Fundamentals of Material Science

Content

Materials are like people – the imperfections make them interesting!

- **1.** Classification and Relevance
- Classes of Materials
- Interdisciplinary Connections to Other Science Branches

2. Structure of Solid State Materials

- Principle Concepts and Classifications
- Types of Bonding and Influences upon Structure
- Ideal Crystals
- Real Crystals
- Phases and Phase Transitions
- Phase Diagrams

God created the solids, but evil the surfaces. (Wolfgang Pauli)

Literature

Solid State Chemistry

- A.R. West, Grundlagen der Festkörperchemie, VCH Verlagsgesellschaft 1992
- L. Smart, E. Moore, Einführung in die Festkörperchemie, Vieweg 1995

Structural Chemistry

- U. Müller, Anorganische Strukturchemie, Teubner 1991
- R.C. Evans, Einführung in die Kristallchemie, deGruyter 1976

Material Science

- D.R. Askeland, Materialwissenschaften: Grundlagen, Übungen, Lösungen, Spektrum Akademischer Verlag 1996
- W. Göpel, C. Ziegler, Einführung in die Materialwissenschaften: Physikalischchemische Grundlagen und Anwendungen, B.G. Teubner Verlagsgesellschaft 1996

Materials

- H. Briehl, Chemie der Werkstoffe, B.G. Teubner Verlagsgesellschaft 1995
- E. Roos, K. Maile, Werkstoffkunde für Ingenieure, Springer-Verlag 2002

Anthony R. West

14.3mm x25.0k SE(U

Examples for Research on New Materials

(Ga,Al,In)N

- Blue and UV emitting diodes
- High-mobility-transistors
- Sensors

(Zn,Cd,Mg)O

- UV/blue emitting light sources
- Spintronic
- Polariton laser
- Nanoparticle as emulsion additive

GaN-LED auf Si Nanostrukturen ² Sr₂Si₅N₈:Eu Phosphor

Nitrides and oxynitrides, e.g. TaO_xN_v and (Ba,Sr,Ca)₂Si₅N₈:Eu

- Yellow and red pigments
- **Phosphors for blue LEDs**
- Hard ceramics: α-SiAlON and β-SiAlON

Examples for Research on New Materials

Starting point: Crystal structure and stability

- Inorganic Crystal Structure Database (ICSD): 187000 Entrees
- Minerals (Mineral Inspired Approach): About 4000 minerals
- Solid state chemistry: Search & description of new crystal structure

Protoypes

- About 9100 materials for engineering
- Further development by doping, solid solutions, process optimisation, Simulations and so on
- Alignment to novel application areas, e.g. TiO₂ (from colour pigments to catalysts and Graetzel cells)

Classification

- By the structure type: Garnet, Magnetoplumbite, Monazite, Olivine, Perovskite, Wurtzite
- By the chemical nature: Aluminatas, borates, carbonates, silicates, sulfates, sulphides
- By the function: Dielectrics, Electrics, Insulators, catalysts, magnetics, optics

Material Classes: "Electrics"

Material class (property)	Compound	(Field of) Application
Metallic conductors	Cu, Ag, Au	Electronics
Low-dimensional metallic conductors	$K_2[Pt(CN)_4], (SN)_x$	
	Hexagonal C _x (graphite)	Electrodes
Semi-conductors	Si, Ge, GaAs	Diodes, transistors, ICs
	Si, CuInSe ₂	Solar panels (photovoltaic)
	GaAs, AlInGaP, AlInGaN, ZnTe	LEDs, laser diodes, photo diodes
	Li _{0.05} Ni ₀₉₅ O	Thermistors
	Se	Photo conductors
	SnO ₂ :In	Transparent electrodes
Thermo-electric materials	Bi ₂ Te ₃ , PbTe	Thermo-electric cooler
Superconductors	Nb ₃ Sn	High-power magnets
	YBaCu ₃ O ₇	Electric transport without resistance
Ion conductors	$NaAl_{11}O_{17}$ (ß-alumina), Li_3N	Long-life batteries, accumulator
	ZrO ₂ :Y, ZrO ₂ :Ca	O ₂ -sensors (Lambda-probe)

Materials Classes: "Dielectrics", "Magnetics" and "Opticals"

Material class (property)	Compound	(Field of) Application	
Piezo electrics	$Pb(Ti_{1-x}Zr_x)O_3(PZT)$	Electro acoustic: microphones, speaker	
Pyro electrics	ZnO	IR-detectors	
Ferro electrics	BaTiO ₃ , PbTiO ₃ , SiO ₂	Compensators, sensors	
Ferro and Ferri magnets	Nd ₂ Fe ₁₄ B, BaFe ₁₂ O ₁₉ , SmCo ₅	Permanent magnets	
	Fe, γ -Fe ₂ O ₃ , CrO ₂	Audio- and video tapes	
	MFe ₂ O ₄ (Ferrite), ZnFe ₂ O ₄	Engines, transformers	
	Y ₃ Fe ₅ O ₁₂ (YIG)	Information storage	
	FeBO ₃	Magneto optics: modulation of light	
Coloured pigments	CoAl ₂ O ₄ , CdS, Fe ₂ O ₃ , TiO ₂	Colour filter, dispersion paint	
Photoluminescence pigments – UV	BaMgAl ₁₀ O ₁₇ :Eu, Y ₂ O ₃ :Eu	Phosphorescence lamps	
– blue	Y ₃ Al ₅ O ₁₂ :Ce, Sr ₂ Si ₅ N ₈ :Eu	White pcLEDs	
Cathodoluminescence pigments	ZnS:Ag, ZnS:Cu, Y ₂ O ₂ S:Eu	Cathode ray tube	
X-ray luminescence pigments (Scintillators)	Bi ₄ Ge ₃ O ₁₂ , Lu ₂ SiO ₅ :Ce, Gd2SiO5:Ce, Gd ₂ O ₂ S:Pr,Ce,F	Positron emission tomography	
Stimulated light emission	Al ₂ O ₃ :Cr, Al ₂ O ₃ :Ti, Y ₃ Al ₅ O ₁₂ :Nd, Lu ₃ Al ₅ O ₁₂ :Nd, LiYF ₄ :Pr, YVO ₄ :Nd	Laser	
Fundamentals of Material Science Prof. Dr. T. Jüstel, FH Münster		Slide 6	

Minerals as the basis for material sciences

- Up to date: ~ 5500 Minerals known from the Earth crust (→ Mineral catalogues)
- "Mineral-Inspired Approach": Search for novel material on the basis of the knowledge of minerals

Example: Native Garnets

- Pyrope Mg₃Al₂Si₃O₁₂
- Grossular $Ca_3Al_2Si_3O_{12} \rightarrow Y_3Al_5O_{12}, Gd_3Al_5O_{12}, Lu_3Al_5O_{12}, Y_3Fe_5O_{12}$
- Uvarovite Ca₃Cr₂Si₃O₁₂
- Andradite Ca₃Fe₂Si₃O₁₂
- Spessartine Mn₃Al₂Si₃O₁₂
- Almandine Fe₃Al₂Si₃O₁₂

