UV-C Emitting Pr³⁺ and Nd³⁺ Co-doped LuPO₄ Nanoparticles for Enhanced **Effectiveness of X-Rays onto 3D Lung Cancer Spheroids**

Jan Kappelhoff¹, Thao Anh Tran^{2,3}, R. Rox Anderson², Martin Purschke^{2,4}, and Thomas Jüstel¹

¹FH Münster University of Applied Sciences, Department of Chemical Engineering, Stegerwaldstr. 39, D-48565 Steinfurt, Germany ²Wellman Center for Photomedicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States ³Department of Medicine, University of Geneva, Switzerland ⁴Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, United States

16th International Conference on Scintillating Materials & their Applications, 19-23th September 2022, Santa Fe

Background

About half of all cancer patients receive therapy [1], usually combined with surgery, and chemotherapy [2]. Ionizing radiation induces oxygen-dependent DNA damages in tumor cells, but can also affect the surrounding healthy tissue. Local delivery of nanoscintillators can cause increased radiation dose within the tumor tissue, increasing the therapeutic window.

This study concerns a novel nanoscale radiosensitizer, viz. LuPO₄ co-doped with Pr³⁺ and Nd³⁺. Under X-ray excitation, these nanoparticles emit efficiently UV-C radiation (230-280 nm), resulting in increased tumor cell death (oxygen-independent UV-C induced damages). Over a three-week period using a 3D A549 lung cancer cells shown no specific toxicity during incubation with the nanoscintillators. In contrast, there was significant growth inhibition of cell spheres treated with 2.5 mg/ml LuPO₄: Pr³⁺, Nd³⁺ in combination with ionizing radiation (4 or 8 Gy X-rays) compared with radiation alone.

Lutetiumorthophosphate (LuPO₄)

- **Crystal structure: Tetragonal**
- Space group: D_{4h} (#141)
- High density: 6.53 g/cm³ ($Z_{eff} = 63.7$)
- Band gap: 8.85 eV \bullet
- **Biocompatible and FDA approved (Lutathera[®])**

Fig. 1: Section of the tetragonal crystal structure of LuPO₄

Results / Measurements

- Nanoparticles penetrate the **3D structure of A549 lung** cancer cells (37 °C, 99 °F in 5% CO_2 atmosphere)
- Particles are not toxic to cells

Wavelength / nm

Fig. 4: X-ray excited emission spectra of LuPO₄: $Pr^{3+}(1\%)$, Nd³⁺(2.5%) compared to the GAC absorption curve of E. Coli

Fig. 5: Particle size distribution and TEM images of LuPO₄: $Pr^{3+}(1\%)$, Nd³⁺(2.5%)

References

[1] H. E. Baker, J. T. E. Paget, A. A. Khan, and K. J. Harrington, *Nature Reviews Cancer*, **15**(7), 409-425 (2015). DOI:10.1038/nrc3958

[2] E. J. Hall, A. J. Giacc, International Journal of Radiation Biology, Vol. 6 (2006). ISBN: 1608311937 [3] T. Tran, J. Kappelhoff, T. Jüstel, R. R. Anderson, and M. Purschke, International Journal of Radiation Biology, 1-34 (2022). DOI:10.1080/09553002.2022.2027541

Acknowlodgement

The authors are grateful to the research group "Tailored **Optical Materials**" and the Department of Chemical Engineering

FH MÜNSTER University of Applied Sciences

RG Tailored Optical Materials – http://www.fh-muenster.de/juestel