8. Lumineszensmechanismen

<u>Inhalt</u>

- 8.1 Lumineszenz Definition, Materialien und Prozesse
- 8.2 Absorptionsvorgänge
- 8.3 Anregungsmechanismen
- 8.4 Energietransfer
- 8.5 Verlustprozesse
- 8.6 Cross-Relaxation
- 8.7 Konfigurationskoordinatendiagramm
- 8.8 Thermische Löschung
- 8.9 Lebensdauer des angeregten Zustandes
- 8.10 Lumineszenz von ÜM-Ionen
- 8.11 Lumineszenz von Ionen mit s²-Konfiguration
- 8.12 Lumineszenz von Ln-Ionen
- 8.13 Down-Conversion
- 8.14 Up-Conversion
- 8.15 Afterglow

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster

Kapitel Lumineszenzmechanismen Folie 1

8.1 Lumineszenz - Definition

Lumineszenz beschreibt die Emission elektromagnetischer Strahlung abseits des thermischen Gleichgewichts

Anorganische Materialien: Strahlende Rekombination bei Verunreinigungen/Defekten:

- (a) Leitungsband–Akzeptor–Übergang
- (b) Donorlevel–Valenzband–Übergang
- (c) Donor-Akzeptor-Rekombination
- (d) Excitonen–Rekombination

Daraus folgt: Lumineszenz setzt die Absorption von Energie in diskreten Zuständen voraus!

Inkohärente Lichtquellen	Kapitel Lumineszenzmechanismen
Prof. Dr. T. Jüstel, FH Münster	Folie 2

8.1 Lumineszenz - Definition

Thermische und nicht-thermische Strahler

Thermische Strahler emittieren ein Strahlungsspektrum, das dem eines schwarzen Strahlers bei der entsprechenden Temperatur entspricht

→ Planck'sche Strahlung

Beispiele: Kosmische Hintergrundstrahlung, Kosmische Objekte, Halogen- und Glühlampen

Nicht-thermische Strahler emittieren ein Strahlungsspektrum, das durch elektronische Übergänge zwischen diskreten Energieniveaus hervorgerufen wird

→ Lumineszenz

Folie 3

- Aktivator
- Sensibilisator **(S)**
- Defekte

(D)

(Bandlücke) • Wirtsgitter

Energietransfer tritt oft vor der eigentlichen Emission auf!

Anorganische lumineszierende Materialien – Der Einfluss des Wirtsgitters Leitungsband (CB-conduction 4 **Donorlevel (D) band**) Bandlücke E_g **Akzeptorlevel** (A) Valenzband (\mathbf{VB}) **Absorption via**

YBO₃ Vaterite

Bandlücke
$$E_g = 6.5 \text{ eV}$$

- Wirtsgitter
 - \rightarrow Charge-Transfer oder VB zu CB
- **Defekte (Farbzentren)** ٠
 - → Donor- und Akzeptorlevel

Kapitel Lumineszenzmechanismen Folie 5

Anorganische lumineszierende Materialien – Der Einfluss des Wirtsgitters

Reflexionsspektrum von YBO₃

Emissionsspektrum von YBO₃ bei $\lambda_{exc.} = 160$ nm

Prof. Dr. T. Jüstel, FH Münster

Folie 7

Mechanistische Übersicht

S0, S1, S2, T1, A0, A1 = Energieniveaus der Aktivatoren und Sensibilisatoren ISC = Intersystem Crossing "spin-verbotener singulett-triplett Übergang" ET = Energietransfer (Energietransfer)

Elektronische Grundzustände verschiedener Atome und Ionen (Dotierungen)

Elektronische Energieniveaus sind abhängig vom Eigendreh- (Spin) und dem Bahndrehimpuls der Elektronen bzw. deren Wechselwirkung miteinander (Gesamtspin bzw. -bahndrehimpuls)

A	tom / Ion	Elektro	nenkonfiguration	Spektr	oskopischer Term ^{2S+1} L _J
L	i ⁰	$1s^2 2s^1$		${}^{2}S_{1/2}$	
L	i +	1s ²		¹ S ₀	
N	a ⁰	[Ne]3s ¹		${}^{2}S_{1/2}$	
T	i ³⁺	$[Ar]3d^1$		${}^{2}\mathrm{D}_{3/2}$	
C	r ³⁺ /Mn ⁴⁺	[Ar]3d ³		${}^{4}\mathrm{F}_{3/2}$	
\mathbf{N}	In ²⁺ /Fe ³⁺	[Ar]3d ⁵		⁶ S _{5/2}	
Z	n ²⁺ / Cu ⁺	[Ar]3d ¹⁰)	¹ S ₀	
C	e ³⁺	[Xe]4f ¹		${}^{2}\mathrm{F}_{5/2}$	
E	u ³⁺	[Xe]4f ⁶		${}^{7}\mathbf{F_{0}}$	
G	d^{3+}/Eu^{2+}	[Xe]4f ⁷		⁸ S _{7/2}	
T	b ³⁺	[Xe]4f ⁸		$^{7}\mathbf{F_{6}}$	
L	u ³⁺	[Xe]4f ¹⁴		¹ S ₀	
Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster				Kapitel Lumineszenzmechanismen Folie 10	

