

Tailored Optical Materials

Prof. Dr. Thomas Jüstel FH Münster, FB CIW, RG TOM

MS Teams Online Meeting February 02nd, 2023

Research Group Tailored Optical Materials

FH Münster University of Applied Sciences Stegerwaldstr. 39, D-48565 Steinfurt, Germany Tel: +49-(0)2551-9-62100 Fax: +49-(0)2551-9-62844 E-Mail: tj@fh-muenster.de Web: http://www.fh-muenster.de/juestel Skype: thomasjuestel

FH & RG Tailored Optical Materials

Research areas

- Micro-/Nanoscale Luminescent & Optical Pigments
- Coordination & Solid State Chemistry
- Core-Shell Particles and Coatings
- Photochemistry
- Optical Spectroscopy

Optical Spectroscopy at RG TOM

Installed EI spectrometers: Temp. & time resolved spectra upon x-ray to NIR excitation

Contents

1. Motivation

- 2. Luminescent Materials: Basics and Trends
- **3. UV Radiation Sources**
- 4. UV Emitting Phosphors
- **5. NIR Radiation Sources**
- 6. NIR Emitting Phosphors
- 7. Outlook
- 8. References

1. Motivation – UV Radiation Sources

Post-antibiotic age, outbreaks, epidemics, and pandemics due to airborne viral diseases

Period	Virus/ -type	Spread	Remarks	Viruses = Volatile nanoparticles
1917 - 1920	Spanish flu	Worldwide	Death toll > 1.108	often spread by aerosols
2002 - 2003	SARS-CoV-1	Worldwide		
since 2004	Marburg	Angola and Uganda	Aerosols play a minor role, but are not insignificant	
			Aerosols hardly play a role, but transmission by aerosol	
2004 - 2016	A/H5N1	Worldwide	droplets is possible	
2009 - 2010	H1N1	Worldwide		
2019 - 2023	SARS-CoV-2	Worldwide	Death toll by 02/23~ 6.8.10 ⁶ [3]	1 9 9 9 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			Estimated 290,000 to 645,000	
Yearly	Influenza	Worldwide	people die each year [1]	

Lit.:

- [1] A. Danielle Iuliano et al., Estimates of global seasonal influenza-associated respiratory mortality: A modelling study, The Lancet, Volume 391, Issue 10127, P1285-1300, March 31, 2018 <u>https://doi.org/10.1016/S0140-6736(17)33293-2</u>
- [2] Corona-Update: Wie weit ist die Forschung? DAZ.online, 12.03.2020
- [3] Worldometer: https://www.worldometers.info/coronavirus/

1. Motivation – NIR Radiation Sources

First application of NIR (IUPAC: 780 - 2500 nm) in 1964 by Karl Norris, since then the giant is running strong.....

• NIR spectroscopy

Agriculture, astrophysics, food engineering, pharmaceutic science, process monitoring, medical monitoring like pulse oximetry, cancer diagnostic, brain waves interpretation and so on

Biosensing & bioimaging
 Optical coherence tomography

• NIR illumination

Active night vision systems, biometric security

1. Motivation – NIR Radiation Sources

Hidden optical markers for anticounter feiting since global product piracy causes more than 50 Bill. USD

Source: www.plagiarius.com

2. Luminescent Materials: Basics

A luminescent material (phosphor) converts absorbed energy into electromagnetic radiation beyond thermal equilibrium

Inorganic host

- Coordination number and geometry
- Symmetry of activator sites
- Optical band gap
- Phonon spectrum

Dopants, co-dopants, and defects \rightarrow **Energy transfer** (ET)

- Concentration
- Clustering of activator ions

Particle surface

- Zeta-potential
- Coatings \rightarrow Light in- and outcoupling

Particle morphology

- Shape & Surface area
- Particle size distribution

2. Luminescent Materials: Basics

- $Ce^{3+}, Pr^{3+}, Nd^{3+} (4f-5d)$ **10 - 100 ns**
- Eu^{2+} (4f-5d), Bi^{3+} (6s-6p) 10 ns - 10 µs

 \rightarrow Moderate activator concentration

FH MÜNSTER

University of Applied Sciences

2. Luminescent Materials: Trends

Particle morphology and surface optimization (coatings)

10

2. Luminescent Materials: Trends

Efficiency: Light sources & displays → External quantum yield (EQY)↑ → µ-particles → ceramics → single crystals

Lifetime: Light sources & displays \rightarrow Defect density \downarrow and particle coatings

Miniaturisation: µ-LED (displays)

→ PSD↓: Nanocrystals & Quantum Dots → Stability↑: Core-shell particles

Power density: High brightness LEDs & laser diodes \rightarrow Decay time & ESA \downarrow redox stability \rightarrow Density of optical center N_{activator} [cm⁻³]

Broad emission spectra: Human centric lighting, NIR sources → VIS: (Al,Ga)N LED + cyan, deep red → NIR: (In,Ga)N LED + NIR emitter

