4</sub> , boranes, hydrated e <sup>-</sup>                       |            | ambient temp.  |
| Cr, Mn, Ta, Y          | < - 0.6                     |     | NaBH₄, boranes                                                             |            | T, p > ambient |
| , , ,                  |                             |     | hydrated e                                                                 |            | ambient temp.  |
| Nanotechnology         | 1                           |     |                                                                            | Material S | Science        |
| Prof. Dr. Thomas Juste |                             |     |                                                                            | Silae 50   |                |

#### Bottom-up: Sol-Gel Process "Stöber Process"



#### **Bottom-up: Synthesis of metal nanoparticles**

How to control metal particle size?

- Processing parameter
  - Temperature, pressure, concentration, pH, ultrasound application, ...
- Seed (heterogeneous nucleation)
  - Type and concentration of applied seed
- Complex agent
  - Complex stability

**Redox potential of Ag<sup>+</sup> as function of the presence of a complexing agents** 

| Redox system                                                          |                   | -log K <sub>B</sub> | <b>E<sup>0</sup> [V] vs. SHE</b> |  |
|-----------------------------------------------------------------------|-------------------|---------------------|----------------------------------|--|
| $Ag^+ + e^- \rightarrow Ag^0$                                         |                   |                     | + 0.799                          |  |
| $[\mathrm{Ag}(\mathrm{NH}_3)_2]^+ + \mathrm{e}^- \to \mathrm{Ag}^0 +$ | 2 NH <sub>3</sub> | 7.2                 | + 0.38                           |  |
| $[Ag(SO_3)_2]^{3-} + e^- \rightarrow Ag^0 + 2SO_3^{2-}$               |                   | 8.7                 | + 0.29                           |  |
| $[Ag(S_2O_3)_2]^{3-} + e^- \rightarrow Ag^0 + 2S_2O_3^{2-}$           |                   | 13.4                | + 0.01                           |  |
| $[AgI_4]^{3-} + e^- \rightarrow Ag^0 + 4I^-$                          |                   | 15.0                | - 0.09                           |  |
| $[Ag(CN)_3]^2 + e^- \rightarrow Ag^0 + 3 CN^-$                        |                   | 22.2                | 2 - 0.51                         |  |
| Nanotechnology<br>Prof. Dr. Thomas Jüstel                             |                   |                     | Material Science<br>Slide 52     |  |

**Bottom-up: Synthesis of metal nanoparticles** 

Heterogeneous nucleation a)  $Ag^+ + e^- \rightarrow Ag^0$ (seed)

b)  $Ag^{0}(seed) + Ni^{2+} + 2e^{-} \rightarrow Ni^{0}$  (nanoscale particle)



### **Bottom-up: Synthesis of metal nanoparticles**

#### **Heterogeneous nucleation**



#### **Bottom-up: Synthesis of metal nanoparticles**

Formation mechanism of seed-mediated growth for Ag and Au rods

a) Ag- or Au-salt + NaBH<sub>4</sub> + citrate  $\rightarrow$  seed

b) seed + metal salt + ascorbic acid + CTAB → nanorods (CTAB = Cetyltrimethylammonium bromide)

| Chemical          | Role                  |
|-------------------|-----------------------|
| NaBH <sub>4</sub> | strong reducing agent |
| Citrate           | capping agent         |
| Ascorbic acid     | weak reducing agent   |
| CTAB              | rod like template     |

Decreasing the seed concentration increases the aspect ratio and the color (absorption edge) of nanorods

Aspect ratio increases from 1:1 to 1:10 (left graphs)

Nanotechnology Prof. Dr. Thomas Jüstel



### **Bottom-up: Synthesis of metal nanoparticles**

#### **Polyol method**



e.g. ethylen glycol

Synthesis pathway

**1.** Dissolve soluble metal salts, e.g. acetates in pure alcohol (reducing agent) with a rather high boiling point

2. Boil for several hours

- **3.** Separate by centrifugation
- 4. Wash by alcohol

→ Au, Pt, Pd, Ag, Rh, Hg, Ir, Cu, Re, Ru, Cd, Co, Ni, Fe, In, Sn, Mo, W, ...