Auswahlregeln für elektronische Dipolübergänge

Grundvoraussetzung: Impulserhaltung des Systems "Atom/Ion + Photon"

1. Spinauswahlregel $\Delta S = 0$ 2. Drehimpuls (einzelnes Elektron) $\Delta I = \pm 1$ 3. Drehimpuls (mehrere Elektronen) $\Delta J = 0, \pm 1$ (aber 1)

 $\Delta J = 0, \pm 1$ (aber nicht $J = 0 \rightarrow J = 0$) $\Delta L = 0, \pm 1$ (aber nicht $L = 0 \rightarrow L = 0$)

4. Laporte-Auswahlregel $g \rightarrow u \text{ or } u \rightarrow g$ not $g \rightarrow g \text{ or } u \rightarrow u$

Beispiele:		Ce ³⁺ Eu ³⁺	$[Xe]4f^{1}({}^{2}F_{5/2}) \rightarrow [Xe]5d^{1}({}^{2}D_{3/2})$ $[Xe]4f^{6}({}^{7}F_{0}) \rightarrow [Xe]4f^{6}({}^{5}D_{0})$	⇒ erlaubt ⇒ verboten	~ ns ~ ms
Inkohärente Lichtquellen		uellen		Kapitel Lumineszenzmechanisn	
Prof. Dr. T. Jüstel, FH Münster		FH Münster		Folie 11	

Тур

Anregung durch

Beispiele

Szintillation

Röntgen–Lumineszenz Kathoden–Lumineszenz Photo–Lumineszenz Elektro–Lumineszenz

Chemo-LumineszenzChemischBio-LumineszenzBiochemiThermo-LumineszenzHitzeSono-LumineszenzUltraschMechano-LumineszenzMechani(Elasto-, Frakto-, Plasto-, Tribo-L.)

Hoch–energetische Partikel γ-Strahlung Röntgenstrahlung **Electronen (hohe Spannung) UV/Vis–Photonen Elektrisches Feld** (niedrige Spannung) **Chemische Reaktion Biochemische Reaktion** Hitze Ultraschall Mechanische Energie

Hoch–Energie Physik PET–Systeme Röntgenverstärker, CT CRTs, Oszilloskope Fluoreszenzlampen LEDs, EL–Displays

Notsignale Quallen, Glühwürmchen Afterglow–Leuchtstoffe

Tesa–Film

Lit.: Nature 455 (2008) 1089, blau + UV + x-ray

8.2 Absorption

Eindringtiefe von Photonen und Elektronen

Photonen (Lambert-Beer'sches Gesetz)

Penetration depth

^{254nm} Absorption
durch Aktivator
oder
Sensibilisator

 $h \cdot \upsilon > Eg$ (host lattice)

Elektronen	(Feldman–Gleichung:	R	in	[Å]
------------	---------------------	---	----	----	---

$$R = 250 \frac{A}{\rho Z^{n/2}} U^{n} \text{ with } n = \frac{1,2}{1 - 0,29 \log_{10} Z}$$

Für 5.7 keV	Dichte	R	R
Elektronen	$[g/cm^3]$	[Å]	[nm]
SiO ₂	2.20	6171	617.8
$Al_2 O_3$	3.97	3476	347.6
$Mg_3(PO_4)_2$	2.56	5345	534.4
ZnŠ	4.04	4248	424.8
MgO	3.59	3799	379.8
MgF ₂	3.15	4464	446.4
MgS	2.68	5603	560.4

Näherungsweise R ~ $0.046*U^{5/3}/\rho$ [µm]

Für ein Material mit r = $5.0 \text{ g/cm}^3 (\text{Y}_2\text{O}_3)$ 10 kV Elektronen R ~ 400 nm 2 kV Elektronen R ~ 30 nm

> Kapitel Lumineszenzmechanismen Folie 13

Hochenergetische Partikel, γ-Strahlen und Röntgenstrahlen

- 1. Anregung hoch-energetischer Kernniveaus
- 2. Thermische Bildung von Elektronen–Loch–Paaren über die Bandlücke
- 3. Energietransfer zum Aktivatorion oder zu Farbzentren
- 4. (Zentren–) Lumineszenz

Mechanismen sind gut verstanden, wenn auch mit Hilfe von zwei verschiedenen Modellen:

- 1. Robbins
- 2. Bartram-Lempicki

Photonen mit einer Energie > Bandlücke des Wirtsgitters: PDPs und Xe–Excimer Lampen