EQY =

Lit.: Brils Modell: A. Bril, Physica 15 (1949) 361

Number of emitted photons

Overview

Solar radiation

Hg discharge lamps

- low pressure
- amalgam
- medium pressure

Xe/(Hg) discharge lamps

D₂ discharge lamps

Excimer laser

• ArF*

Excimer discharge lamps, e.g. Dielectric Barrier Discharge (DBD) lamps

- XeCl*
- XeBr*
- KrCl*
- Xe_2^*
- Xe₂^{*} + UV phosphor (fluorescent DBD)

(Al,Ga)N UV LEDs

X-ray or cathode ray tube + UV phosphor

> 300 nm

185, 254 nm 185, 254 nm 200 – 400 nm

230 – 800 nm

110 – 400 nm

193 nm

210 – 365 nm

 $190 - 400 \text{ nm by } Y_2 SiO_5: Pr^{3+}$

12

*Lit.: PD properties of tungsten iodide clusters, T. Jüstel, H.-J. Meyer et. al, RSC Advances 10 (2020) 22257

Cathode Ray Tube (CRT) with UV-C Converter YBO₃:Pr or Y₂SiO₅:Pr

Accelerated electrons hit a phosphor screen to yield cathodoluminescence (CL): The principle is similar to that of a cathode ray tube for TV sets/monitors

Lit.: M. Broxtermann, D. den Engelsen, G.R. Fern, P. Harris, T.G. Ireland, J. Silver, T. Jüstel et al., ECS J. SSST 6 (2017) R47

X-ray Tube with UV-C Converter LaPO₄:Pr or YPO₄:Pr

 Pr^{3+} doped ortho-phosphates (LuPO₄) and ortho-silicates (Lu₂SiO₅) are efficient UV-C emitting scintillators

Many spin-offs, e.g. cancer & inflammation treatment by LnPO₄:Pr,Nd (Ln = Y, La, Lu)

Lit.: J. Kappelhoff, J.-N. Keil, M. Kirm, V. Makhov, K. Chernenkov, S. Möller, T. Jüstel, Chem. Phys. 562 (2022) 111646

UV Emitting LEDs - Status Quo 2022: WPE ~ 10% at 265 nm^[1], WPE ~ 10% at 304 nm^[2]

Review of UV LED May 2021

- **Development goals**
 - Internal quantum efficiency ↑
 - Light outcoupling and WPE ↑
 - Optical Power ↑
 - Life time ↑

UV Photonics, Berlin, 2022

- 230 nm LED
- >100 € LED

Lit.:

[1] H.-C. Kuo et al., Photonics 8 (2021) 196

[2] H. Hirayama e al., Scientific Reports 12 (2022) 2591

Properties of an "Ideal" UV Radiation Source

- Highly efficient
- UV-C spectrum

 $\eta(UV) > 20\%$ **UV disinfection** H₂O₂ activation Human skin safe

minimal cost of operation $200 \text{ nm} < \lambda < 300 \text{ nm}$ $\lambda < 230 \text{ nm}$?

- Low investment and maintenance costs
- High power (fewer lamps, minimal initial investment)
- Long life time (minimal operation and maintanance costs)
- Mercury free (UNEP Minamata Convention on Mercury 2017)

Lit.:

- T. Jüstel, H. Nikol, J. Dirscherl, W. Busselt, EP00201427, US 6398970 B1
- T. Jüstel, H. von Busch, G. Heussler, W. Mayr, US 7298077 B2
- G.F. Gärtner, G. Greuel, T. Jüstel, W. Schiene, US 7687997 B2
- T. Jüstel, J. Meyer, W. Mayr, US 7808170 B2
- T. Jüstel, P. Huppertz, D.U. Wiechert, W. Mayr, H. von Busch, US 7855497 B2
- T. Jüstel. G. Greuel, J.M. Kuc, US 9334442 B2
- M. Broxtermann, T. Dierkes, L.M. Funke, M. Salvermoser, M. Laube, S. Natemeyer, N. Braun,
- M.R. Hansen, T. Jüstel, J. Lumin. 200 (2018) 1
- M. Broxtermann, S. Korte, T. Jüstel, J. Business Chem. 14 (2018) 106

Motivation: Disinfection and medical treatment (cancer & inflammations)

	Penetration characteristic	Damage conferred	
UV-C	Penetrates cell membranes/cell walls	mainly DNA damage	
UV-B	Most responsible for sunburns. Penetrates deeper than UV-C, but is typically adsorbed by the skin's stratum corneum (dead cell layer)	DNA and other cell components by generation of free radicals	increasing
UV-A	Long wavelengths that reach inner strata of skin causing premature aging in humans	Shown to cause membrane damage	penetration

Typical penetration depth of UV-C radiation into tissue ~ 40 μ m!