Linkage to Chemistry

Comparison and Differences between Molecular and Solid State Compounds				
	M	Iolecular Compounds	Solid State Compo	unds
Stoichiometry	Dalto	onides: defined composition	Berthollides: non-stoichi since defects, formation solutions, e.g. alloys, are	ometric, of solid common
Bonding	Only co MO-des	ovalent: directed, short range, localised electrons scription, structure prediction	Covalent, ionic, metallic: undirected long range, band structure, complex structure prediction	
Isomerism		Only topological	Polymorphism, phase transitions	
Syntheses	Endothe and dest	ermic chemistry: selective con- truction, kinetically controlled	Exothermic chemistry: diffusion, thermodynamically controlled	
Purification	Vola	tility facilitates separation	Insoluble, no evaporation without decomposition	
Characterisation		IR, MS, NMR	SEM, PSD, TEM, XRI), XRF
Properties	(No) cooperative interactions	Cooperative interactions	
	Str	ucture-effect-correlations	Structure-properties-cor	relations
	\rightarrow	Biochemistry, medicine	\rightarrow Material scient	ce
Fundamentals of Materi Prof. Dr. T. Jüstel, FH M	al Science lünster			Slide 10

Classification – Crystalline vs. Amorphous Solids

Crystalline Solids

Ideal crystalsMathematical, spatial, periodical abstraction of real crystalsReal crystalsIdeal crystal + defects + impurities (dopants)

Single crystals Crystal, that exhibits a homogenous and unified lattice

In general: Elements (E) and compounds (AB, AB₂, etc...) in their solid state

<u>Amorphous Solids</u> Only near-order, no long-range-order, i.e. no regular diffraction of X-rays

Exp.: Glasses - inorganic (quartz glass, borosilicate glass) - organic (perspex PMMA, polycarbonate PC)

Proper Degree

Classification –	Crystal	Lattice

Binary 1 type of cations

Ternary2 types of cations

No solid solutions!

Quaternary 3 types of cations

	Halides	Oxides	Nitrides	Sulphides
Binary	MX	M ₂ O MO	M ₃ N	M ₂ S MS
	MX ₂	M ₂ O ₃ MO ₂	M ₃ N ₂	$M_2S_3 MS_2$
	MX ₃	M ₂ O ₅ MO ₃	MN	M_2S_5
	MX ₄	M ₂ O ₇ MO ₄	M_3N_4	
Ternary	$M^{1}M^{2}X_{3}$	$M^{1}_{2}M^{2}O_{2}$	$M^{1}M^{2}N_{2}$	$M_2^1 M^2 S_2$
	$M^1M^2X_4$	$M^1M^2O_3$	$M^1M^2{}_2N_5$	$M^1M^2S_3$
	$M^1M^2X_5$	$M^1M^2_2O_4$	$M^{12}M^{2}_{5}N_{8}$	$M^1M_2^2S_4$
	$M^1M^2X_6$	$M^1M^2_4O_7$	$M_{3}^{1}M_{6}^{2}N_{11}$	$M_{2}^{1}M_{4}^{2}S_{6}$
Quaternary	$M_1M_2M_3X_6$	$M^{1}M^{2}{}_{2}M^{3}{}_{3}O_{6}$	$M^{1}M^{2}M^{3}N_{3}$	$M^{1}_{2}M^{2}M^{3}S_{4}$
		$M^{1}M^{2}M^{3}{}_{5}O_{10}$	$M^1M^2M^3_4N_7$	$M^{1}M^{2}{}_{3}M^{3}{}_{2}S_{5}$
		$M^{1}M^{2}M^{3}_{10}O_{17}$	$M^{1}_{3}M^{2}M^{3}_{6}N_{11}$	
		M ¹ M ² M ³ ₁₁ O ₁₉	$M^{1}_{5}M^{2}_{5}M^{3}_{11}N_{23}$	
Fundamentals of Mate Prof. Dr. T. Jüstel, FH	erial Science Münster			Slide 13

Classification – Survey of the Different Types of Compounds

Group	Type of compound	Examples
Α	Elements	A1: Cu-Typ c.c.p., A2: W-type b.c.c., A3: Mg-ype h.c.p., A4: diamond-type
В	AB	B1: NaCl, B2: CsCl, B12: BN
С	AB ₂	C4: TiO ₂ , C6: CdI ₂
D	A _m B _n	D1: NH ₃
Ε	More than 2 types of atoms without connecting building units	PbFCl
F	Building units consisting of 2 or 3 atoms	F1: KCN
G	Building units consisting of 4 atoms	G1: MgCO ₃
Н	Building units consisting of 5 atoms	H2: BaSO ₄
L	Alloys	CuAu
Μ	Mixed crystals	(Y,Eu) ₂ O ₃
0	Organic compounds	O1: CH ₄
S	Silicates	Mg ₂ SiO ₄

Classification – Solid Solutions or Mixed Crystals

Intercalation mixed crystals

Compounds of at least two elements, whereas the smaller one - mostly a non-metallic component - occupies interstitial sites

Exp.: FeC, WC, Ti₂H, Fe₂N

Substitutional mixed crystals

Mixed crystal of at least two elements forming a joint lattice, where the second element occupies regular lattice positions of the first component. Driving force is entropy, overcompensating mixing enthalpy

Exp.: La_{1-x}Ce_xPO₄, Ca_{1-x}Sr_xS, K_{1-x}Rb_x, Mo_{1-x}W_x

Formation of complete solid solutions only, if

1. Both elements/compounds crystallise in the same type of lattice (isotypic)

 \rightarrow Vegard's rule: $a_{AB} = a_A(1-x_B) + a_Bx_B$ with a = lattice constant

- 2. The difference in atom/ionic radii is smaller than 15% (room temperature) or 20% (high temperatures)
- 3. Both atoms/ions possess a similar valence and electronegativity

Classification – Substitutional Mixed Crystals

Consequences

- Formation of mixed crystals is more likely to occur, if cations and not anions are substituted
- If the two borderline cases crystallise in different structures, mixed crystals will occur only to a certain extend

Mg ₂ SiO ₄	Forsterite	Mg _{2-x} Zn _x SiO ₄	x < 0.4
Zn ₂ SiO ₄	Willemite	Zn _{2-x} Mg _x SiO ₄	x < 0.4

- If there are different valences, the resulting charge must be compensated $Ca^{II}_{3}Al_{2}Si^{IV}_{3}O_{12} \rightarrow (Ca^{II}_{1-a}Y^{III}_{a})_{3}Al_{2}(Si^{IV}_{1-a}Al^{III}_{a})_{3}O_{12} \rightarrow Y^{III}_{3}Al_{2}Al^{III}_{3}O_{12}$
- Compounds forming complete solid solutions are difficult to gain in their pure borderline stoichiometry

 \Rightarrow compounds of lanthanides, such as LnPO₄ (monazite, xenotim) or Ln₂O₃ (bixbyite)

Not	ation	Chemistry	Material sci.	Laser physics
•	Zn _{2-x} Mn _x SiO ₄	(Zn,Mn) ₂ SiO ₄	Zn ₂ SiO ₄ :Mn	Mn:Zn ₂ SiO ₄
•	La _{1-x-y} Ce _x Tb _y PO ₄	(La,Ce,Tb)PO ₄	LaPO ₄ :Ce,Tb	Ce,Tb:LaPO ₄
•	$Y_{3-x}Nd_xAl_5O_{12}$	$(\mathbf{Y},\mathbf{Nd})_{3}\mathbf{Al}_{5}\mathbf{O}_{12}$	$Y_3Al_5O_{12}$:Nd	Nd:Y ₃ Al ₅ O ₁₂