Interne Quanteneffizienz: $IQE = \eta_r / (\eta_r + \eta_{nr}) = \eta_{act}$ Externe Quanteneffizienz: $EQE = \eta_{act} * \eta_{transfer} * \eta_{esc}$

Photonen mit einer Energie < Bandlücke des Wirtsgitters: Fluoreszenzlampen und LEDs

Beispiel: BaMgAl₁₀O₁₇ dotiert mit 10% Eu²⁺

Reflexionsspektren

Emissions- und Anregungsspektrum

Beispiel: BaMgAl₁₀O₁₇ dotiert mit 5% Mn²⁺

Reflexionsspektren

Emissions- und Anregungsspektrum

Beispiel: LaPO₄ dotiert mit 20% Ce³⁺

Beispiel: Y₂O₃ dotiert mit 5% Eu³⁺

Konsequenzen für Lumineszenzprozesse

Auswirkungen

- Energiemigration
- Konzentrationslöschung
- Thermische Löschung
- Cross-Relaxation
- Sensibilisierungsschemata

Einige Regeln

- ET eines Breitbandemitters auf einem Linienemitter ist nur in unmittelbarer Nachbarschaft im Wirtsgitter möglich (Ce³⁺ - Tb³⁺)
- ET eines Linienemitters auf einen Bandabsorber findet auch über große Distanzen statt (Gd³⁺ Ce³⁺)
- ET ist sehr stark abstandsabhängig und wird damit stark von der Konzentration der Lumineszenzzentren beeinflusst (Eu³⁺ Eu³⁺)

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster Kapitel Lumineszenzmechanismen Folie 26

Energiepfade in BaMgAl₁₀O₁₇:Eu,Mn

8.5 Verlustprozesse

Übersicht der wichtigsten Prozesse, die zu Lumineszenzlöschung führen

- 1. Die absorbierte Energie erreicht den Aktivator nicht
 - a) Konkurrierende Absorption
 - b) ET zu Defekten oder nicht-lumineszierenden Verunreinigungen
 - c) Excited State Absorption (ESA)
 - d) Auger-Prozesse
- Die absorbierte Energie erreicht den Aktivator, aber nicht-strahlende Pfade dominieren die strahlende Relaxation

 a) Kreuzung der Parabeln des angeregten und des Grundzustandes
 - b) Multi-Phononen Relaxation
 - c) Cross-Relaxation
 - d) Photoionisation
 - e) Energietransfer zu Fehlstellen/Defekten = f(T)
- 3. Emittierte Strahlung wird durch das lumineszente Material reabsorbiert a) Selbstabsorption aufgrund der spektralen Überlappung des Anregungsund Emissionsbandes
 - b) Zusätzliche Absorptionsbanden aufgrund von Materialalterung,
 - z.B. durch die Bildung von Farbzentren

$(\eta_{transfer})$

 (η_{Akt})

 $W_{nr} =$

Kapitel Lumineszenzmechanismen

Folie 29

A, B = Fitparameter p = Max. Phononenfrequenz

 (η_{Aus})

8.5 Verlustprozesse

8.6 Verlustprozesse

Photoionisation

- Angeregtes Aⁿ⁺ Ion wird ionisiert
 - Ce³⁺ \rightarrow Ce⁴⁺
 - Pr³⁺ \rightarrow Pr⁴⁺
 - Sm²⁺ \rightarrow Sm³⁺

$$-$$
 Eu²⁺ \rightarrow Eu³⁺

- Tb³⁺ \rightarrow Tb⁴⁺
- $Yb^{2+} \rightarrow Yb^{3+}$
- Das entstehende Elektron wird "gefangen" z.B. durch Anionenfehlstellen → reduzierte externe QE
- Führt zu Reduktion der QE, der thermischen Löschtemperatur und zu Afterglow in
 - Bildschirmen
 - Nachleuchtpigmenten
 - Szintillatoren

Kapitel Lumineszenzmechanismen Folie 31

8.7 Konfigurationskoordinatendiagramm

Stokes-Shift

 $= \mathbf{r}_{e} - \mathbf{r}_{g}$

Energielücke zwischen Absorptions- und Emissionsband

 $\mathbf{S} = \mathbf{S}_{\mathbf{e}} \mathbf{h} \boldsymbol{\omega}_{\mathbf{e}} + \mathbf{S}_{\mathbf{g}} \mathbf{h} \boldsymbol{\omega}_{\mathbf{g}}$

• Volle Breite bei der Hälfte des Maximums der Emissionsbande

Die thermische Löschtemperatur verringert sich mit größer werdendem ∆R

Kapitel Lumineszenzmechanismen Folie 33

8.7 Konfigurationskoordinatendiagramm

Inkohärente Lichtquellen

Prof. Dr. T. Jüstel, FH Münster

- **1.** Schwache bis keine Elektron-Phonon-Kopplung
- Hohe IQE, EQE bestimmt durch ET-Prozesse
- Thermische Löschung hauptsächlich durch Photoionisation
- $4f \rightarrow 4f$ Übergänge (abgeschirmte 4f-Schale: kleine Kristallfeldstärke [KFS])