Lit.: S. Miwa et al., J. Cellular Biochemistry 114 (2013) 2493

Indoor Air Disinfection with Deep UV-C

- Recent publications on the influence of deep UV-C radiation on human skin and eye cells showed, that radiation between 207 and 222 nm efficiently kills pathogens potentially without harm to exposed human tissues [1]
- KrBr* excimer discharge lamps (207 nm) have been successfully tested [2]
- Alternative: KrCl* excimer discharge (222 nm) shows undesired spectral features" above 230 nm (Cl₂*)

[3] A. Voronov, Heraeus, Übersicht der UV-Lampen und ihre Einsatzgebiete, Darmstadt Oktober 2009

Source: Ushio Homepage

20

3. UV Radiation Sources

Care222® Ushio: KrCl* excimer discharge

Commercial product of Ushio which was introduced to the market as eye and skin safe disinfection lamp

Structure of the Epidermis

Stratum corneum

Stratum lucidum

Stratum granulosum

Stratum spinosum
Stratum basale
Dermis

Commonoial anodust of Ushis -----

Indoor Air Disinfection with Deep UV-C (200-230 nm) emitting Xe₂* lamp?

 Xe_2^* excimer discharge ($\eta > 30\%$) with suitable radiation converter screen ($172 \rightarrow 222$ nm) is most efficient

Suitable Hosts and Activators (for deep UV-C emission)

Host matrices

Fluorides	Phosphates	Borates	Aluminates	Garnets <u>C</u>	<u>Conclusions</u>
Fluorophosphat	Sulfates es Silicop	Silicates hosphates	Silicophosphates Silicoaluminates	•	Oxidic hosts solely
Activator ions				•	s ² -ions or trivalent RE ions required RE = Sc^{3+} , Pr^{3+} , Nd^{3+}
Nd ³⁺	Sc ³⁺ , Tl ⁺ , Pb ²⁻ <u>Pr</u> ³⁺ , <u>Bi</u> ³⁺	+, Gd ³⁺ , B	³⁺ , Pr ³⁺ , Ce ³⁺ Tm ³⁺ ,	Pb ²⁺ , Ce ³⁺ , Eu ²⁺	~~ , , _ , _ , _ , _ , _ , _ ,
	UV-C	UV-B	UV-A	Α	
Vacuum UV 100 nm	200 nm	280 nm	320 nm	400 ni	→ n

Phosphors Activated by Ions with s² Configuration

NaYF₄:Pr³⁺

1.0

Fluoride Phosphors Activated by Pr³⁺

25

Oxidic Phosphors Activated by Pr³⁺

(Y,Lu)PO₄ Band gap E_g = 9.0 eV 1 crystallographic site

Distorted dodecahedra CN = 8

Y-O Distances 4 x 2.24 Å 4 x 2.24 Å

CF Splitting ~ 12000 cm⁻¹ Centroid shift ~ 9600 cm⁻¹

 \Rightarrow CF Splitting and centroid shift reduces lowest CF component of the [Xe]4f¹5d¹ configuration by around 22000 cm⁻¹

- $\Rightarrow E(4f^{1}5d^{1}) < E(^{1}S_{0})$
- \Rightarrow [Xe]4f¹5d¹ [Xe]4f² band emission

- 1. VUV: Cleavage of water and oxygen species
 - (Y,Lu)PO₄:Nd(,Pr) 193 nm
- 2. Deep UV-C: Removal of µ-pollutants & skin safe UV
 - LiYF₄:Pr
 - CaSO₄:Pr
 - LuPO₄:Pr
 - YPO₄:Pr
- 3. UV-C: Disinfection
 - CaLi₂SiO₄:Pr
 - YBO₃:Pr
 - $Y_2SiO_5:Pr$
 - $Y_2Si_2O_7:Pr$
- 4. UV-B: Photocatalysis e.g. Vitamin D formation
 - $Lu_3Ga_2Al_3O_{12}:Pr$
 - Lu₃Al₅O₁₂:Pr
 - Y₃Al₅O₁₂:Pr

218 nm 222 nm 232 nm 235 nm

252 nm

265 nm

270 nm

275 nm

300 nm

310 nm

320 nm

Structure, emission, and PSD of LuPO₄:Pr (FH MS)

Surface Disinfection Claimed by Blue LED or Laser Diode + Blue-to-UV up-Converter

1. SHG: 445 nm laser diode + B-BaB₂O₄ NLO crystal, Germany, Berlin

Lit.: G. Tränkle et al., IEEE Phot. Tech. Lett. 30 (2018) 289

2. ETU: 445 nm laser diode + Y₂SiO₅:Pr,Li ceramic, Georgia, Atlanta

 $\begin{bmatrix} 0.04 \\ 0.03 \\ 0.02 \\ 0.00 \\ 20 \\ 245 \\ 270 \\ 295 \\ 320 \\ 320 \\ 245 \\ 270 \\ 295 \\ 320 \\$

ABSTRACT: The objective of this study was to develop visible-to-ultraviolet C (UVC) upconversion ceramic materials, which inactivate surface-borne microbes through frequency amplification of ambient visible light. Ceramics were formed by high-temperature sintering of compacted yttrium silicate powders doped with Pr^{3+} and Li^* . In comparison to previously reported upconversion surface coatings, the ceramics were significantly more durable and had greater upconversion efficiency under both laser and low-power visible light excitation. The antimicrobial activity of the surface surface under diffuse fluorescent light was assessed by measuring the inactivation of *Bacillus subtilis* spores, the rate of which was nearly 4 times higher for ceramic materials compared to the previously reported films. Enhanced UVC emissions were

attributed to increased material thickness as well as increased crystallite size in the ceramics. These results represent significant advancement of upconversion surfaces for sustainable, light-activated disinfection applications.