### **Bottom-up: Synthesis of phosphate nanoparticles**

Synthesis in alcohols (van Veggel)

- 1. LnCl<sub>3</sub> and trisalkylphosphate in methanol
- 2. Addition of H<sub>3</sub>PO<sub>4</sub>
- 3. Addition of trioctylamine to deprotonate phosphoric acid
- $\Rightarrow$  Formation of LnPO<sub>4</sub> nanoscale particles with alkyl phosphate capping

#### Synthesis in highly boiling polyols (Haase et al.)

- 1.  $Ln(ac)_3$  in ethylen glycol
- 2. Addition of trioctylphosphinoxide
- 3. Addition of Na<sub>2</sub>HPO<sub>4</sub>
- 4. Boiling
- $\Rightarrow Formation of LnPO_4 nanoscale$ particles with TOPO capping



Slide 57

### **Bottom-up: Synthesis of phosphate nanoparticles**

Synthesis in water (Merikhi, Bachmann, Jüstel et al.)

- 1.  $Ln(ac)_3$  in acidic water
- 2. Addition of complexing agent
- 3. Addition of an excess of citric acid
- 4. Addition of  $H_2PO_4^{-1}$
- 5. Enhance pH to 9 10 and temper at 80 90 °C
- ⇒ Formation of LnPO<sub>4</sub> nanoscale particles with citric acid capping





Nanotechnology Prof. Dr. Thomas Jüstel





#### **Bottom-up: Synthesis of phosphate nanoparticles**

YPO<sub>4</sub>:Pr and LuPO<sub>4</sub>:Pr as 235 nm emitter



#### **YPO<sub>4</sub>:Pr (30 nm particles)**



#### LuPO<sub>4</sub>:Pr (5 nm particles)



Further examples: GdPO<sub>4</sub>:Pr, LaPO<sub>4</sub>:Pr, YPO<sub>4</sub>:Ln (Ln = Ce, Gd, Nd)

| Nanotechnology          | Material Science |
|-------------------------|------------------|
| Prof. Dr. Thomas Jüstel | Slide 61         |

Bottom-up: Synthesis of phosphate nanoparticles using rod like template<br/>YPO4:Bi NanorodsYPO4:Ce Nanorods





#### **Application areas**

- Precursor for phosphor syntheses
- Precoatings of lamp glass
- Phosphors for UV emitting discharge lamps

Nanotechnology Prof. Dr. Thomas Jüstel

#### Synthesis pathways to Y<sub>2</sub>O<sub>3</sub>:Eu powder

- 1. Ceramic method
  - $\mathbf{Y}_{2}\mathbf{O}_{3} + \mathbf{E}\mathbf{u}_{2}\mathbf{O}_{3} \rightarrow (\mathbf{Y}_{1-\mathbf{x}}\mathbf{E}\mathbf{u}_{\mathbf{x}})_{2}\mathbf{O}_{3}$
- 2. Precipitation methods
- a) Oxalate route (non-homogeneous precipitation)  $2(1-x) Y^{3+} + 2x Eu^{3+} + 3 C_2O_4^{2-} \rightarrow (Y_{1-x}Eu_x)_2(C_2O_4)_3$   $(Y_{1-x}Eu_x)_2(C_2O_4)_3 \rightarrow (Y_{1-x}Eu_x)_2O_3 + 3 CO_2 + 3 CO_3$
- b) Hydroxide route (homogeneous precipitation)  $H_2N-CO-NH_2 + H_2O \rightarrow 2 NH_3 + CO_2$   $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^ (1-x) Y^{3+} + x Eu^{3+} + 3 OH^- \rightarrow (Y_{1-x}Eu_x)OH_3$  $2 (Y_{1-x}Eu_x)OH_3 \rightarrow (Y_{1-x}Eu_x)_2O_3 + 3 H_2O$