Types of Bonding and Structure Defining Parameters Bonding character Covalent Ionic Metallic ΣΕΝ Medium Small Large ΔEN Small Small Large **Energy gain** LCAO (per 2 AOs) IE, EA, coulomb LCAO (all AOs) Nature of bond Directed Undirected Undirected **Reach of bond** Short Medium Far **Coordination number** 1 - 4 4 - 8 8 - 24Radii **Covalent single bond radii** Ionic radii Metallic radii **Structural concept** VSEPR **Close packing of anions Close packing** with distinct voids **Properties of the** Very hard Ductile Hard, brittle insulators/ semi-conductors **3-dim.** material insulators conductors

Ideal Crystals – Metallic Structures

		Juctures	
	Spatial occupation	Coordination number	Examples
c.c.P.	74%	12	Ca, Sr, Al, Ni, Cu, Rh, Pd, Ag
h.c.P.	74%	12	Be, Mg, Sc, Ti, Co, Zn, Y, Zr
cubic body centred	68%	8 + 6	Alkali metals, V, Cr, Fe, Nb, Mo, Ta, W
cubic primitive	52%	6	Ро
diamond	34%	4	C, Si, Ge
Cubic body	centred	Cubic primiti	ve Spatial occupation SO SO = $4/3 \cdot \pi r^3 \cdot (Z/V)$ with r = radius of the spheres Z = number of spheres per volume
Fundamental Prof. Dr. T. Ji	s of Material Science istel, FH Münster		Slide 20

Ideal Crystals – Metallic Structures

Hexagonal close packing

Cubic close packing Other stacking variations of close packings Cubic body centred packing (*high pressure modification) Structure type in its own right

Ideal Crystals – Symmetry

Macroscopic crystals can be classified by symmetry elements

Symmetry element	Symbol (Hermann-Mauguin)	Symmetry operation
Identity	Ε	$x, y, z \rightarrow x, y, z$
Rotation axis	Χ	Rotation by
one-fold	1	360°
two-fold	2	180°
three-fold	3	120 °
four-fold	4	90 °
six-fold	6	60 °
Inversion centre	-1 (= i)	Mirroring through a point
Mirror plane	-2 (= m)	Mirroring along mirror plane
Rotation inversion axis	-X	
Three-, four-, six-fold axis	-3, -4, -6	Rotation by 360/n° and inversion

The possible combinations of these symmetry operations results in 32 crystal classes (crystallographic point groups), which can be categorized into 7 crystal systems

Ideal Crystals – Symmetry

Symmetry element: Symmetry operation: Rotation axis Rotation

Examples (molecules)

- H₂O exhibits a two-fold axis 360°/2 = 180°
 After rotation by 180° the atoms appear at the same position as before
- NH₃ exhibits a three-fold axis 360°/3 = 120° Atoms appear at their given position after rotation by 120° and 240°
- XeF₄ exhibits a four-fold axis $360^{\circ}/4 = 90^{\circ}$

Atoms appear at their given position after rotation by 90°, 180° and 270°

н

O

Ideal Crystals – Symmetry

Symmetry element:	Mirror plane
Symmetry operation:	Mirroring

Examples

• H₂O

2 mirror planes, perpendicular to one another: σ_v and σ_v ' including main rotation axis (C₂-axis in this case)

• Tetrachloro platinum anion $[PtCl_4]^{2-}$ 1 mirror plane σ_h perpendicular to main rotation axis (C₄-axis in this case)

Ideal Crystals – Symmetry

Symmetry element: Symmetry operation: Point Inversion (mirroring through a point)

Examples

- a) Octahedra possess a inversion centre e.g. [CoF₆]³⁻
- b) Tetrahedra possess no inversion centre e.g. [BF₄]⁻

Ideal Crystal – Symmetry (Basic Object with Arbitrary Symmetry)

	Crystal classes	Point groups
Crystal system	Hermann-Mauguin	Schoenflies
Triclinic	1, -1	C ₁ , C _i
Monoclinic	2, m, 2/m	C_2, C_s, C_{2h}
Orthorhombic	2 2 2, m m 2, m m m	$\mathbf{D}_2, \mathbf{C}_{2v}, \mathbf{D}_{2h}$
Tetragonal	4, -4, 4/m, 4 2 2	C ₄ , S ₄ , C _{4h} , D ₄
	4 m m, 4 m, 4/m m m	C_{4v} , D_{2d} , D_{4h}
Trigonal	3, -3, 3 2, 3 m, -3 m	$C_3, C_{3i}, D_3, C_{3v}, D_{3d}$
Hexagonal	6, -6, 6/m, 6 2 2	C ₆ , C _{3h} , C _{6h}
	6 m m, -6 m 2, 6/m m m	$\mathbf{D}_6, \mathbf{C}_{6v}, \mathbf{D}_{3h}, \mathbf{D}_{6h}$
Cubic	2 3, m 3, 4 3 2, -4 3 m, m 3 m	T, T_h, O, T_d, O_h

All macroscopic crystals (convex polyhedra) can be subdivided into 32 crystal classes or point groups, respectively

Ideal Crystals – Unit Cell

The unit cell is unambiguously defined by

- Side lengths (a, b, c)
- Angles between planes (α, β, γ)

By definition

- α = angle between b and c
- β = angle between a and c
- γ = angle between a and b

Direction of axes describes a right-handed coordinate system

Determination of unit cell

- As small as possible
- Short lengths of axes (repeating element)
- All angles as close to 90° as possible

Ideal Crystals – Unit Cell

Characteristics of the unit cell

- Imaginary representation, since the crystal consists of atoms, ions or molecules
- Serves as a simplified description of the periodical building blocks in a crystal

Advantages

- Splits complicated systems into small identical units
- For the description of the structure only a small number of parameters is needed
- Structure determination is limited to the content of the unit cell

Number of unit cells in a crystal of the volume of $1 \text{ mm}^3 (10^{21} \text{ \AA}^3)$

- NaCl 10¹⁹ unit cells
- D-xylose-isomerase 10¹⁵ unit cells

Ideal Crystals – Crystal Systems (Basic Object with Spherical Symmetry: Balls)

Cristal system	Unit cell	Minimal symmetry requirements	
Triclinic	$\alpha \neq \beta \neq \gamma$	None	
	$a \neq b \neq c$		
Monoclinic	$\alpha = \gamma = 90^\circ, \beta \neq 90^\circ$	[°] Two-fold axis or a symmetry plane	
	$a \neq b \neq c$		
Orthorhombic	$\alpha = \beta = \gamma = 90^{\circ}$	Combination of three perpendicular two-fold axes	
	a ≠ b ≠ c	or symmetry planes	
Tetragonal	$\alpha = \beta = \gamma = 90^{\circ}$	Four-fold rotation axis or a four-fold inversion axis	
$\mathbf{a} = \mathbf{b} \neq \mathbf{c}$			
Trigonal	$\alpha = \beta = \gamma \neq 90^{\circ}$	One three-fold axis	
	$\mathbf{a} = \mathbf{b} = \mathbf{c}$		
Hexagonal	$\alpha = \beta = 90^{\circ}$	Six-fold rotation axis or a six-fold inversion axis	
	$\gamma = 120^{\circ}$		
	$\mathbf{a} = \mathbf{b} \neq \mathbf{c}$		
Cubic	$\alpha=\beta=\gamma=90^\circ$	Four three-fold axes, intersecting under 109.5 $^\circ$	
	$\mathbf{a} = \mathbf{b} = \mathbf{c}$		