Lit.:

 E.L. Cates, A.P. Wilkinson, J.-H. Kim, J. Luminescence 160 (2015)
 202
 E.L. Cates, J.-H. Kim, J. Photochemistry & Photobiology, B: Biology 153 (2015) 405

FH MÜNSTER

University of Applied Sciences

Surface Disinfection Claimed by Blue LED or Laser Diode + Blue-to-UV up-Converter

Pr3+ doped Li2SrSiO4: an efficient visible-ultraviolet C up-conversion phosphor

Zhiqian Yin, Peng Yuan, Zheng Zhu, Tianyi Li, Yanmin Yang

College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei Key Lab of Optic-electronic Information and Materials, Hebei University, Baoding, 071002, PR China

ARTICLE INFO

ABSTRACT

Keywords: Up-conversion emission Ultraviolet C Optical properties Silicate Up-conversion (UC) phosphor converting visible light into ultraviolet C light (UVC) has potential application in many fields. However, the lower energy conversion efficiency limits its practical application. Here, we proven that the synthesized Li₂SrSiO₄:Pr³⁺ phosphor is an efficient UV phosphor with the emission power of 0.25 mW/ cm² (0.1 mW/cm² for UVC band), which can effectively inactivate bacteria within 10 min. Based on the different propagation properties of visible light and UVC in ordinary glass, we proposed a scheme to coat this phosphor inside the slide and cover glass of a confocal microscope to realize the real-time observation of the response of microorganisms under UVC irradiation, thereby providing a new effective method for microbial research.

Lit.: Z. Yin, P. Yuan, Z. Zhu, T. Li, Y. Yang, Pr³⁺ doped Li₂SrSiO₄: an efficient visible-ultraviolet C up-conversion phosphor, Ceramics International, Ceramics International 47 (2021) 4858

Issues with Published Pr³⁺ Doped ortho-Silicates

- Low stability results in hydrolysis in humid air
- Low efficiency of the up-conversion process
- Up-conversion spectroscopy

 \rightarrow hydroxides \rightarrow carbonates

Y₂SiO₅:Pr: QE ~ 0.01% (literature value)

Artifacts and reproducibility Determination of absorption strength

$$QE = N_{(hv emitted)}/N_{(hv absorbed)}$$

488 nm laser diode excitation: Y_2SiO_5 :PrI ~ 1.5·10⁴ ctsCaLi_2SiO_4:PrI ~ 3·10⁵ cts

Host Material for Pr ³⁺	Emission / nm	Excitation / nm
	/	/ 11111
Ba ₂ SiO ₄	250-360	488 nm
BaY ₂ Si ₃ O ₁₀	255-360	488 nm
Ca ₂ LuSc ₂ GaSi ₂ O ₁₂	280-400	488 nm
Ca ₂ Al ₂ SiO ₇	255-360	488 nm
CaLi ₂ SiO ₄	245-350	488 nm
Ca ₂ Sc ₂ Si ₃ O ₁₂	298-400	488 nm
KYSiO ₄	265-400	488 nm
LiYSiO ₄	255-400	488 nm
Lu ₃ Al ₅ O ₁₂	280-400	488 nm
Lu ₃ (Al,Ga) ₅ O ₁₂	280-400	488 nm
Lu ₃ Al ₃ Sc ₂ O ₁₂	280-400	488 nm
Lu ₂ CaAl ₄ SiO ₁₂	280-400	488 nm
Lu ₂ Si ₂ O ₇	250-360	488 nm
Lu ₂ SiO ₅	250-360	488 nm
NaYSiO ₄	255-320	488 nm
Sr ₂ MgSi ₂ O ₇	260-410	488 nm
Sr ₃ MgSi ₂ O ₆	280-410	488 nm
Y ₂ SiO ₅	255-355	488 nm
		21

5. NIR Radiation Sources

Types

- Incandescent bulbs
- Silicon carbide heating elements (Globar®)
- Nernst Glowers
- GaAs or (Al,Ga)As LEDs

Spectral power distribution of a Globar® SLS203L in comparison to black body radiation at 1500 K

low efficiency large size high energy consumption

Emission spectrum of a 3 W 850 nm LED

5. NIR Radiation Sources

Limitations of NIR emitting LEDs

- Narrow emission spectrum
- Poor thermal stability
- Sensitivity towards humidity
- Shift of EL spectrum with drive, lifetime, and temperature