### Synthesis of Y<sub>2</sub>O<sub>3</sub>:Eu nanoscale powder

#### Hydroxide precursor



#### Y<sub>2</sub>O<sub>3</sub>:Eu phosphor



#### **Emission and excitation spectrum**



- 200 nm particles
- Narrow particle size distribution
- Homogeneous particle morphology
- Quantum efficiency > 65%

### Synthesis of (Y,Gd)<sub>2</sub>O<sub>3</sub>:Eu nanoscale powder

Homogeneous particle morphology



- (Y,Gd)<sub>2</sub>O<sub>3</sub> particle diameter ~ 200 500 nm
- Thin and dense layer, e.g. as a reflector layer

Nanotechnology Prof. Dr. Thomas Jüstel  $\Rightarrow$  homogeneous layer morphology



Synthesis of homogeneous (Y,Gd)BO<sub>3</sub>:RE powder for PDPs

- a) Synthesis of a insoluble precursor  $LnB(OH)_4CO_3$  $\Rightarrow 0.6 - 7.0 \ \mu m$  particles
- b) Conversion into the phosphor by annealing: Ln = Y, La, Gd, Lu
- Blue LnBO<sub>3</sub>:Ce, LnBO<sub>3</sub>:Tm
- Green LnBO<sub>3</sub>:Tb, LnBO<sub>3</sub>:Er
- Red LnBO<sub>3</sub>:Eu, LnBO<sub>3</sub>:Sm

"Precursor route"

#### LnBO<sub>3</sub>:Eu (solid state synthesis)



Nanotechnology Prof. Dr. Thomas Jüstel

### Precursor $LnB(OH)_4CO_3 \rightarrow Phosphor LnBO_3$



Synthesis of optically transparent ceramics

- Optical transmission: I/I<sub>0</sub> = (1-R)<sup>2</sup> exp(-μx)
   R: reflectivity, μ: absorption coefficient, x: sample thickness
- $\mu = a + S_{im} + S_{op}$ a: electronic absorption,  $S_{im}$ : impurity scattering,  $S_{op}$ : optical anisotropy scattering
- Requirements for transparency: optically isotropic host lattice, no pores or second phases



Synthesis of Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>:Ce (cubic) powder for ceramic processing

- 1. Ceramic method  $3 Y_2 O_3 + 5 Al_2 O_3 + Flux (BaF_2) \rightarrow 2 Y_3 Al_5 O_{12} \Rightarrow \mu$ m-particles
- 2. Homogeneous precipitation of hydroxycarbonates + surfactants, e.g. sodium dodecylsulfate
  - $\Rightarrow$  Reduction in particle size and improvement of homogeneity  $\Rightarrow$  nm-particles



method according to Konoshima Chemical



method according to D. Uhlich, Diploma thesis (2004)

Nanotechnology Prof. Dr. Thomas Jüstel

| Sy                       | onthesis of transparent                                                 | Y <sub>3</sub> Al <sub>5</sub> O <sub>12</sub> :Ce | "Yellow phosphor | for LEDs"                    |
|--------------------------|-------------------------------------------------------------------------|----------------------------------------------------|------------------|------------------------------|
| 1.                       | Precipitation of nanopo<br>Al( $t$ -BuO), + V(NO,), in                  | wder<br>1 ethyl acetate                            |                  |                              |
| 2.                       | Sintering: 1000 °C in ai                                                | r                                                  |                  |                              |
| <b>-</b> .<br><b>3</b> . | Pellets pressing (PVA b                                                 | inder) in SiC pit                                  |                  |                              |
| 4.                       | <ol> <li>4. Microwave treatment (400 W, 35 min.) + polishing</li> </ol> |                                                    |                  |                              |
|                          | Acc.V. Spot Det WD Exp<br>10.0 kV 3.0 SE 10.7 1 YAG:Ce LEDWM1304 2      | mi                                                 | crowave sintered | <b>1400 °C, 4 h</b>          |
|                          | Nanotechnology<br>Prof. Dr. Thomas Jüstel                               |                                                    |                  | Material Science<br>Slide 69 |