- 2. Mittelstarke Elektron-Phonon-Kopplung
- Hohe bis mittlere IQE
- Thermische Löschung aufgrund von Tunneleffekten oder
- 4f → 5d Übergänge (große KFS)
- Schmale Banden Eu²⁺, Ce³⁺,
- 3. Starke Elektron-Phonon-Kopplung
- Niedrige bis hohe IQE bei RT, starke thermische Löschung
- Thermische Löschung hauptsächlich durch Tunneleffekte
- $ns^2 \rightarrow ns^1 np^1$ oder CT-Übergänge
 - **Pb²⁺. Bi³⁺....**

Eu³⁺, Tb³⁺,

8.7 Konfigurationskoordinatendiagramm

Breite des Überganges kann mittels des "harmonischen Oszillators" erklärt werden

 $F = -k^{*}(r - r_{0}) \qquad : Integration$ $\Rightarrow E = -1/2^{*}k^{*}(r - r_{0})^{2}$

Aus der Quantenmechanik folgt: $E_v = (v + 1/2)*hv$

Franck-Condon Näherung:

Elektronen bewegen sich signifikant schneller als die Kerne \rightarrow "vertikale Übergänge"

Übergänge: $E_g(v_g = 0) \rightarrow E_e(v_e = x)$ für $v_e = 0$ "Null-Phononen Linie" (ZPL)

 $r_{0g} = r_{0e} \Rightarrow$ schmale Banden oder Linien (4f \rightarrow 4f Absorptionslinien) $r_{0g} < r_{0e} \Rightarrow$ breite Banden (4f^n \rightarrow 4f^{n+1}L^{-1}, 4f^n \rightarrow 4f^{n-1}5d, 6s^2 \rightarrow 6s6p)

8.8 Thermische Löschung

Beispiel: SrGa₂S₄:Eu²⁺

- T_{1/2} = Temperatur, bei der der Leuchtstoff 50% seiner anfänglichen Emissionsintensität verliert (hier ~ 170 °C)
- T_{1/2} hängt von der Stärke der Wechselwirkungen zwischen Aktivator und Wirtsgitter ab
- In vielen industriell wichtigen Leuchtstoffen erniedrigt sich die Quantenausbeute deutlich zwischen 100 150 $^\circ \rm C$

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster Kapitel Lumineszenzmechanismen Folie 36
8.8 Thermische Löschung

Beispiel: Andere Eu²⁺- dotierte Leuchtstoffe

Lichtausbeute als Funktion der Temperatur

Spektrale Breite der Emissionsbande von BaMgAl₁₀O₁₇:Eu als Funktion der Temperatur

Stokes-Shift $BaMgAl_{10}O_{17}:Eu < (Ba,Sr)_2SiO_4:Eu < (Sr,Ca)_2SiO_4:Eu$ Thermische Löschung $BaMgAl_{10}O_{17}:Eu < (Ba,Sr)_2SiO_4:Eu < (Sr,Ca)_2SiO_4:Eu$ Blauverschiebung aufgrund thermischer Ausdehnung des Wirtsgitters und damiteinhergehender Verringerung der Kristallfeldaufspaltung

Inkohärente Lichtquellen	Kapitel Lumineszenzmechanismen
Prof. Dr. T. Jüstel, FH Münster	Folie 37

8.8 Thermische Löschung

Einige Regeln

- Erniedrigt sich mit steigendem energetischen Abstand zwischen dem Grund- und dem angeregten Zustand
- Erhöht sich mit steigender Phononenfrequenz (daher zeigen die meisten organischen Verbindungen nur bei tiefen Temperaturen Lumineszenz)
- Erhöht sich mit $\Delta r = r_e r_g$
- Thermische Löschung aufgrund von Photoionisation betrifft lumineszente Materialien, in denen der angeregte Zustand nahe dem Leitungsband lokalisiert ist

8.9 Lebensdauer des angeregten Zustandes

Beschreibung gemäß Kinetik 1. Ordnung (kein Energietransfer!)

$$dN_e/dt = -N_e^*P_{eg}$$

 $\Rightarrow dN_e/N_e = -P_{eg}^*dt$: Integration

$$\Rightarrow \ln(dN_e(t)/N_e(0)) = -P_{eg}^*t$$

$$\Rightarrow N_e(t) = N_e(0) * exp(-P_{eg}/\tau) \text{ mit } \tau = 1/P_{eg}$$

Übergang		Dauer	Oszillatorstärl	<u>ke Aktivatoren</u>	
66	erlaubt"	~ 10 ⁻⁹ s	f ~ 0.1	Eu ²⁺ , Ce ³⁺	
"schwach"		~ 10 ⁻⁶ s	f ~ 0.001	Pr ³⁺ , Nd ³⁺	
"verboten"		~ 10 ⁻³ s	f ~ 10 ⁻⁵	Eu ³⁺ , Mn ²⁺	
	Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster			Kapitel Lumineszenzmechanismen Folie 39	