Emission spectra of an LED array comprising 10 x 3 W 850 nm LEDs measured upon increasing drive current

Shift in emission spectrum of infrared LED with an increase of ambient temperature from 0 °C to 50 °C

33

5. NIR Radiation Sources

Phosphor Converted NIR emitting LEDs

Advantages of blue or UV emitting (In,Ga)N semiconductor chips

- Good thermal stability
- High wall-plug efficiency (WPE)
- Small spectral shift upon temperature increase
- Very high lifetime

Requirements for NIR emitting phosphors

- High quenching temperature (T_{1/2} > 450 K)
- Spectral consistent
- Strong absorption in the spectral range of the LED chip emission
- High internal and external quantum yield

1000

Typical output intensity of blue (Ga,In)N/GaN, green (Ga,In)N/GaN, and red (Al,Ga,In)P/GaAs LEDs as a function of ambient temperature

Adapted from: E.F. Schubert, Light-Emitting Diodes, Cambridge University Press, 2003

Potential activators

Transition metal ions

- Vⁿ⁺, Crⁿ⁺, Mnⁿ⁺, Feⁿ⁺, Co²⁺, Ni²⁺, Cu²⁺
- Mostly broad band emission (lines for Cr³⁺, Mn⁴⁺)
- Strong absorption due to spin allowed 3d-3d transitions or LMCT transitions
- Strong thermal quenching

Lanthanide ions

- Nd³⁺, Ho³⁺, Er³⁺, Tm³⁺, Yb³⁺
- Line emission
- Weak absorption due to 4f-4f transitions
- Mostly rather high quenching temperature

Activator	$\lambda_{ m em,max}$	Typical inorganic host materials
Mn^{4+}	730 nm	SrLaAlO ₄ , CaLaMgSbO ₆
Mn^{5+}	1150 nm	Na ₂ CaSiO ₄
Mn ⁶⁺	1100 nm	BaSO ₄
Cr ³⁺	850 nm	Sr ₈ MgLa(PO ₄) ₇
Cr ⁴⁺	1250 nm	Mg_2SiO_4
Cu^{2+}	910-960 nm	(Ca,Sr,Ba)CuSi ₄ O ₁₀
Ni ²⁺	1600 nm	KMgF ₃
C0 ²⁺	3200 nm	ZnSe
Eu ²⁺	840 nm	Ca ₃ Sc ₂ Si ₃ O ₁₂
Nd ³⁺	1060 nm	(Y,Gd,Lu) ₃ (Al,Sc,Ga) ₂ Al ₃ O ₁₂
H0 ³⁺	2280 nm	(Y,Gd,Lu) ₃ (Al,Sc,Ga) ₂ Al ₃ O ₁₂
Er ³⁺	1550 nm	(Y,Gd,Lu) ₃ (Al,Sc,Ga) ₂ Al ₃ O ₁₂
Yb ³⁺	980 nm	(Y,Gd,Lu) ₃ (Al,Sc,Ga) ₂ Al ₃ O ₁₂

Example: [Ar]3d³ Ions

V²⁺, Cr³⁺, Mn⁴⁺, Fe⁵⁺

Lit.: J. Phys. Soc. Jpn. 81 (2012) 104709

 \rightarrow Mn⁴⁺ show solely line emission (²E-⁴A₂): 620 - 750 nm

 \rightarrow Band emission (4T2-4A2) only expected for $\ Cr^{3+}$ and V^{2+}

 $\rightarrow V^{2\scriptscriptstyle +}$ and $Fe^{5\scriptscriptstyle +}$ stabilization in solids is difficult

Tanabe-Sugano diagram for d³-ions

Host	Dq /cm ⁻¹	B /cm ⁻¹	E(² E) /cm ⁻¹	Dq/B
α -Al ₂ O ₃	1795	630	14399	2,85
SrAl ₁₂ O ₁₉	1707	636	14575	2,68
$GdAl_3(BO_3)_4$	1672	677	14633	2,47
Sr ₈ MgLa(PO ₄) ₇	1421	686	-	2,07

B↓ increased covalency of Cr-O bonds

B↑

decreased covalency of Cr-O bonds

Garnets $X_3Sc_2Ga_3O_{12}$: Cr^{3+} (X = Lu, Y, Gd, La)

Excitation spectra of XSGG:Cr³⁺ with X = Lu, Y, Gd, La

Emission spectra of XSGG:Cr³⁺ with X = Lu, Y, Gd, La

Host	Ionic radius X ³⁺ /Å	Sc-O distance /Å	X-O distance /Å	Host	Dq [cm ⁻¹]	Em. max	FWHM	Stokes Shift
LuSGG	1.12	1.993	2.490	LuSGG	1626	722 nm	73 nm	2585 cm ⁻¹
YSGG	1.16	2.018	2.522	YSGG	1587	740 nm	90 nm	2445 cm ⁻¹
GSGG	1.19	2.041	2.550	GSGG	1563	754 nm	90 nm	2354 cm ⁻¹
LaSGG	1.30	2.086	2.607	LaSGG	1458	818 nm	145 nm	2392 cm ⁻¹

