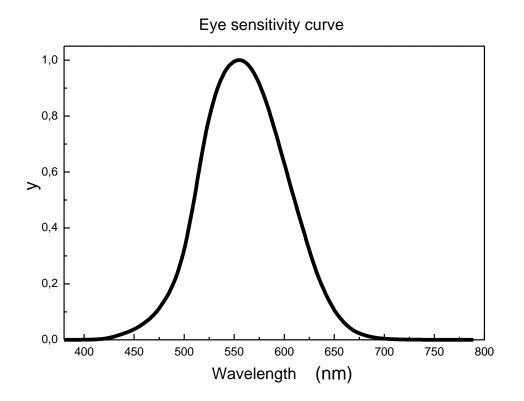
## Exercises Optical Spectroscopy

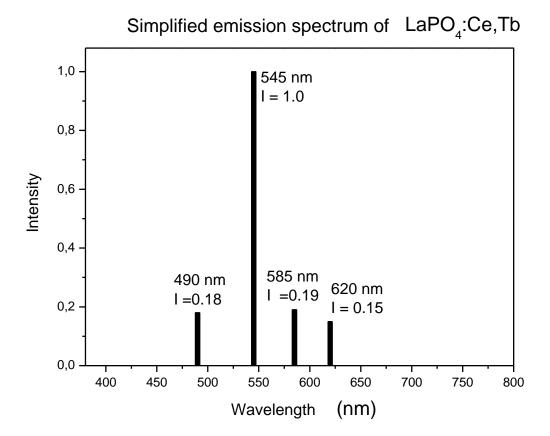
- 1) Name three kinds of electronic transitions and give an example for each one!
- 2) Which fundamental interactions of light with matter do you know?
- 3) How are radiometric and physiological quantities of light differentiated?
- 4) Which are the fundamental components of an optical spectrometer?
- 5) Sketch the construction of a fluorescence and an absorption spectrometer!
- 6) Which quantities are plotted on the x- and y-axis of the following spectra?
  - a) Reflection spectrum
  - b) Excitation spectrum
  - c) Emission spectrum
  - d) Thermo luminescence spectrum
  - e) Mößbauer spectrum
- 7) Name the reason for a real and an apparent deviation from Lambert-Beer law!
- 8) What is meant by "melting of DNA" and how may this process be screened spectroscopically?
- 9) Define the term photoluminescence quantum yield!
- 10) Which information does a thermoluminescence spectrum provide?
- 11) Sketch the decay curve of a first and a second order process (choose a logarithmic y-axis)!
- 12) Explain with the help of the Kubelka-Munk function why there are no ideal black substances!
- 13) Define the law of conservation of energy for radiation?
- 14) You measured an optical spectrum. The intensity is plotted against wavelength. How could you convert this spectrum to get one where intensity is plotted against a quantity that is proportional to energy?
- 15) The absorption of a photon by a solid will lead to which kinds of physical processes?
- 16) How can you determine if the reason for the coloration of a SiO<sub>2</sub> or Al<sub>2</sub>O<sub>3</sub> single crystal is caused by crystal defects or contaminations (impurities/dopants)?

17) Determination of the lumen equivalent of the spectrum of a light source or phosphor

Calculation of the lumen equivalent is done with the help of the normalized V( $\lambda$ ) curve:

$$\Phi_{\rm v} = K \max \int_{380}^{780} V(\lambda) \Phi_e(\lambda) d\lambda$$


With  $K_{MAX}$  = 683 lm/W und  $\Phi_e$  = Integral normalized emission spectrum


| λ [nm] | V(λ)       | λ [nm] | <b>V(</b> λ) | λ [nm] | <b>V(</b> λ) |
|--------|------------|--------|--------------|--------|--------------|
| 380    | 3.90044E-5 | 520    | 0.71         | 660    | 0.061        |
| 385    | 6.39971E-5 | 525    | 0.7932       | 665    | 0.04458      |
| 390    | 1.2E-4     | 530    | 0.862        | 670    | 0.032        |
| 395    | 2.16999E-4 | 535    | 0.91485      | 675    | 0.0232       |
| 400    | 3.96003E-4 | 540    | 0.954        | 680    | 0.017        |
| 405    | 6.4E-4     | 545    | 0.9803       | 685    | 0.01192      |
| 410    | 0.00121    | 550    | 0.99495      | 690    | 0.00821      |
| 415    | 0.00218    | 555    | 1            | 695    | 0.00572      |
| 420    | 0.004      | 560    | 0.995        | 700    | 0.0041       |
| 425    | 0.0073     | 565    | 0.9786       | 705    | 0.00293      |
| 430    | 0.0116     | 570    | 0.952        | 710    | 0.00209      |
| 435    | 0.01684    | 575    | 0.9154       | 715    | 0.00148      |
| 440    | 0.023      | 580    | 0.87         | 720    | 0.00105      |
| 445    | 0.0298     | 585    | 0.8163       | 725    | 7.4E-4       |
| 450    | 0.038      | 590    | 0.757        | 730    | 5.2E-4       |
| 455    | 0.048      | 595    | 0.6949       | 735    | 3.61098E-4   |
| 460    | 0.06       | 600    | 0.631        | 740    | 2.49195E-4   |
| 465    | 0.0739     | 605    | 0.5668       | 745    | 1.71903E-4   |
| 470    | 0.09098    | 610    | 0.503        | 750    | 1.2E-4       |
| 475    | 0.1126     | 615    | 0.4412       | 755    | 8.48023E-5   |
| 480    | 0.13902    | 620    | 0.381        | 760    | 6E-5         |
| 485    | 0.1693     | 625    | 0.321        | 765    | 4.24012E-5   |
| 490    | 0.20802    | 630    | 0.265        | 770    | 3E-5         |
| 495    | 0.2586     | 635    | 0.217        | 775    | 2.12006E-5   |
| 500    | 0.323      | 640    | 0.175        | 780    | 1.49927E-5   |
| 505    | 0.4073     | 645    | 0.1382       | 785    | 1.06003E-5   |
| 510    | 0.503      | 650    | 0.107        | 790    | 7.42313E-6   |
| 515    | 0.6082     | 655    | 0.0816       |        |              |

Calculate the lumen equivalent of the phosphor LaPO<sub>4</sub>:Ce,Tb (LAP:Ce,Tb)! The simplified line spectrum of LAP:Ce,Tb is given on the following page!