8.9 Lebensdauer des angeregten Zustandes

Typische Abklingkurven

Mono-exponentieller Abfall \Rightarrow Kein Energietransfer, bspw. durch Verunreinigungen wie Fe³⁺ oder Cr³⁺

Abweichung vom mono-exponentiellen Verlauf ⇒ Löschung, Energietransfer, Afterglow, ...

Inkohärente Lichtquellen	Kapitel Lumineszenzmechanismen
Prof. Dr. T. Jüstel, FH Münster	Folie 40

8.10 Lumineszenz der ÜM-Ions

Absorptions prozesse von dⁿ-Ionen \rightarrow Tanabe-Sugano Diagramme

Energielevel-Diagramm eines d¹-Ions (Ti³⁺, V⁴⁺, Cr⁵⁺, Mn⁶⁺): RS-Term $\Rightarrow {}^{2}D_{3/2}$ Spaltterme $\Rightarrow {}^{2}T_{2} + {}^{2}E$

	² E	Ion	Konfiguration	Beispiel
		Ti ³⁺	[Ar]d ¹	Al ₂ O ₃ :Ti (Saphir)
B		Cr ³⁺	[Ar]d ³	Al ₂ O ₃ :Cr (Rubin)
E /		Mn^{4+}	[Ar]d ³	Mg ₄ GeO _{5.5} F:Mn
		Mn^{2+}	[Ar]d ⁵	Zn ₂ SiO ₄ :Mn (Willemit)
		Fe ³⁺	[Ar]d ⁵	LiAlO ₂ :Fe
	² T ₂	d-d Üb	ergänge sind paritä	itsverboten
	∆ / B Kristallfeldstärke	$\Rightarrow Nie \\ \Rightarrow Hol$	driger Absorptions ne Konzentration b	skoeffizient enötigt

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster

Absorption in Gläsern, Laserkristallen und Leuchtstoffen

Ion	Konfiguration	on Farbe Pigment		<u>Strukturtyp</u>
Ti ³	$+$ \mathbf{d}^1	violett, braun	Al ₂ O ₃ :Ti	Korund
			-	
V^{3+}	\mathbf{d}^2	grün		
V^{4+}	- d ¹	grün, blau	(Zr,V)SiO ₄	Zirkon
Cr	d^{3+} d^{3}	grün, gelb	Cr ₂ O ₃	Korund
Mn	d^{2+} d^5	hell-rosa	MnO	NaCl
Mn	d^{3+} d^4	violett	Mn_2O_3	Korund
Mn	d^{4+} d^3	rot, braun	MnO ₂	Rutil
Fe ³	⁶⁺ d ⁵	gelb, braun	α -Fe ₂ O ₃	Korund
Fe ²	²⁺ d ⁶	blau, grün	$Fe(C_2O_4)$ ·2H ₂ O)
Co	²⁺ d ⁷	blau, violett	CoAl ₂ O ₄	Spinell
Ni ²	+ d ⁸	grün	NiO	NaCl
Cu	$^{2+}$ d ⁹	blau, grün	CaCuSi ₄ O ₁₀	Cuprorivait
Ir P	nkohärente Lichtquellen rof. Dr. T. Jüstel, FH Münster		Kapitel Lum Folie 42	ineszenzmechanismen

Ergo: Bindung wird geschwächt $\Rightarrow \Delta R >> 0 \Rightarrow$ breite Absorptionsbande

Leuchtstoff	Absorption [cm ⁻¹]	KZ	Polyeder
CaWO ₄	40000	4	Tetraeder
Ca ₃ WO ₆	35000	6	Oktaeder

⇒ Energetische Lage des CT-Levels verringert sich mit steigender KZ und der effektiven Ladung am Metallzentrum

Mn²⁺ und Mn⁴⁺ Lumineszenz

 $Mn^{2+}[Ar]3d^{5}$ (h.s.)