Ideal Crystals – Primitive and Centred Unit Cell

Prof. Dr. T. Jüstel, FH Münster

Ideal Crystals – Translational Lattices

Crystal system	Allowed lattices
Triclinic	Р
Monoclinic	P , C
Orthorhombic	P, F, I, A or B or C
Tetragonal	P, I
Trigonal	P or R
(Rhombohedral)	
Hexagonal	Р
Cubic	P , I , F

 \Rightarrow 14 Translational or Bravais lattices

Ideal Crystals – Translational Lattices (Bravais lattices)

The Bravais lattices represent the 14 possibilities to construct a space by a 3-dimensional periodical arrangement of points

These translational lattices can be

- primitive (1 lattice point per unit cell) or
- centred (>1 lattice point per unit cell)

There are 7 primitive and 7 centred Bravais lattices

Lattice type	Symbol	Lattice points per unit cell
Primitive	Р	1
Body-centred	Ι	2
Basis face-centred	A , B , C	2
Face-centred	\mathbf{F}	4

Ideal Crystals – Symmetry of the Discontinuum

The **basic objects** of a real crystal are atoms, ions or molecules. These objects are arranged within the crystal lattice. The basis is made up from at least one atom, but can also easily include thousands of atoms, as in a protein crystal

The **crystal lattice** is a three dimensional arrangement of (mathematical) points. The smallest unit of the lattice is the **unit cell**

Thus, the lattice is created by the translation of the unit cell in all three spatial dimensions ⇒ Translational lattices (Bravais lattices) consist of one sort of particles (points)

Introduction of a basis (more complex as simpel balls or points)

 \Rightarrow Further symmetry elements (8): 1 glide plane, 7 screw axes

40 nm
Ideal Crystal – Space Groups

The combination of all symmetry elements existing in a crystal, i.e. X, m, i, -X, with all translational symmetry elements leads to 230 combinations in total, and are called space groups

Space group	Symmetry Elements	
Centrosymmetric	Translation, screw-axes, mirror planes, inversion centres	
Non-centrosymmetric	Translation, screw-axes, mirror planes	
Chiral	Translation, screw-axes (\rightarrow chiral molecules)	
<u>General notation</u> 1234 (usually)		
ExampleFmmmlattice type(La2NiO4)	pe F-centred mirror plane perpendicular to a, b) and c axis
Fundamentals of Material Science Prof. Dr. T. Jüstel, FH Münster		Slide 37

Ideal Crystal – Space Groups

Ideal Crystals – Ionic Structures

Packing: c.c.p. or h.c.p. usually of the anions

Voids: Tetrahedral or octahedral voids usually of the cations

For N packed particles c.c.p.: (N) Octahedral sites (2N) Tetrahedral sites h.c.p.: (N) Octahedral sites

(2N) Tetrahedral sites

Tetrahedral void T₊, T₋

Octahedral void O

Usually, octahedral and tetrahedral sites are only partially occupied. Nonetheless, the level of occupancy determines the structure type

Ideal Crystals – Ionic Structures

Т	A	-	
↓ +	T_	0	Structure type
-	-	1	NaCl (common salt)
1	-	-	ZnS (zinc blende)
1/8	1/8	1/2	MgAl ₂ O ₄ (spinel)
-	-	1/2	CdCl ₂
1	-	-	CuFeS ₂ (chalcopyrite)
-	-	1/3	CrCl ₃
1	1	-	K ₂ O (antifluorite)
-	-	1	NiAs
1	-	-	ZnS (wurtzite)
-	-	1/2	CdI ₂
-	-	1/2	TiO ₂ (rutile)
-	-	1/3	Al ₂ O ₃ (corundum)
1/8	1/8	1/2	Mg ₂ SiO ₄ (olivin)
1	-	-	ß-Li ₃ PO ₄
1/2	1/2	-	γ-Li ₃ PO ₄
	- 1 1 1/8 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- $ 1$ 1 $ 1/8$ $1/8$ $1/2$ $ 1/2$ 1 $ 1/3$ 1 $ 1/3$ 1 1 $ 1/2$ $ 1/2$ $ 1/2$ $ 1/2$ $ 1/3$ $1/8$ $1/8$ $1/2$ $1/2$ $ 1/2$ $ -$

Ideal Crystals – Ionic Structures

AB-Structures – NaCl (kitchen salt)

Cubic close packing of anions

Coordination 6 : 6 N = 4

Site	Occupation
0	Na ⁺
T ₊	empty
T_	empty

Examples

- MgO, CaO, SrO, BaO
- TiO, MnO, FeO, CoO, NiO
- LiF, LiCl, LiBr, LiI
- NaF, NaĆl, NaBr, NaI
- KF, KCl, KBr, KI
- RbF, RCl, RbBr, RbI
- AgF, AgCl, AgBr

 \mathbf{T}_+ Τ T Na⁺

Ideal Crystals – Ionic Structures

AB-Structures – CsCl (caesium chloride)

Cubic primitive packing of anions

```
Coordination 8 : 8
N = 1
```

Examples

- CsCl, CsBr, CsI, CsCN
- TICI, TIBr, TII
- NH_4Cl, NH_4Br

Ideal Crystals – Ionic Structures

AB-Structures – ZnS (zinc blende or sphalerite)

Cubic close packing of anions

Coordination 4 : 4 N = 4

 $\begin{array}{ccc} \underline{Site} & \underline{Occupation} \\ O & empty \\ T_{+} & Zn^{2+} \\ T & leer \end{array}$

Examples

- CdS, CdSe, CdTe
- HgS, HgSe, HgTe
- BN, BP, BAs
- AlP, AlAs, AlSb
- GaP, GaAs, GaSb
- Csp³ (diamond), all positions occupied by C

Zn²⁺

S²⁻

Ideal Crystals – Ionic Structures

AB-Structures – ZnS (wurtzite)

Hexagonal close packing of anions

Coordination 4 : 4 N = 4

Site	Occupation
0	empty
T ₊	$Zn^{\overline{2}+}$
T_	empty

Examples

- ZnO, ZnS, ZnSe, ZnTe
- BeO, SiC
- CdS, CdSe
- MnS
- AlN, GaN, InN

Ideal Crystals – Influence of the Ionic Radii

The highest possible coordination number depends on the ratio of the ionic radii r_{Cation}/r_{Anion} (comparable to coordination chemistry)

CN	Geometry
12	Cubeoctahedron
8	Cube
6	Octahedron
4	Tetrahedron
	<u>CN</u> 12 8 6 4

 $r_{Cation}/r_{Anion} = 1$ is found in many metallic crystals and in some ionic crystals with extremely large cations, i.e. Cs^+

Ideal Crystals – For $r_C/r_A > 0.732$ Caesium Chloride Structure Occurs

Anions do not
have contact
1

r _C /	r _A	=1
------------------	----------------	----

Example	$\underline{\mathbf{r}_{\mathrm{C}}/\mathbf{r}_{\mathrm{A}}}$
CsCl	0.94
CsBr	0.87
TICI	0.83
CsI	0.79

Fundamentals of Material Science Prof. Dr. T. Jüstel, FH Münster Anions do have contact $(\mathbf{r}_{\rm C} + \mathbf{r}_{\rm A})/\mathbf{r}_{\rm A} = \sqrt{3}/1$ $\mathbf{r}_{\rm C}/\mathbf{r}_{\rm A} = \sqrt{3}/1 - 1 = 0.732$ Anions can not get closer to the cation $r_C/r_A < 0.732$

Ideal Crystals – For $0.414 < r_C/r_A < 0.732$ Cations Are Coordinated Octahedrally