# **3.2 Functional Coatings and Layers**

### **Application areas**

### Nanoparticle coatings

- Pigmentation of display phosphors,
   e.g. applied in CRTs or PDPs
- Protective coatings onto μ-scale pigments and μ-scale phosphors
- Dielectric coatings onto electroluminescence phosphors (EL)

### Nanoparticle layers

- Colour filter, e.g. onto incandescent lamps (Philips Blue Vision)
- Interference filter onto display glass + light bulbs
- Transparent converter layer in LEDs
- Lamp production: Improvement of layer morphology and adhesion



# **3.2 Functional Coatings and Layers**

### **Coating materials**

#### **Requirements**

- (photo)chemical and thermal stability
- high transparency

| Protective materials                         | 5    | Band gap [eV] | PZC [pH]   |  |  |  |
|----------------------------------------------|------|---------------|------------|--|--|--|
| • LaPO <sub>4</sub>                          |      | 8.7           | 7.8        |  |  |  |
| • $SiO_2$                                    |      | 8.4           | 2-3        |  |  |  |
| • MgO                                        |      | 8.0           | 12.0       |  |  |  |
| • $\gamma$ -Al <sub>2</sub> O <sub>3</sub>   |      | 7.5           | 9.0        |  |  |  |
| • $Y_2O_3$                                   |      | 5.6           | 9.1        |  |  |  |
| • $La_2O_3$                                  |      | 5.5           | 10.5       |  |  |  |
| • C (diamond) "                              | DLC" | 5.4           | ?          |  |  |  |
| • $SnO_2$                                    |      | 3.6           | 4.5        |  |  |  |
| • ZnO                                        |      | 3.4           | 10.5       |  |  |  |
| Colour filter                                |      |               |            |  |  |  |
| • $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> r | ot   | 1.9           | <b>6.7</b> |  |  |  |
| • $CoAl_2O_4$ b                              | olau | ?             | 9 - 10     |  |  |  |
|                                              |      |               |            |  |  |  |

α-Fe<sub>2</sub>O<sub>3</sub> Nanoparticles



Nanotechnology Prof. Dr. Thomas Jüstel

# **3.2 Functional Coatings and Layers**

**Protective MgO coating on BaMgAl**<sub>10</sub>**O**<sub>17</sub>**:Eu (BAM) "Blue Phosphor for PDPs"** 

Process

- $Mg(NO_3)_2 + urea + BAM in H_2O$
- Homogeneous pH value enhancement:

 $H_2N-CO-NH_2 + H_2O \rightarrow 2 NH_3 + CO_2$  $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^ Mg^{2+} + 2 OH^{-} \rightarrow Mg(OH)_{2}$ 

Sintering at 600 °C: Mg(OH)<sub>2</sub>  $\rightarrow$  MgO + H<sub>2</sub>O  $\Rightarrow$  MgO nm particles onto BAM particles

SEM image BaMgAl<sub>10</sub>O<sub>17</sub>:Eu



1 um 300kV 366E4 1509/8; U771/98

Nanotechnology **Prof. Dr. Thomas Jüstel**  SEM image BaMgAl<sub>10</sub>O<sub>17</sub>:Eu (MgO)


## Protective La<sub>2</sub>O<sub>3</sub> coating on BaSi<sub>2</sub>O<sub>5</sub>:Pb (BSP) "UV-A Phosphor for tanning lamps"