Garnets $X_3Sc_2Ga_3O_{12}$: Cr^{3+} (X = Lu, Y, Gd, La)

$\mathbf{X} = \mathbf{G}\mathbf{d}$

• Superior quenching behavior

$\mathbf{X} = \mathbf{L}\mathbf{a}$

- Strong thermal quenching of LaSGG compared to other XSGG
- Small Dq, i.e. low energetic position of ⁴T₂ level
- Large Stoke'sche Shift (Huang-Rhys-Parameter: S = 6)
- Large FWHM of ⁴T₂ band

Host / Decay	$ au_{3K}$	$ au_{ m RT}$
LuSGG	2,2 ms	314 µs
YSGG	1,2 ms	125 μs
GSGG	425 μs	102 μs
LaSGG	178 µs	104 μs

Host	Dq [cm ⁻¹]	Em. max	FWHM	Stokes Shift	T _{1/2}
LuSGG	1626	722 nm	73 nm	2585 cm ⁻¹	714 K
YSGG	1587	740 nm	90 nm	2445 cm ⁻¹	660 K
GSGG	1563	754 nm	90 nm	2354 cm ⁻¹	780 K
LaSGG	1458	818 nm	145 nm	2392 cm ⁻¹	450 K

FH MÜNSTER University of Applied Sciences

Garnets X₃Sc₂Ga₃O₁₂:Cr³⁺ for application in silicone onto (In,Ga)N LED chips

LaSGG:Cr

 $d_{50} = 9.0 \ \mu m$ for GSGG:Cr³⁺

Broad emission between 650 and 900 nm

Highest conversion efficiency for GSGG ~ 5%

Lit.: B. Malysa, A. Meijerink, T. Jüstel, J. Luminescence 202 (2018) 523

Cr³⁺ Phosphors for NIR emitting sources based on (In,Ga)N LED chips

- Thermal NIR sources show very broad emission spectra
- NIR emitting LEDs are very efficient, but show problems concerning lifetime, thermal quenching, and spectral consistency
- Phosphor converted LEDs could combine efficiency and stability of blue emitting LEDs with broad band NIR-Emission of Cr³⁺

Host	Dq	Emission max. at RT	FWHM	Stokes Shift	T _{1/2}
CaSc ₂ O ₄	1471 cm ⁻¹	820 nm	164 nm	3042 cm ⁻¹	< 240 K
SrSc ₂ O ₄	1389 cm ⁻¹	860 nm	168 nm	2939 cm ⁻¹	< 240 K
Sr ₈ MgLa(PO ₄) ₇	1421 cm ⁻¹	848 nm	141 nm	2487 cm ⁻¹	300 K
$GdAl_3(BO_4)_3$	1672 cm ⁻¹	730 nm	116 nm	3136 cm ⁻¹	650 K
LuSGG	1626 cm ⁻¹	722 nm	73 nm	2585 cm ⁻¹	714 K
YSGG	1587 cm ⁻¹	740 nm	90 nm	2445 cm ⁻¹	660 K
GSGG	1563 cm ⁻¹	754 nm	90 nm	2354 cm ⁻¹	780 K
LaSGG	1458 cm ⁻¹	818 nm	145 nm	2392 cm ⁻¹	450 K

Cr³⁺/Cr⁴⁺ Co-activated phosphors

Example: La₃Ga₅GeO₁₄:Cr^{3+/4+} exhibits broad emission from deep red to NIR range

- Cr³⁺ onto octahedral Ga³⁺ site Cr(I)
- Cr⁴⁺ onto tetrahedral Ga³⁺ site Cr(II)

Cr⁴⁺ photoluminescence suffers from strong thermal quenching

Lit.: ACS Energy Lett. 3 (2018) 2679

Sensitized NIR emitting phosphors

$Cr^{3+} \rightarrow Cr^{4+}$				900 – 1400 nm
$Cr^{3+} \rightarrow Yb^{3+}$	$Cr^{3+} \rightarrow Nd^{3+} \rightarrow Yb^{3+}$	$Ce^{3+} \rightarrow Yb^{3+}$	$Ce^{3+} \rightarrow Tb^{3+} \rightarrow Yb^{3+}$	980 – 1040 nm
$Cr^{3+} \rightarrow Nd^{3+}$	$Ce^{3+} \rightarrow (Cr^{3+}) \rightarrow Nd^{3+}$	$Eu^{2+} \rightarrow Nd^{3+}$	$Eu^{2+} \rightarrow Mn^{2+} \rightarrow Nd^{3+}$	1050 – 1080 nm
$Cr^{3+} \rightarrow Ni^{2+}$				1200 – 1600 nm
$Cr^{3+} \rightarrow Tm^{3+}$				1400 – 1550 nm
$Cr^{3+} \rightarrow Er^{3+}$				1540 – 1560 nm
$Cr^{3+} \rightarrow Ho^{3+}$				1900 – 2100 nm