Bandenemission 500 – 750 nm = f(Symmetrie)

 $\begin{array}{l} \Delta \approx 20000 \ cm^{-1} \\ {}^{2}E({}^{2}G) \rightarrow {}^{4}A_{2}({}^{4}F) \\ \text{Linienemission} \sim 620-730 \ nm = f(\Delta, \ Kovalenz) \end{array}$

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster

 $\Delta < 10000 \text{ cm}^{-1}$

 ${}^4T_1({}^4G) \rightarrow {}^6A_1({}^6S)$

Kapitel Lumineszenzmechanismen Folie 44

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster Kapitel Lumineszenzmechanismen Folie 45

8.11 Lumineszenz von Ionen mit s²-Konfiguration

Beispiele: Ga⁺, In⁺, Tl⁺, Ge²⁺, Sn²⁺, Pb²⁺, As³⁺, Sb³⁺, Bi³⁺

Elektro	nenk	konf	igura	ation	der	Selte	en-E	rd-N	leta	lle ui	nd -Io	onen			
<u>Metalle</u>															
[Xe]	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
6s	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
5d	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1
4f	0	2	3	4	5	6	7	7	9	10	11	12	13	14	14
<u>Ionen</u>															
[Xe]	La ³⁺	Ce ³⁺	- Pr³⁺	Nd ³⁺	Pm ³⁺	Sm ³⁺	Eu ³⁺	Gd ³⁺	- Tb ³	+ Dv ³⁻	+ Ho ³⁺	Er ³	+ Tm ³	³⁺ Yb ³	⁶⁺ Lu ³⁺
[]	 C4+	D _m 4+	 - NIJ4+			~	S m2-	- F 2-	+	- J				-~ Tm	2+ Vb2+
	Cer	Pr	ING ⁺				5m²	Eu-						1 111	2° 102°
4 f	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
<u>Beispiele</u>	m	-3	-2 -1	0 1	2 3	-2	2 -1 () 1	2	0	-1 0	1			
Gd ³⁺ /Eu ²⁺	-	\uparrow	\uparrow \uparrow	↑ ↑ 46	$\uparrow \uparrow$								Spel	ctrosl	kopische Terme
				41			50	1		OS	6 p			2	$^{S+1}L_{J}$
$S = \Sigma s = 7$	/2		$\rightarrow 2$	S +1 =	- 8		→ sta	ark p	aram	agneti	ische I	onen			
$\mathbf{L} = \boldsymbol{\Sigma}\mathbf{l} =$	0		\rightarrow I	L = 0.	6		\rightarrow sta	arke S	Spin-]	Bahn-	Koppl	lung >	> 1000	cm ⁻¹	
Inkohäre Prof. Dr. '	nte Licl T. Jüste	htquell el, FH I	en Münste	r								Kapi Folie	itel Lun e 50	nineszen	zmechanismen

Geschichte der Aufklärung der Energielevel Struktur

1908 Becquerel Beobachtete scharfe Linien in den optischen Spektren der Lanthanoidionen

1937 Van Vleck Lösat das Puzzle der Seltenerdspektren in Festkörpern

1960's Judd, Wybourne, Dieke, Carnall Theorie der Energieniveau-Struktur und Übergangswahrscheinlichkeiten von 4f-4f Übergängen

Energielevel Struktur von [Xe]4fⁿ-Ionen

Teilweise gefüllte 4f-Schale führt zu diversen möglichen Elektronenkonfigurationen Beispiel: Tb³⁺ [Xe]4f⁸ → 8 Elektronen in 7 f-Orbitalen: 3003 verschiedene Anordnungen!

Freie Ionenengielevel aufgrund von:

3.

- 1. Elektrostatischer Wechselwirkung (vgl. mit 3dⁿ-Ionen): H_C Aufspaltung ~ 10000 cm⁻¹
- 2. Spin-Orbit Kopplung (größer als bei 3dⁿ-Ionen): H_{SO}

Kristallfeldaufspaltung (geringer als bei 3dⁿ-Ionen): H_{CF}

Aufspaltung ~ 1000 cm^{-1} Aufspaltung ~ 100 cm^{-1}

Grundzustand	$\mathbf{m}_{\mathbf{l}} = \begin{array}{c} -3 & -2 & -1 & 0 & 1 & 2 & 3 \\ \hline \uparrow \downarrow \\ 4\mathbf{f} \end{array}$	S = 6/2, L = 3 (F), J = 6 \rightarrow ⁷ F ₆
1. angeregter Zustand	$\mathbf{m}_{\mathbf{l}} = -3 - 2 - 1 0 1 2 3$ $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \uparrow \downarrow$ $4\mathbf{f}$	S = 4/2, L = 2 (D), J = 4 \rightarrow ⁵ D ₄
Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster		Kapitel Lumineszenzmechanismen Folie 52

1. Elektrostatische Wechselwirkungen

Abschirmung durch die inneren Elektronen wird durch den sogenannten Slater-Parameter beschrieben (vergleichbar mit dem Racah-Parameter)

$$F^{(k)} = \frac{e^2}{4\pi\varepsilon_0} \int_0^\infty \int_0^\infty \frac{r_{<}^k}{r_{>}^{k+1}} \left[R'_{4f}(r_i) R'_{4f}(r_j) \right]^2 r_i^2 r_j^2 \, dr_i \, dr_j$$

Elektrostatische Wechselwirkung erhöht sich mit der effektiven Ladung am Aktivator-Ion (Ionenladungsdichte)