## Application problem

BSP has a low PZC and thus shows fast Hg<sup>+</sup> take-up in fluorescent lamps, which results in strong light output decrease

## **Solution**

Coating by a high PZC material as e.g. La<sub>2</sub>O<sub>3</sub> or Al<sub>2</sub>O<sub>3</sub>

#### **Coating process**

- Neutral to alkaline suspension pH 7 10
- Stabilisation of La<sup>3+</sup> required,
   e.g. by complexation with EDTA



## **SEM images**





Nanotechnology Prof. Dr. Thomas Jüstel

## **TEM images**





## Protectice SiO<sub>2</sub> coating on (Ca,Sr)S:Eu "Red LED phosphor"

#### **Application problem**

- (Ca,Sr)S:Eu is highly sensitive towards H<sub>2</sub>O and CO<sub>2</sub>
- (Ca,Sr)S:Eu is highly refractive (n > 2.0)

**Coating process** 

 $Si(OEt)_4 + 2 H_2O \rightarrow SiO_2 + 4 EtOH$ "Hydrolysis of TEOS in EtOH"

## SiO<sub>2</sub> coated (Ca,Sr)S:Eu

- Coating reduces diffusion of H<sub>2</sub>O and CO<sub>2</sub> to the particle surface
- Coating is nano structured which results in refractive index gradient layer (anti-reflective surface)



"Moth eye coating"

Material Science Slide 75

Pigmentation of ZnS:Ag by CoAl<sub>2</sub>O<sub>4</sub>

- Co-precipitation of Co<sup>2+</sup> and Al<sup>3+</sup> by Hydrolysis of Co(CH<sub>3</sub>COO)<sub>2</sub> und Al(CH<sub>3</sub>COO)<sub>3</sub> in aqueous solution:
   Co<sup>2+</sup> + Al<sup>3+</sup> + 5 OH<sup>-</sup> → Co(OH)<sub>2</sub> + Al(OH)<sub>3</sub>
- Sintering: Hydroxides  $\rightarrow$  CoAl<sub>2</sub>O<sub>4</sub>



Nanotechnology Prof. Dr. Thomas Jüstel

## **Interference layers**

- $\Rightarrow$  Anti-reflective coatings (light outcoupling)
- stacks of layers (high and low index of refraction)
- monolayer of monodisperse spherical particles





## **Interference layers**

⇒ Moth eye coatings (light incoupling)

Solar cells with enhanced efficiency



Porous refractive gradient layer Periodic surface structure

Nanotechnology Prof. Dr. Thomas Jüstel

#### **Fraunhofer Institute Freiburg**



## Luminescent screen in fluorescent lamps



Nanoparticle filler  $(5 - 50 \text{ nm Al}_2\text{O}_3 \text{ or Ca}_2\text{P}_2\text{O}_7)$ 

## Effect of alon-c filler

- Improves adhesion
- Improves lamp lifetime (reduces Hg take-up)
- Reduces initial light output due to absorption of 185 and 254 nm line



## Precoating layers (20 - 50 nm $Al_2O_3$ or $Y_2O_3$ )

Schematic build-up of a luminescent screen in fluorescent lamps

- **1.** Luminescent material + filler
- 2. Precoating
- 3. Glass substrate



#### **Functions of pre-coating layer**

- Protection of glass from Hg discharge
- Backscattering of transmitted UV photons

```
GE, US: "Star coating"
```

## Today: Nanoparticles of Al<sub>2</sub>O<sub>3</sub> (alon-c)

# **3.3 MR Contrast Enhancement and Hyperthermia**

Improvement of diagnostic methods, e.g. <sup>1</sup>H NMR (tomography)