Cr³⁺/Yb³⁺ Co-activated phosphors

Example: La₃GaGe₅O₁₆:Cr³⁺,Yb³⁺ improvement of ET to NIR range by incorporation of additional Nd³⁺

Lit.: L. Zhao et al., Inorg. Chem. 61 (2022) 13618

Cr³⁺/Nd³⁺ Co-activated phosphors

Lit.: V. Anselm, T. Jüstel, J. Mater. Res. 11 (2021) 785

Eu²⁺/Mn²⁺/Nd³⁺ Co-activated phosphors

Example: Ca₉Lu(PO₄)₇:Eu²⁺,Mn²⁺,Nd³⁺

Cr³⁺/Ni²⁺ Co-activated phosphors

Example: LiMgPO₄:Cr³⁺,Ni²⁺

Lit.: Adv. Mater. Technol. 7 (2022) 2200320

Cu²⁺ activated phosphors

Cu ²⁺ activated phosp Optimisation of Egyptian	urce: stralian iseum				
Composition	λ (Ex,max) / nm	λ (Em,max) / nm	Thermal stability	Crystal system	Space group
CaCuSi ₄ O ₁₀	620	935	> 1000 °C decomposition to tridymit, cuprit	tetragonal	P4/ncc (# 130)
(Ca _{0,25} Sr _{0,75})CuSi ₄ O ₁₀	620	950	> 1000 °C decomposition to tridymit, cuprit	tetragonal	P4/ncc (# 130)
(Ca _{0,25} Sr _{0,75})CuGeSi ₃ O ₁₀	620	960	> 1000 °C decomposition to tridymit, cuprit	tetragonal	P4/ncc (# 130)

7. Outlook

FH MÜNSTER University of Applied Sciences

UV Radiation sources for water, air, surface disinfection/purification & photochem./-med.

Today: Hg discharge lamps → phosphors for UV-A/B conversion required

- 253.7 nm main Hg* line, discharge is highly efficient and effective
- Hazardous towards skin and eyes \rightarrow closed devices required
- 185.0 nm Hg line causes ozone formation
- Mature technology

Future: LEDs!

\rightarrow LED phosphors for broad band UV spectra?

- Flexible, low-voltage, Efficiency: UV-A up to 50%, UV-B/C ~ 10%
- Band gap of (Al,Ga)N solid solution ~ 210 365 nm, practical limit ~ 230 nm
- Challenges: Stability and efficiency below 250 nm

Future: Excimer lamps? \rightarrow VUV phosphors available from 193 – 380 nm

- Most common: Xe₂* 172 nm, KrCl* 222 nm, XeBr* 282 nm, XeCl* 308 nm
- Emission from 147 380 nm possible, potential for high power density
- Challenges: Stability and price \rightarrow Quartz & phosphor degradation, driver, Xe

7. Outlook

FH MÜNSTER University of Applied Sciences

220 - 230 nm

200 – 220 nm

207 nm

UV Radiation sources - Other options

- 450 nm LEDs or laser diodes + UV-C up-converter
- Excimer discharge lamp with KrBr*
- Xe₂* Excimer discharge lamp + deep UV-C emitting Sc³⁺ phosphor

54

7. Outlook

NIR Radiation sources for curing of coatings & biomedicine, NIR spectroscopy

- (In,Ga)N LED comprising NIR phosphor with high quantum yield, little thermal quenching and high spectral consistency
- Search for Cr³⁺ activated materials with a small Stokes Shift
- Results from energy transfer studies

 Cr^{3+} useful sensitiser for Cr^{4+}

Cr³⁺ useful sensitiser for RE activated NIR phosphors

Ce³⁺ useful sensitiser for RE activated NIR phosphors

Eu²⁺ useful sensitiser for RE activated NIR phosphors

Improvement of ET by Mn²⁺ or Nd³⁺ addition feasible

7. Outlook

NIR Radiation sources for curing of coatings & biomedicine, NIR spectroscopy

- Transition metals can cover the spectral range from 700 to 1600 nm
 - The couple Cr^{3+/4+} can generate very broad NIR (700 - 1200 nm) emission spectra
 - Control of oxidation states will be challenging, i.e. host must have octahedral and tetrahedral sites as e.g. in K₂Ge₄O₉
 - Ni²⁺ emits from 1200 nm (ZnGa₂O₄:Ni²⁺) to 1600 nm, while KMgF₃:Ni²⁺ show high thermal stability according to literature
 - Ni²⁺ is rather redox-stable and synthesis of respective materials thus rather simple
 - Cu²⁺ is an efficient NIR emitter in some silicates
- Trivalent lanthanide ions to fill up spectral gaps, but absorption remains a tremendous problem: Sensitisation required as for Eu³⁺