Die Aufspaltung in verschiedene Terme resultiert also aus:

- Oxidationszustand
- Kernladung
- Rückbindung durch die Liganden (Polarisierbarkeit der umgebenden Anionen)

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster

2. Spin-Bahn Kopplung

Spin-BahnKopplungskonstante ζ erhöht sich mit steigender Kernladung der Lanthanoide, Bsp. von ζ (Ce) = 650 cm⁻¹ zu ζ (Yb) = 2930 cm⁻¹

3. Kristallfeldaufspaltung

Weitere Aufspaltung der *J*-Multipletts in maximal 2*J*+1 Niveaus Kristallfeldaufspaltung ~ 100 cm⁻¹ + stark abhängig von der krist. Lage

Zusätzliche "fitting-Parameter" B_k^q für die graph. Anpassung an exp. beobachtete Niveaus:

$$\mathscr{H}_{c}^{O_{h}} = B_{0}^{4} \left[C_{0}^{(4)} + \sqrt{\frac{5}{14}} (C_{-4}^{(4)} + C_{4}^{(4)}) \right] + B_{0}^{6} \left[C_{0}^{(6)} - \sqrt{\frac{7}{2}} (C_{-4}^{(6)} + C_{4}^{(6)}) \right]$$

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster Kapitel Lumineszenzmechanismen Folie 55

Zusamme	Lusammenfassung: SE-Ionen besitzen eine große Anzahl an Energieniveaus ^{2S+1} L _J								
	Ce (Yb)	Pr (Tm)	Nd (Er)	Pm (Ho)	Sm (Dy)	Eu (Tb)	Gd		
n	1	2	3	4	5	6	7		
SL	1	7	17	47	73	119	119		
SLJ	2	13	41	107	198	295	327		
SLJM	4	91	364	1001	2002	3003	3432		

Frühe experimentelle und theoretische Arbeiten über LaCl₃:Ln³⁺ und LaF₃:Ln³⁺ durch Dieke und Carnall (experimentell) und Judd, Crosswhite und Wybourne (Theorie):

"Dieke-Diagramm" und das "Blaue Buch"

Inkohärente Lichtquellen	Kapitel Lumineszenzmechanismen	
Prof. Dr. T. Jüstel, FH Münster	Folie 56	

Dieke-Diagramm (1968): Energieniveaus dreiwertiger SE-Ionen

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster Kapitel Lumineszenzmechanismen Folie 57

Komplettes Energielevel Diagramm

Ce ³⁺	~	Yb ³⁺
Pr ³⁺	~	Tm ³⁺
Nd ³⁺	~	Er ³⁺
Pm ³⁺	~	H0 ³⁺
Sm ³⁺	~	D y ³⁺
Eu ³⁺	~	Tb ³⁺
Gd ³⁺		

Energielevelaufspaltung erhöht sich von Ce³⁺ zu Yb³⁺ aufgrund der steigenden Kernladung und damit mit der Zunahme der Spin-Bahn-Kopplung E_{SO} (ξ)

Ion	Konfiguration	<u>ξ [cm⁻¹]</u>
Ce ³⁺	[Xe]4f ¹	650
Yb ³⁺	[Xe]4f ¹³	-2930

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster

 Emission spectrur Excitation spectrum Reflection spectr

slit – 1 0 nr

steps = 1.0 pr

(D₂) = 160 nm x slit = 3.0 nm em slit = 0.05 nmeps = 0.05 nm

2000

Wavelength [nm]

Characteristic optical properties

Intraconfigurational 4f - 4f transitions

1) Scharfe Linien (ähnlich Atomen), Stokes-Shift ~ 0 cm^{-1, $\frac{5}{4}$}

2) Geringer Einfluss der chem. Umgebung auf die Energi

3) Paritätsverbotene Übergänge (~ms Lebensdauer, f~10

Begründung: Abschirmung der 4fⁿ-Elektronen durch äußere gefüllte 5s und 5p Schalen \rightarrow keine Verschiebung der Parabel im angeregten Zustand und starke Null-Phononen Linie (ZPL)

Beispiel:

 Gd^{3+} in Y₃Al₅O₁₂

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster

'n

600

800

550

750

Beispiel: Eu³⁺ - Typische Anregungs- und Emissionsspektren (Y₂SiO₅:Eu)

Emissionsspektren und Farbpunkte Eu³⁺-dotierter Leuchtstoffe

Inkohärente Lichtquellen	Kapitel Lumineszenzmechanismen
Prof. Dr. T. Jüstel, FH Münster	Folie 64