**Physics** 

Protons (<sup>1</sup>H<sup>+</sup>) have a spin

$$\Rightarrow$$
 I = 1/2

 $\Rightarrow$  m<sub>I</sub> = +1/2 and m<sub>I</sub> = -1/2

 $\Rightarrow$  energy separation  $\Delta E$  by a magnetic field B

 $\Rightarrow$  monitored are T<sub>1</sub> spin-lattice relaxation rates

## **Requirements on materials for MR contrast enhancement**

Е

- "Single-domain" magnetic nano particles, e g. γ-Fe<sub>2</sub>O<sub>3</sub>, Fe<sub>3</sub>O<sub>4</sub>, Fe, CrO<sub>2</sub>
- Paramagnetic compounds, e.g. Gd-complexes or
- Gd<sup>3+</sup> in nano vesicles
- Ø ~ 10 nm, spherical morphology

#### Diagnostic advantages

- Higher image resolution
- Little impact by external magnetic fields
- Coupling of imaging with therapy

Nanotechnology Prof. Dr. Thomas Jüstel







# **3.3 MR Contrast Enhancement and Hyperthermia**

## Improvement of diagnostic methods, e.g. <sup>1</sup>H NMR (tomography)

<u>Physics:  $Gd^{3+}$  comprising MR contrast enhancement pharmaceuticals</u> Association of  $Gd^{3+}$  ([Xe]4f<sup>7</sup> S = 7/2) cations to the the <sup>1</sup>H nuclei (H<sub>2</sub>O) results in accelerated relaxation of protons due to magnetic interaction

#### **Approaches**

- a) Application of Gd<sup>3+</sup> complexes with coordination sites accessible towards H<sub>2</sub>O molecules, e.g. [Gd(DTPA)]
- b) Application of Gd<sup>3+</sup> comprising vesicles, e.g. Gd<sub>2</sub>HoN@C<sub>80</sub>(OH)<sub>n</sub> (Shinohara et al. have reported a significant increase (>20) in the <sup>1</sup>H MR T<sub>1</sub> spin-lattice relaxation rate)



# **3.3 MR Contrast Enhancement and Hyperthermia**

## **Hyperthermia - Thermal cancer therapy**

#### <u>Idea</u>

Cancer cell death induced by strong magnetic AC field or LASER irradiation

#### **Method**

- Surface modification of magnetic nanoparticles (Fe<sub>2</sub>O<sub>3</sub>, FePt, or Au) to achieve selective up-take into cancer cells (antigen-antibody approach)
- Inject into blood or cancer tissue
- Apply AC field (oscillation) or LASER radiation (absorption) to heat up cancer cells
- Cell death for  $T > 44 \degree C$



## **Drug delivery**

#### **Motivation**

a) A major problem in pharmaceutical research is the formulation of the active ingredients. Substances have to be transported to the target cells (and only there) and release or activate the drug there in the desired concentration over time.

Nanoparticle can function as a protective shell to prevent the immune system to destroy the drug, function as an envelope to ensure the correct delivery to the target cells or act as an ingredient deposit.

b) Nanoparticles and nanocrystalline materials are already commercialized as antimicrobial and antifungal agents. The health care industry needs for improved protection against bacteria in the face of growing antibiotic resistance.

#### Some examples

- Radiation therapy
- Photodynamic therapy
- Ag has antibiotic properties and is being used to made into crystalline nanoparticles, which increase solubility and potency

## **Radiative cancer therapy**

- 1. Irradiation by x-rays
- Application of keV to few MeV radiation
- Problems:
  - Low cross-section of absorbing material requires relatively high dose
  - No healthy/diseased tissue contrast

## 2. Application of radionuclides

- $^{212}\text{Bi} \rightarrow \alpha + ^{208}\text{Tl}$  (half life ~ 1 h, 13.3 h for  $^{123}\text{I}$ , 7 h for  $^{212}\text{At}$ )
- To achieve high specificity to cancer cells, the radionuclide cations are chelated by organic moieties, e.g. edta, which is conjugated to an antibody with high specificity to cancer cells
- Problems:
  - Toxicity of the agents
  - Short half-life of useful radionuclides