NIR Range (nm)	Approximate penetration depth in Polystyrene (mm)
1100 - 1500	~ 5
1500 - 2000	~ 3
2000 - 2500	~ 1 - 2

Ref.: Analyst. 140 (2015) 2093

8. References

Further Literature

- M. Broxtermann, T. Jüstel, Photochemically Induced Deposition of Protective Alumina Coatings onto UV Emitting Phosphors for Xe Excimer Discharge Lamps, Mat. Res. Bull. 80 (2016) 249
- M. Broxtermann, D. den Engelsen, G.R. Fern, P. Harris, T.G. Ireland, T. Jüstel, J. Silver, Cathodoluminescence and Photoluminescence of YPO₄:Pr³⁺, Y₂SiO₅:Pr³⁺, YBO₃:Pr³⁺, and YPO₄:Bi³⁺, ECS Journal of Solid State Science and Technology 6 (2017) R47 (weekly digest)
- M. Laube, T. Jüstel, On the Photo- and Cathodoluminescence of LaB₃O₆:Gd,Bi, Y₃Al₅O₁₂:Pr, Y₃Al₅O₁₂:Gd, Lu₃Al₅O₁₂:Pr, and Lu₃Al₅O₁₂:Gd, ECS J. SSST 7 (2018) R206
- M. Broxtermann, A. Meijerink, T. Ju, M.R. Hansen, N. Braun, L.M. Funke, H. Eckert, J.-N. Keil, T. Jüstel, A Detailed Aging Analysis of MPO₄:X (M = Y³⁺, La³⁺, Lu³⁺; X = Bi³⁺, Pr³⁺, Gd³⁺) due to the Xe Excimer Discharge, J. Luminescence 202 (2018) 450
- M. Laube, T. Jüstel, Novel UV-A and -B Emitting Device for Medical Treatment, Photochemistry, and Tanning Purposes, ECS J. SSST 9 (2020) 065012
- R. Pöttgen, T. Jüstel, C. Strassert (eds.), Rare Earth Chemistry, De Gruyter, 2020
- F. Schröder, S. Fischer, T. Jüstel, On the conc. dependency of Pr doped Li₂CaSiO₄, Austr. J. Chem. 75 (2022) 760
- R. Pöttgen, T. Jüstel, C. Strassert (eds.), Applied Inorganic Chemistry, Vol. 1-3, De Gruyter, 2022
- F. Baur, T. Jüstel, UV Emitting Phosphors: From Fundamentals to Applications in Luminescent Materials: Fundamentals and Applications edited by M.G. Brik and A.M. Srivastava, De Gruyter, 2023

Internet Links

- Homepage T. JüstelResearch Gate
- **Robert Koch Institute**

www.fh-muenster.de/juestel www.researchgate.com www.rki.de

Acknowledgements

Dr. Florian Baur Dr. David Enseling Ines Becker Dr. Helga Bettentrup Agata Blacha Andre Bleise **Ewelina Broda** Dr. Michael Dierks Dr. Danuta Dutczak Dr. Tobias Dierkes **Emilie Goirand** Nadine Engbers Linda Eickhoff Jörg Exner Joana Flottmann Dr. Rolf Gerdes Dr. Joanna Gondek Dr. Benjamin Herden Alexander Hoffmann **Torsten Hofmann** Marcel Hübner Dr. Thomas Jansen Dr. Arturas Katelnikovas Dr. Ramunas Skaudzius Marlies Maroka Julia Hopster

Heike Kätker Beata Koziara Tim Köcklar Dr. Jagoda Kuc **Stephan Lippert** Maximilian Mäsing Dr. Daniel Michalik Dr. Monika Michalkova Dr. Alexander Milbrat Katarzyna Mocniak Dr. Stephanie Möller Dr. Matthias Müller Jessica Peschel Dr. Julian Plewa Tatjana Rat Carsten Schledorn Dr. Simas Sakirzanovas Carsten Schweder Dr. Sebastian Schwung Andrew Shamu Lisa Siewert Claudia Süssemilch **Dr. Dominik Uhlich** Christine Vogel Florian Rosner **Raphael Steinbach**

Dr. Nils Wagner Nele Schumacher Natalie Pasberg Dr. Beata Malysa Antonio Lorusso Dr. Stefan Fischer Dr. David Böhnisch Gökhan Öksüz Heike Jenneboer Anne Uckelmann Dr. Sara Espinoza Viktor Anselm Dr. Mike Broxtermann Dr. Simon Korte **Dr. Patrick Pues** Dr. Michael Laube Dr. Max Volhard Dr. Jan-Niklas Keil Jan Kappelhoff Franziska Schröder Tim Pier Jury Rosenboom Nils Kuprat Elisa Lindfeld **Anne Westemever** Julia Exeler Sven Reetz

Bundesministerium für Bildung und Forschung

Bundesministerium für Wirtschaft und Technologie

Deutsches Zentrum für Luft- und Raumfahrt