The structure type depends on the packing of the anions

Anion packing	hexagonal close	cubic close
Layer sequence	ABABAB	ABCABCABC
Structure type	NiAs-type	NaCl-type

Example	$\underline{\mathbf{r}_{\mathrm{C}}/\mathbf{r}_{\mathrm{A}}}$
KBr	0.71
KI	0.64
NaCl	0.56
NaBr	0.52
NaI	0.47
KBr KI NaCl NaBr NaI	0.71 0.64 0.56 0.52 0.47

Ideal Crystals – For $r_C/r_A < 0.414$ Cations Are Coordinated Tetrahedrally Again, the structure type depends on the packing of the anions cubic close **Anion packing** hexagonal close ABCABCABC ABABAB Layer sequence Structure type Zinc blende-type Wurtzite-type Example <u>r_C/r_A</u> 0.25 BeO 0.19 BeS Aus "Allgemeine und Anorganische Chemie" (Binnewies, Jäckel, Willner, Rayner-Canham), erschienen bei Spektrum Akademischer Verlag, Heidelberg; © 2004 Elsevier GmbH München. Abbildung04-13.jpg **Fundamentals of Material Science** Slide 49 Prof. Dr. T. Jüstel, FH Münster

Ideal Crystals – Ionic Structures

AB₂-Structures – CaF₂ (Flussspat or fluorite)

Cubic close packing of cations

```
Coordination 8 : 4
N = 4
```

Site	Occupancy
0	empty
T ₊	F -
T_	F -

Example

- CaF₂, SrF₂, BaF₂
- $CrCl_2$, $BaCl_2$, $SrBr_2$
- Li_2O , Li_2S , Li_2Se , Li_2Te

Ideal Crystals – Ionic Structures

Properties of CaF₂ (Flussspat or fluorite)

- Extremely wide band gap ~ 11.0 eV (115 nm) and low phonon frequencies ⇒ broad optical window ⇒ material for optical lenses (spectroscopy)
- Fluorides are prone to the formation of point defects (colour centres + luminescence)

no UV under UV

Ideal Crystals – Ionic Structures

AB₂-Structures – TiO₂ (rutile)

Distorted hexagonal close packing of anions

```
Coordination 6 : 3
N = 2
```

Site	Occupancy
0	¹ / ₂ Ti ⁴⁺
T ₊	empty
T	empty

Examples

• GeO_2 , SnO_2 , PbO_2

- MgF_2 , MnF_2 , FeF_2 , CoF_2 , NiF_2 , ZnF_2 , PdF_2
- TiO_2 , CrO_2 , β -MnO₂, NbO₂, TaO₂, MoO₂, WO₂

Ideal Crystals – Ionic Structures

Polymorphism of TiO₂ (anatase and brookite are metastable)

Anatase (tetragonal)

Rutile (tetragonal)

Brookite (orthorhombic)

2 mutual edges

Fundamentals of Material Science Prof. Dr. T. Jüstel, FH Münster

3 mutual edges

Ideal Crystals – Ionic Structures

Properties of TiO₂ (rutile and anatase)

Low band gap ~ 3.2 eV (390 nm, rutile) and 3.5 eV (360 nm, anatase), highly covalent character and strong interactions with light

- \Rightarrow UV-absorber
- \Rightarrow Photo-catalytically active
- \Rightarrow High refractive index (2.5 2.8)

Applications of rutile and anatase

- \Rightarrow White pigment
- \Rightarrow Solar cells (Grätzel)
- \Rightarrow UV-protection additives
- \Rightarrow Photo reactors (purification of water)
- \Rightarrow Polymer additives

Ideal Crystals – Ionic Structures

 AB_2 -Structures – CdI_2 (cadmium iodide)

Hexagonal close packing of anions, layer structure

```
Coordination 6 : 3
N = 3
```

Layer	Occupancy
Α	I.
B	Cd ²⁺
С	I

Examples

- CdI₂, MgI₂, CaI₂, TiI₂, VI₂, MnI₂, FeI₂, ZnI₂
- TiBr₂, VBr₂, MnBr₂, FeBr₂, CoBr₂
- $Mg(OH)_2$, $Ca(OH)_2$, $Fe(OH)_2$, $Co(OH)_2$, $Ni(OH)_2$

Ideal Crystals – Ionic Structures

AB₂-Structures – SiO₂ (β-cristobalite)

Can be derived formally from cubic close packing (Si occupies Zn^{2+} and S^{2-} positions of zinc blende structure)

Coordination 4 : 2 N = 8

Examples

- BeF₂
- SiO_2

 β -cristobalite is a modification of SiO₂ as α -quartz, β -quartz and β -tridymite

Ideal Crystals – Ionic Structures

 A_2B_3 -Structures – α -Al₂O₃ (corundum)

Distorted hexagonal close packing of anions

Coordination 6 : 4 N = 4 Al³⁺ is distorted octahedrally coordinate!

Site	Occupancy
0	2/3 Al ³⁺
T ₊	empty
T_	empty

Examples

- α -Al₂O₃, α -Ga₂O₃
- Ti_2O_3 , V_2O_3 , Cr_2O_3 , α -Fe₂O₃
- Rh_2O_3

Ideal Crystals - Ionic Structures

 A_2B_3 -Structures – polymorphism of Fe_2O_3

α-Fe₂O₃ (trigonal, corundum)

Antiferromagnetic (not magnetic) $E_{\sigma} = 2.2 \text{ eV} \text{ (red crystals)}$

Fundamentals of Material Science Prof. Dr. T. Jüstel, FH Münster γ -Fe₂O₃ (cubic, metastable)

Ferromagnetic (strongly magnetic) $E_g = 2.0 \text{ eV}$ (black crystals)

Slide 58

Ideal Crystals - Ionic Structures

 A_2B_3 Structures – α -Mn₂O₃ (cubic, Bixbyite)

Distorted cubic-dense anion packaging

Coordination 6 : 4 Z = 16 (80 Atoms perunit cell) Two Mn³⁺ sites with octahedral coordination:

a) S₆-Lage (8) with inversion symmetry
b) C₂-Lage (24) without inversion symmetry

Examples

- V_2O_3
- In_2O_3 , Tl_2O_3
- Sc_2O_3, Y_2O_3, Ln_2O_3 (Ln = Gd Lu)

Ideal Crystals - Ionic Structures

ABX₃–Structures – CaTiO₃ (perowskit)

Cubic close packing of A- and X-ions with the ratio of 1:3 and B-ions occupying one fourth of the octahedra sites. Alternative description: corner-connected TiO_6 -octahedra, where Me²⁺ is twelve-fold coordinate

```
Coordination 12:6:2
N = 1
```

Example

- CaTiO₃, SrTiO₃, BaTiO₃, PbTiO₃
- KIO₃
- LaVO₃, LaCrO₃, LaFeO₃, LaCoO₃

Ideal Crystals - Ionic Structures

Properties of CaTiO₃

Small band gap und high polarizability of the octahedrally coordinate B-ions

- \Rightarrow External electrical fields induce a dipole moment by shifting the cations
- ⇒ Ferroelectric ceramics made from $Ba_{1-x}Ca_xTi_{1-y}Zr_yO_3$ show the highest permittivity values (ϵ_r up to 7000), for comparison: $H_2O \epsilon_r = 78$

Applications in

- \Rightarrow Capacitors
- \Rightarrow Membranes (Speakers)
- \Rightarrow Sensors (microphones)
- ⇒ Micro nozzles (inkjet printer)