What is the maximum lumen equivalent which a light source can show?

At an excitation wavelength of 254 nm a typical LAP:Ce,Tb sample offers a quantum yield of 90 % and absorption of 85 %. How high is the luminous efficacy at 254 nm?





18) Calculate the quantum yield  $\Phi_{254}$  of the BaMgAl<sub>10</sub>O<sub>17</sub>:Eu (BAM) samples given in the following table!!

| Sample                 | $\Phi$ 254 [%] | R <sub>254</sub> [%] | I254 [Counts/s] |
|------------------------|----------------|----------------------|-----------------|
| Black (Black standard) | -              | -                    | 29251           |
| BAM (Reference)        | 90.0           | 8.1                  | 1457725         |
| BAM Manufacturer A     | ?              | 10.0                 | 1517085         |
| BAM Manufacturer B     | ?              | 19.6                 | 1380176         |

19) Estimate the absorption constant A of the phosphor LaPO<sub>4</sub>:Ce,Tb at 254 nm with the help of the Kubelka-Munk function the reflection values  $R_{254} = 0.1$ , and the average particle size  $d_{50} = 10 \ \mu m!$ 

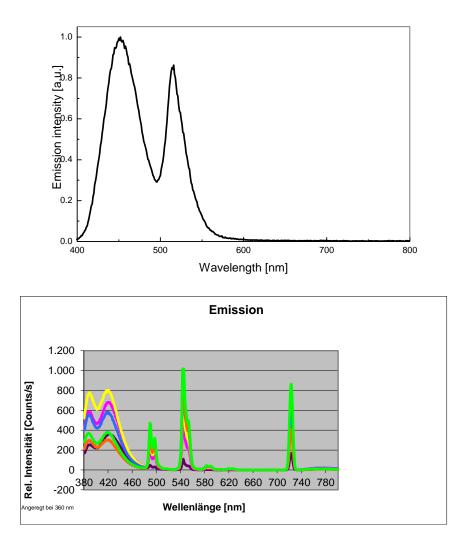
Kubelka-Munk-function:

| $F(R_{\infty}) =$ | Α | $(1-R_{\infty})^2$   | ε·c        |
|-------------------|---|----------------------|------------|
|                   | S | $2 \cdot R_{\infty}$ | ~ <u> </u> |

- 20) Which standard materials are used in reflection spectroscopy? Which physical properties limit the range of usable wavelengths?
- 21) Which spectroscopic methods would you use to determine the position of the absorption bands of a transparent ceramic or of a scattering powder sample?
- 22) Which color should the following complexes have? The absorption bands have a full width at half maximum (FWHM) of about 50 nm?

| Co <sup>3+</sup> -complex                            | absorption maximum [nm] |
|------------------------------------------------------|-------------------------|
| [Co(CO <sub>3</sub> ) <sub>3</sub> ] <sup>3-</sup>   | 640                     |
| [Co(H <sub>2</sub> O) <sub>6</sub> ] <sup>3+</sup>   | 600                     |
| [Co(NH <sub>3</sub> ) <sub>5</sub> Cl] <sup>2+</sup> | 535                     |
| [Co(NH₃)₅OH] <sup>2+</sup>                           | 500                     |
| [Co(NH <sub>3</sub> ) <sub>6</sub> ] <sup>3+</sup>   | 475                     |
| [Co(CN)₅Br]³-                                        | 415                     |
| [Co(CN) <sub>6</sub> ] <sup>3-</sup>                 | 310                     |

- 23) Quantum yields are measured mostly relatively to a standard or a reference phosphor. Sketch a procedure with which the quantum yield of a phosphor can be measured directly!
- 24) What is meant by actinometry? Give a photochemical reaction that is used for actinometry!
- 25) Which materials for spectroscopic windows would you use for the following spectral ranges?


a) X-ray

b) Vacuum-ultraviolet (VUV)

- c) Ultraviolet (UV-A/B/C)
- d) Visible (VIS)
- e) Infrared (IR)

26) You have acquired the following red emitting phosphors: (Y,Gd)BO<sub>3</sub>:Eu Y<sub>2</sub>O<sub>3</sub>:Eu Y<sub>2</sub>O<sub>2</sub>S:Eu YVO<sub>4</sub>:Eu Sr<sub>2</sub>Si<sub>5</sub>N<sub>8</sub>:Eu CaS:Eu Which measurements must be performed to decide which of these materials are suitable for plasma displays ( $\lambda_{ex} = 172 \text{ nm}$ ), fluorescent lamps ( $\lambda_{ex} = 254 \text{ nm}$ ) or blue light emitting diodes ( $\lambda_{ex} = 450 \text{ nm}$ ). How can you determine whether the phosphors are activated by Eu<sup>2+</sup> or Eu<sup>3+</sup>?

27) The following emission spectra of BaMgAl<sub>10</sub>O<sub>17</sub>:Eu,Mn and (Y,Gd)BO<sub>3</sub>:Ce,Tb were measured with an excitation at 254 nm or 360 nm:



Which measurement method is suitable to determine which emission band belongs to which activator ion?

Which variation of the spectra would you suspect with increasing temperature?