## **Radiative cancer therapy**

**Radiation therapy by application of radionuclides** 



Coupling towards nanoparticle occurs e.g. by the application of the biotine-avidine system

#### **References**

- Photogen Inc., US 6331286
- Light Sciences Limited Partnership, WO 99/52565

Nanotechnology Prof. Dr. Thomas Jüstel

## **Photodynamic cancer therapy**

## **Principle**

- Administration of a photosensitive drug to an affected area (e.g. cancer tissue)
- Subsequent irradiation with light
- Light sources (50 mW/cm<sup>2</sup>, 600 800 nm)
  - LASER
  - AlInGaP LEDs
  - Low-pressure discharge lamps

## **Application areas**

- Skin cancer treatment: Basal cell cancer, melanoma
- Blood cancer treatment: Leukemia
- Rheumatoid arthritis
- Bio stimulation: Wound healing
- Cosmetic skin treatment: Stain removal



## Structure of a porphyrin sensitiser



Slide 88

## **Photodynamic cancer therapy**

Idea: Application of UV-C or VUV emitting nanoscale materials



#### **Excitation of the nanoscale material**

- Internally: Doping with a (positron emitting) radionuclide
- Externally: Irradiation by x-rays, e.g. 511 keV (large contrast!)

#### <u>Reference</u> Philips, EP 03047566

# Site selective delivery of pharmaceuticals

## **Vehicles**

- C<sub>60</sub> or C<sub>70</sub> surface modified by antigen moieties
- Polymeric nanoparticles, e.g. as delivery system for influenza virus glyco proteins (Source: <u>http://www.md.ucl.ac.be/pharma/pub\_farm\_stat.htm</u>)
- Dendrimer conjugates

## **Controlled release of pharmaceuticals by**

- "Biochemistry"
- Heat
- Radiation







Material Science Slide 90





## **Bioconjugation**

- a) Assembly of DNA-modified quantum dots by DNA hybridization results in color change
- b) Linkage to proteins, e.g. via histidin (His) Chemical reaction between boron acid and imidazol:

соон

$$= B(OH)_2 + HN \stackrel{N}{\longrightarrow} N = \frac{[Cu(OH) \cdot TMEDA]_2Cl_2(2)}{H_2O, rt, O_2, overnight} = N \stackrel{N}{\longrightarrow} N$$

соон

он

нό



Slide 93

## Nanoscale rare earth ortho-phosphates

#### **Advantages**

- narrow band emission
- many different colors
- up conversion
- high photo stability
- high chemical stability
- small size (1 10 nm)
- non or minor toxicity expected



Colloidal solutions of (Y,Gd)PO<sub>4</sub>:RE

upon UV-A excitation





## Nanoscale rare earth ortho-phosphates

#### **Optical imaging in-vivo**

- Excitation and emission in the IR-A range (700 900 nm)
- Pr<sup>3+</sup>, Nd<sup>3+</sup>, Yb<sup>3+</sup>, (Eu<sup>3+</sup>), Cr<sup>3+</sup>, Fe<sup>3+</sup>

## **Applications**

- Visualization of nano structures in cells
   ⇒ ion channels, ribosome, ...
- OMR: Simultaneous optical and magnetic diagno
   ⇒ Gd<sup>3+</sup> doped nano scale particles



**Material Science** 

Slide 96

From Chance, Ann N Y Acad Sci, 1998. 838: 29-45, with the addition of lipid data from Conway et al., Am J Clin Nutr, 1984. 40: 1123-30, scaled appropriately

## In-vitro optical imaging on chips

Application: Visualization of protein (BSA)-micro structures (BSA = blood serum albumin)



Coating of a Si waver by biotin(B)-BSA

**Blocking of free Si-"Sites" by BSA** 

Hybridisation with avidin labeled nano scale particles, e.g. Gd<sub>2</sub>O<sub>3</sub>:Eu



Nanotechnology Prof. Dr. Thomas Jüstel

## Definition

#### **Biosensor**

A device that uses specific biochemical reactions mediated by isolated enzymes, immunosystems, tissues, organelles or whole cells to detect chemical compounds, usually by electrical, thermal or optical signals.