Ideal Crystal - Ionic Structures

AB₂X₄–Structures – MgAl₂O₄ (spinel)

Cubic close packing of anions

Coordination 4 : 6 : 4 N = 8

Site	Occupancy
0	1/2
T ₊	1/8
T	1/8

Examples

```
MgAl<sub>2</sub>O<sub>4</sub>, MnAl<sub>2</sub>O<sub>4</sub>, FeAl<sub>2</sub>O<sub>4</sub>, CoAl<sub>2</sub>O<sub>4</sub>
CuCr<sub>2</sub>S<sub>4</sub>, CuCr<sub>2</sub>Se<sub>4</sub>, CuCr<sub>2</sub>Te<sub>4</sub>
MgIn<sub>2</sub>O<sub>4</sub>, MgIn<sub>2</sub>S<sub>4</sub>
```

Ideal Crystal - Ionic Structures

 AB_2X_4 -Structures - MgAl₂O₄ (spinel)

Ordinary spinels	Inverse spinels	Mixtures
$[A]^{tet}[B]_2^{oct}O_4$	[B] ^{tet} [A,B] ^{oct} O ₄	$[\mathbf{B}_{\mathbf{x}}\mathbf{A}_{1-\mathbf{x}}]^{\text{tet}}[\mathbf{A}_{\mathbf{x}}\mathbf{B}_{1-\mathbf{x}}]^{\text{oct}}\mathbf{O}_{4}$
$\gamma = 0.0$	$\gamma = 1.0$	$\gamma = x \text{ with } 0.0 < x < 1.0$
Examples:		
MgAl ₂ O ₄	MgFe ₂ O ₄	MnFe ₂ O ₄
CoAl ₂ O ₄	$FeFe_2O_4$ (= Fe_3O_4)	NiAl ₂ O ₄
FeAl ₂ O ₄	CoFe ₂ O ₄	
$CoCo_2O_4$ (= Co_3O_4)	NiFe ₂ O ₄	
$\mathbf{MnMn}_{2}\mathbf{O}_{4} (= \mathbf{Mn}_{3}\mathbf{O}_{4})$	CuFe ₂ O ₄	

Influence upon γ (occupancy parameters of B³⁺-ions on tetrahedral sites)

- Ionic radius
- Coulomb energy
- Covalent character
- Crystal field stabilisation energy

Ideal Crystal - Ionic Structures

Properties of spinels

Spinels are extremely hard (high lattice energy!), exhibit isotropic physical properties (cubic structure), and show - analogous to many transition metals - distinct ferroelectricity (unpaired electrons) and ferro-, ferri- or anti-ferromagnetism

Ferrimagnetics: Fe_3O_4 magnetiteFerroelectrics: $M^{2+}Fe_2O_4$ ferrite

Prerequisites for good ferroelectrics

As high permeability as possible in combination with low coercivity = $\overline{\max}$. induction by min. magnetic field strength, e.g. write/read head in audio and video recorders or transformer and coil cores.

Are met by cubic soft ferrites, because they are electrically isolating (suppression of eddy currents), ferrimagnetic with low saturation magnetisations but low crystallographic anisotropy (cubic symmetry) at the same time.

Typical composition: Fe-Mn-Zn-oxide comprising 70% Fe, 25% Mn, 5% Zn

Ideal Crystal - Ionic Structures

Garnet C^{II}₃A^{III}₂(Si^{IV}O₄)₃

Isle silicates (neso silicates) with [SiO₄]⁴⁻ or [TO₄]⁴⁻-groups Cubic structure type – space group Ia3d (#230)

Coordination of cations

- C = 8 Dodecahedral site
- A = 6 Octahedral site
- T = 4 Tetrahedral site
- Z = 8 160 atoms in unit cell!

Mineral	Composition
Pyrop	$Mg_3Al_2Si_3O_{12}$
Grossular	Ca ₃ Al ₂ Si ₃ O ₁₂
Almandine	Fe ₃ Al ₂ Si ₃ O ₁₂
Spessartin	$Mn_3Al_2Si_3O_{12}$

Ideal Crystal - Ionic Structures

Garnet variations C^{II}₃A^{III}₂(Si^{IV}O₄)₃

Ca ₃ Al ₂ Si ₃ O ₁₂ (Grossular)	\rightarrow	$(Ca_{1-a}Y_a)_3Al_2(Si_{1-a}Al_a)_3O_{12}$	$\rightarrow \qquad \begin{array}{c} \mathbf{Y}_{3}\mathbf{Al}_{2}\mathbf{A} \\ \mathbf{YAG} \end{array}$	Al ₃ O ₁₂
Ca ₃ Fe ₂ Si ₃ O ₁₂ (Andradite)	\rightarrow	$(Ca_{1-a}Y_a)_3Fe_2(Si_{1-a}Fe_a)_3O_{12}$	$\rightarrow \begin{array}{c} Y_3Fe_2I \\ (YIG) \end{array}$	Fe ₃ O ₁₂
Ca ₃ Cr ₂ Si ₃ O ₁₂ (Uwarowit)				
$Y_3Al_5O_{12}(YAG)$	\rightarrow	$(Y_{1-x}M^a_{x})_3Al_5O_{12}$	M ^a = Ce, Pr, Nd, Sm, Eu M ^a = Gd – Lu (unlimited)	(limited))
	\rightarrow	$Y_{3}(Al_{1-x}M^{b}_{x})_{5}O_{12}$	$M^{b} = Ga, Sc$	
	\rightarrow	$(Y_{1-x}M^{a}_{x})_{3}(Al_{1-x}M^{b}_{x})_{5}O_{12}$		
	\rightarrow	$Y_3(Al_{1-x}M^c_{x/2}M^d_{x/2})_5O_{12}$	$M^c = Si, M^d = Mg$	
	\rightarrow	$Ca_2LuMe_2Al_3O_{12}$	$M^e = Zr, Hf$	
	\rightarrow	$Y_3(Al_{1-x}M_x^f)_5O_{12-x}N_x$	$M^{f} = Si$	
Fundamentals of Mate	rial Science			Slide 66
Prof. Dr. T. Jüstel, FH	Munster			

Ideal Crystal - Ionic Structures

Physical properties of Y₃Al₅O₁₂(YAC	<u>G: Yttrium Aluminium Garnet)</u>	
Density	$\rho = 4.55 \text{ g/cm}^3$	
Thermal extension coefficient	$\alpha = 6.5 \times 10^{-6} \text{ K}^{-1}$	
Melting point	$T_{m} = 1970 \ ^{\circ}C$	
Refractive index at 589.3 nm	n = 1.830	
Refractive index at 1.0 µm	n = 1.816	
Hardness acc. to Mohs	8.5 Exciton luminescence of YAG	_
Thermal conductivity	14 W/mK at 20 °C $^{1.0}$ 170 nm	•
Optical band gap	$E_{G} = 7.0 \text{ eV}$	m
Body colour	white (colourless)	m
Exciton luminescence	~ 300 nm ≥ 0.6 -	
(Electron-hole pair recombination)	tens	
Typical impurities (dopants)		
Y-site (dodecahedral) Mg ²⁺ , Ca	$Ca^{2+}, Ce^{3+} - Lu^{3+}$	
Al-site (octahedral) Sc ³⁺ , Cr ³	r^{3+}, Mn^{3+}, Fe^{3+}	~
Al-site (tetrahedral) Fe ³⁺ , Si ⁴⁻	100 200 300 400 500 600 700 Wavelength (nm)	800
Fundamentals of Material Science Prof. Dr. T. Jüstel. FH Münster	Slide 67	