#### **Bioassay**

A bioassay is a procedure for determining the concentration, purity, or biological activity of a substance by measuring the biological response that it produces compared to a standard

- Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)
- Hormones (steroids)
- Proteins (polypeptides)
- Immune globulins IgG, IgM, IgA, IgD, IgE ⇒ immunoassays (antibody-antigen reaction)

#### **Determination of**

- a single analyt  $\Rightarrow$  Single analyt assays
- several analyts  $\Rightarrow$  Multi analyt assays

## **Application areas**

#### **Biosensors**

- Glucose in blood
- Cancer markers in blood
- Penicillin in fungi bioreactors
- Urea in urine

#### **Environmental sensors**

- Detection of gaseous molecules
  - NO
  - CO
  - ethylene (plant stress signal)
  - cis-3-hexen-ol (plant odorous substance)
  - α-pyrene, 3-carene, 2-methoxyphenol (early fire detection by electro antennographic detector (antenna of the jewel beetle)
- Detection of poisonous substances in soil
  - 2,4-Dinitrophenol
  - Pentachlorphenol
  - FCCP  $\rightarrow$

Nanotechnology Prof. Dr. Thomas Jüstel





#### Analyte

- The substances to be measured
- Small molecules: Sugars, urea, cholesterol, glutamic acid, phosphate, ..
- Macro molecules: Nucleic acids (DNA, RNA), poly peptides (protein, antibody, enzyme)

## Receptor

- A sensing element that responds to the substances being measured
- The interaction must be highly selective ⇒ Enzyme, Antibody, Nucleic acids, Cells

Nanotechnology Prof. Dr. Thomas Jüstel



A device that converts the physical or chemical changes due to analyte receptor reaction to another form of physical signal (in general, electronic signals) whose magnitude is proportional to the amount of the analyte
Electrochemical detection Potentiometric, Voltammetric, Conductimetric
Optical detection Fluorescence, Absorbance, Light scattering, Refractive index Field effect transistor (FET)

Mechanical, Thermal, Piezoelectric, Surface acoustic waves, Magnetical, ....

## **Performance factors**

**Sensitivity** 

- Minimum amount of analyte that are able to be detected above the background
- Units: Concentration, number of analyte, density, weight

#### **Specificity/Selectivity**

- The ability to discriminate between substrates. This is function of biological component, principle, although sometimes the operation of the transducer contributes to selectivity
- Molecular recognition
- Separation scheme
- Signal overlap

**Speed/Response Time** 

- Sample preparation + Biological/Chemical reaction + Signal Processing
- Bench process : hours to weeks
- Chip process: minutes to hours
- Ultra-high temporal resolution, 10 ns, for real-time measurement of molecular kinetics

Moreover: Accuracy, Simplicity, Cost, Lift time, ...

## **Examples**

**Conversion of bio molecules by an enzyme bound to a surface (e.g. polyaniline)** 



#### **Biosensing of macromolecules**





Binding of chemical or biological species to the surface of a nanowire will result in depletion or accumulation of carriers.

The change in carrier concentration due to binding can be directly monitored by measuring the nanowire conductance.

A solid state FET, whose conductance is modulated by an applied gate, is transformed into a nanosensor by modifying the silicon oxide surface. The conductance of modified Si-NWs increases stepwise with discrete changes in pH from 2 to 9. Changes in the surface charge can chemically-gate the Si-NW.





Nanotechnology Prof. Dr. Thomas Jüstel

# Multi analyte nanoparticle release bioassay Detector

Flow reactor with detection cell

Nanotechnology Prof. Dr. Thomas Jüstel Material Science Slide 107 λ