Ideal Crystal - Ionic Structures

Physical properties of Y₃Al₅O₁₂

Ideal Crystal - Ionic Structures

 $\frac{Optical \text{ properties of } Y_3Al_5O_{12}}{\text{High optical band gap}}$ High refractive index (n_D = 1.82) Low maximal phonon frequency

 $Y_{3}Al_{5}O_{12}:Ce^{3+}(0.5-3.0\%)$

Extremely high crystal field splitting for the excited state ~ 28000 cm⁻¹ (3.5 eV)

 \rightarrow dodecahedral coordination of Ce³⁺

Ideal Crystal - Ionic Structures

 β -Alumina-structures - MAl₁₁O₁₇ = M₂O·nAl₂O₃

Layer structures

- A Spinel units "Al₁₁O₁₆"
- B Intermediate layers "M-O" with M = Na, K, Rb, Cu, Ag, In, Tl

Hexagonal close packing of anions in spinel units High ionic mobility of the cations M^+ within the intermediate layers \rightarrow ionic conductor (cations)

β-Alumina-variations NaAl₁₁O₁₇ → (Na_{1-x}Ba_x)Mg_xAl_{11-x}O₁₇ → BaMgAl₁₀O₁₇

 $NaAl_{11}O_{17} \rightarrow (Na_{1-x}La_x)Mg_xAl_{11}O_{17+2x} \rightarrow LaMgAl_{11}O_{19}$ (magnetoplumbit structure!)

Ideal Crystal - Ionic Structures

 β -Alumina-structures - NaAl₁₁O₁₇

Exp.: BaMgAl₁₀O₁₇

Ideal Crystal - Ionic Structures

 β -Alumina-structures - NaAl₁₁O₁₇

Stability of ß-alumina phase

Only the biggest cations stabilise the ß-alumina structure
Ideal Crystal - Ionic Structures

Properties of B-alumina-structures

Very high ionic conductivity, high optical band gap, fissility, anisotropic refraction

Application as

- Solid electrolyte in batteries
- Phosphor in gas discharge lamps (fluorescence lamps and PDP's)

Ideal Crystal - Ionic Structures

Phosphors with ß-alumina structure

Ideal Crystal - Ionic Structures

Phosphors with ß-alumina structure: Emission spectra of BaMgAl₁₀O₁₇:Eu²⁺,Mn²⁺

 Energy transfer from Eu²⁺ to Mn²⁺, whereby the efficiency of the energy transfer depends on the Mn²⁺-concentration and thus the average distance between Eu²⁺ - Mn²⁺ → Mn²⁺ emission [Ar]3d⁵ - [Ar]3d⁵-intraconfigurational transition

Ideal Crystal - Ionic Structures

Phosphors with ß-alumina-structure: energy migration after excitation with UV-radiation

Ideal Crystal - Ionic Structures

ABX₃ Structures – CaCO₃ (calcite)

Trigonal crystal system Z = 6 $\rho = 2.71 \text{ g/cm}^3$ Thermodynamically most stable form of calcium carbonate


```
Examples
CaCO<sub>3</sub>, CoCO<sub>3</sub>
ScBO<sub>3</sub>, FeBO<sub>3</sub>, InBO<sub>3</sub>
LuBO<sub>3</sub>, YBO<sub>3</sub> (high temperature modification)
```


Ideal Crystal - Ionic Structures

ABX₃ Structures – CaCO₃

Polymorphism

	Ζ	ρ [g/cm³] Crystal sys		tem (
Calcite	6	2.71	trigonal	6	
Vaterite	2	2.65	hexagonal	8	
Aragonite	4	2.93	orthorhombic	9	

Biomineralisation of CaCO₃

- **Amorphous: CaCO₃-storage in organisms**
- **Calcite:** otholiths •
- **Aragonite: coccoliths (calcareous shells) in foraminiferes**
- Calcite/aragonite/chitin/protein as composite: ٠ nacre (seashell, pearl)
- Mn²⁺ luminescence: calcite 610 nm

Lit.: J. Materials Chemistry C 2 (2014) 46) aragonite 560 nm (stronger crystal field)

Ca/Sr/Eu

Ideal Crystal - Ionic Structures

ABX₃-structures - YBO₃

Prof. Dr. T. Jüstel, FH Münster

Polymorphism

	Ζ	ρ [g/cm ³]] Crystal system	Anion	$CN(Y^{3+})$
Calcite (ht-type)	6	6.86	trigonal	[BO ₃] ³⁻ units	6
"YBO ₃ " (lt-type)	2	7.40	hexagonal	[B ₃ O ₉] ⁹⁻ rings	8

 $\Delta_{tr} \mathbf{H}^{\circ} = 12.1 \text{ kJ/mol}$

 $E_a = 1386 \text{ kJ/mol}$ lt \rightarrow ht transition

 $E_a = 568 \text{ kJ/mol}$ ht \rightarrow lt transition

(J. Plewa, T. Jüstel, Phase Transition of YBO₃, J. Therm. Analysis and Calorimetry 88 (2007) 531)

Ideal Crystal - Ionic Structures

ABX₃-structures - YBO₃

Calcite-type ($[BO_3]^{3-}$ units) "YBO₃"- or lt-type ($[B_3O_9]^{9-}$ rings)

Fundamentals of Material Science Prof. Dr. T. Jüstel, FH Münster

Ideal Crystal - Ionic Structures

ABX₃-structures - YBO₃

Eu³⁺ activated phosphors, e.g. LnBO₃:Eu (Ln = Y, In, Gd, Lu)

- The emission spectrum is dominated by a intraconfigurational transition: [Xe]4f⁶(⁵D₀) → [Xe]4f⁶(⁷F_J) ⇒ several narrow lines between 585 and 710 nm (orange red)
- Rel. intensity of emission lines = f(symmetry, covalence) Inversion symmetry ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ strongest No inversion symmetry ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ strongest
 - Strong ionic character ${}^5D_0 \rightarrow {}^7F_4$ weak(borates, phosphates)5Strong covalent character ${}^5D_0 \rightarrow {}^7F_4$ strong(aluminates, vanadates, sulphides)

Ideal Crystal - Ionic Structures

ABX₃-structures - YBO₃

Calcite- or ht-type Y³⁺ on octahedral sites "YBO₃"- or lt-type Y³⁺ on dodecahedral sites, where Y1 is not distorted and Y2 is

Real Crystals - Definition

Real crystal = ideal crystal (mathematical ideal, incl. vibrations + elastic deformations) + defects (violation of symmetry)

Defects = intrinsic defects and extrinsic defects (dopants)

0-dimensional defects (point defects) Violation of symmetry on atomic scale

1-dimensional defects (line defects) Violation of symmetry along a line

2-dimensional defects (area defects) Symmetry violation for every point lying upon an area

3-dimensional defects (spatial defects) Any point in a given volume exhibits different symmetry

Real Crystals - 0-dim. Defects(Point Defects)

Intrinsic defects (construction errors)

- Vacancy ("V")
- Self-interstitial ("i")

In ionic crystals, intrinsic defects lead to relative charges, that must be compensated

- a) By a electron ⇒ colour centre Exp.: SiO₂
- b) By 2nd defect with opposite charge ⇒ Schottky-defect
 Exp.: BeO, MgO, MX
- c) By a ion with matching charge on a interstitial ⇒ Frenkel-defect
 Exp.: AgCl, AgBr, CaF₂

Fundamentals of Material Science Prof. Dr. T. Jüstel, FH Münster

Real Crystals - 0-dim. Defects (Point Defects)

Extrinsic defects (dopants)

- Substitutional impurity atom
 → only if charge and size match
- Interstitial impurity atom often in cases of small cations

Physical effects of atomic vacancies (point defects)

- Colour
- Luminescence
- Magnetism
- Electrical conductivity
- Diffusion processes through a swap of positions are important for solid state chemistry and solid electrolytes

Real Crystals - 0-dim. Defects (Point Defects)	Ag	CI	Ag	CI
Diffusion processes through positional exchange using the example of silver chloride	CI	Ag	CI	Ag
Formation of Frenkel-defects	Ag	CI	Ag	CI
$AgCl \rightarrow Ag_{1-x}V_{Agx}Ag_{ix}Cl$ (defect equation)	CI	Ag	CI	Ag
\rightarrow Cation migration via interstitials i			Ļ	
\rightarrow Ionic conductivity in crystals	Ag	CI	Âg	CI
	CI	Ag -	CI	Ag
	Ag	CI	V [•] Ag	CI
	CI	Ag	CI	Ag Ag
Fundamentals of Material Science			Slide	86

Fundamentals of Material Science Prof. Dr. T. Jüstel, FH Münster

Real Crystals - 0-dim. Defects (Point Defects)

Kröger-Vink-notation using the example of a NaCl-crystal

Real Crystals - 0-dim. Defects (Point Defects)

Kröger-Vink-notation using the example of a NaCl-crystal

Real Crystals - 0-dim. Defects (Point Defects) in Oxides

Some defect types:

- 1. Oxygene defects V_0 : Oxygene deficiency in oxides comprising easily reducible cations $\rightarrow MnO_{2-x}$, CeO_{2-x} , PrO_{2-x} , TbO_{2-x} , PuO_{2-x}
- 2. Metal defects V_M : Metal deficiency in oxides in easily oxidisable cations $\rightarrow Fe_{1-y}O, Mn_{1-y}O, Co_{1-y}O$
- 3. Oxygene onto interstitials O_i: Oxygene excess compounds, easily oxidisable cations
 - $\rightarrow \ UO_{2+x}$
- 4. Metals onto interstitials M_i : Defect type in metal deficient oxides along with $V_M \rightarrow Fe_{1-y}O$ (Koch-Cohen-Cluster)

Real Crystals - 1-dim. Defects (Line Defects)

Dislocations are the only one dimensional defects in crystals

Dislocations are responsible for the plastic ductility (sliding) of crystalline materials, and thus for the mechanical properties of all metals in particular

Real Crystals - 1-dim. Defects (Line Defects)

Dislocations confine the single crystalline areas in polycrystalline ceramics and thus influence the physical properties, such as conductivity and quantum efficiency of phosphors, e.g. Y_2O_3 :Eu (cubic bixbyite structure)

```
Dislocation density in real crystals
Dislocation-free silicon
for semiconductors r = 0 \text{ cm}^{-2}
```

```
"Good" single crystals
for laboratories: r ~ (10<sup>3</sup> - 10<sup>5</sup>) cm<sup>-2</sup>
```

Normal crystals including polycrystalline materials: $r \sim (10^5 - 10^9) \text{ cm}^{-2}$

Highly deformed crystals: r up to 10¹² cm⁻²

Real Crystals - 2-dim. Defects (Area Defects)

Area defects are loosely defined as all sorts of interfaces between two bodies (particles, crystallites)

- \Rightarrow Phase boundaries: Interface between two different bodies (phases)
- \Rightarrow Grain boundaries: Interface between identical but arbitrarily oriented crystals
- \Rightarrow Stacking faults: Interface between two identical and specifically oriented crystals
- \Rightarrow Surfaces \rightarrow surface energy γ [J/cm²] \rightarrow f(particle size)

The surface energy is a measure for the reactivity of the surface and is responsible for the different behaviour of nano- and macro-crystals in terms of their thermodynamic properties, i.e. melting point

Material	γ [mJ/cm ²]		
Glass	300		
Fe	700		
W	1450		
		γ	2γ
Fundamentals of Prof. Dr. T. Jüste	Material Science L FH Münster		

Real Crystals - 2-dim. Defects (Area Defects)

Surfaces: The interface is not sharply defined, since the surface can be modified by chemical processes, such as oxidation

Grain boundaries: Most crystals are polycrystalline and therefore possess a large number of crystalline areas, that are divided by grain boundaries

Fundamentals of Material Science Prof. Dr. T. Jüstel, FH Münster **Stacking faults** Occur in cubic face-centred structures for example

Normal stacking sequence: ABCABCABCABC

With stacking fault: ABCABCACABC

Leads to the formation of grain boundaries

Real Crystals - 3-dim. Defects (Spatial Defects)

- Voids
 - Filled by vacuum or gas (gas bubble)
 - Cosmology: Density fluctuations
- Micro cracks
 - Are treated as 2-dimensional defects
- Precipitations
 - Completely different phase, fully embedded within the matrix of the crystal (filled voids)
 - Examples:
 - SiO₂-particles in Si CuAl₂ in Al C (graphite) in cast iron

Phases and Phase Transitions

Phase: Homogeneous material system in a well defined thermodynamic state

The macroscopically observable phase state, i.e. for a one-component system, the states of aggregation solid (s), liquid (l) and gaseous (g), is a function of independent state variables, namely temperature T and pressure P

For a two- or multi-component system, the phase state is additionally dependent on the composition x, whereby the solid phase can "freeze out" at a variety of different compositions

Additionally, a given composition can exist in different crystal structures (polymorphism)

The phase state has a impact on dependent state variables (functions), such as V, U, H, S, F, G, polarisation, magnetisation, electrical resistance, ferroelectricity, etc.

Phases and Phase Transitions

Phase Transitions

Upon a change of one of the independent variables (p, T, x), a non-differentiable point occurs in at least one of the state functions, e.g. G(p,T)

Phase transitions of the first order show a discontinuity in the first derivation of the state functions

- Melting of Hg(s) at -39 °C
- Vaporisation of $NH_3(l)$ at $-33 \,^{\circ}C$
- Sublimation of CO₂(s) at -78 °C

Fundamentals of Material Science Prof. Dr. T. Jüstel, FH Münster

Phases and Phase Transitions

Phase Transitions

Upon a change of one of the independent variables (p, T, x), a non-differentiable point occurs in at least one of the state functions, e.g. G(p,T)

Phase transitions of the second order show a discontinuity in the second derivation of the state functions

- Glass transition of polystyrene at ca. 100 °C
- Transition to superconducting solid phase of metals (4.15 K for Hg)

Lit.: Chemie in unserer Zeit 37 (2003) 32

Fundamentals of Material Science Prof. Dr. T. Jüstel, FH Münster

Phase Diagrams – Solid Solutions

Complete miscibility in solid state

Prerequisites

1. The pure materials must crystallise in the same crystal structure (isotypic)

2. The (an-) cations should be of comparable size

3. The individual components of a solid solution should exhibit similar chemical behaviour

Example

System Ag-Au

Phase Diagrams – Solid Solutions

Limited miscibility in solid state

Example

System Cu-Ag

Solubility

- 15 atom percent Cu in Ag
- 5 atom percent Ag in Cu

Phase Diagrams – Solid Solutions

No miscibility