Emissionsspektren und Farbpunkte Eu³⁺-dotierter Leuchtstoffe

Beobachtetes Emissionsspektrum durch ${}^5\mathrm{D}_0 \rightarrow {}^7\mathrm{F}_\mathrm{J}\,\ddot{\mathrm{U}}\mathrm{berg}\ddot{\mathrm{a}}\mathrm{nge}~(\mathrm{Linien})$

a) Inversions symmetrie (S_6, D_{3d}) Magnetische Dipolübergänge, bsp. $^5D_0 - {^7F_1}$ $\Delta J = 0, \pm 1 \ (J = 0 \rightarrow J = 0 \ verboten)$ MeBO₃:Eu (Calcit, Vaterit) $\tau \sim 8 - 16 \ ms$

b) Keine Inversionssymmetrie Elektrische Dipolübergänge ${}^{5}D_{0} - {}^{7}F_{2,4}$ $\Delta J \le 6 (J_{i} = 0 \rightarrow J_{f} = 2, 4, 6)$ $Y_{2}O_{3}$:Eu (Bixbit), Y(V,P)O₄:Eu (Xenotim) $\tau \sim 2 - 5$ ms

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster

- ϵ_c : Rückbindungsenergie proportional zur spektroskopischen Polarisierbarkeit α_{sp} (3000 – 20000 cm⁻¹)
- ϵ_{cfs} : Kristallfeldaufspaltung (< 40000 cm⁻¹)

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster Kapitel Lumineszenzmechanismen Folie 69

Nephelauxetischer Effekt ~ Elektronendichte zwischen Aktivator und Liganden

Polarisierbarkeit der Anionen

• Selenide > Sulfide > Nitride > Oxide > Fluoride

Ladungsdichte der umgebenden Anionen

• Arten von Netzwerkbildnern:

Oxide	Alluminate	Silikate	Borate	Phosphate	Sulfate
O ²⁻	AlO ₄ ⁵⁻	SiO ₄ ⁴⁻	BO ₃ ³⁻	PO ₄ ³⁻	SO ₄ ²⁻

• Vernetzungsgrad

neso-Silkate	soro-Silikate	zyklo-Silikate	phyllo-Silikate	tecto-Silikate
[SiO ₄] ⁴⁻	[Si ₂ O ₇] ⁶⁻	[Si ₃ O ₉] ⁶⁻	[Si ₄ O ₁₀] ⁴⁻	[(Si ₂ Al ₂)O ₈] ²⁻
Granat	Akermanit	Benitoit	Montmorillonit	Quarz
Zirkon	Thortveitit		Talk	Feldspat
Olivin	Lawsonit		Kaolinit	Zeolite

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster Kapitel Lumineszenzmechanismen Folie 70

Kristallfeldaufspaltung

Kristallfeldtheorie ⇒ ionische Wechselwirkung zwischen Metallzentrum und Punktladungen

Energieaufspaltung der d-Orbitale hängt ab von:

- Anionenladung/Anionenradius (spektrochemische Reihe) I' < Br' < Cl' < S²⁻ < F' < O²⁻ < N³⁻ < C⁴⁻
- Symmetrie (Koordinationszahl und Symmetrie) oktaedrisch > kubisch, dodekaedrisch, quadratisch-antiprismatisch > tetraedrisch
- Metall-Liganden Abstand (starke Abhängigkeit vom Abstand)
 D = 35Ze/4R⁵
 R = Kation-Anion Abstand
 - Z = Valenz des Anions
 - e = Ladung eines Elektrons

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster

Kovalenter Charakter ionischer Bindungen

Elektronendichte an den Anionen

4 x O(1)7,2484 x O(2)7,193Niedrige Ladungsdichte am Sauerstoff

Hohe Ladungsdichte am Sauerstoff

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster Kapitel Lumineszenzmechanismen Folie 73

Lumineszenz von Y₃Al₅O₁₂:Ce

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster

8.12 Luminescence of Rare Earth Ions

8.13 Down-Conversion

Erste Beispiele (1974) Sommerdijk et al., J. Lumin. 8 (1974) 288 (Philips) ↑5d-states 60 Sommerdijk et al., J. Lumin. 8 (1974) 341 (Philips) *Piper et al., J. Lumin. 8 (1974) 344 (GE)* 50 YF₃:Pr(0.1%) und NaYF₄:Pr(0.1%) $^{1}S_{\mu}$ ${}^{1}S0 - {}^{3}P_{1}, {}^{1}I_{6}$ Übergang @ 407 nm Energy [10³ cm⁻¹] ³P0 - ³H_J, ³F₂ Übergang im Roten Interne QE = 166% (total) @ 214 nm Anregung Leitet sich aus dem Verhältnis der Linien im UV, dem blauen und grün/roten Spektralbereich ab ${}^{3}\mathbf{P}_{1}{}^{1}\mathbf{I}_{2}$ 20 **Oxidische Leuchtstoffe zeigen Photon Cascade Emission (PCE)** ĽDς A.M. Srivastava, D.A. Doughty, W.W. Beers (GE) Pr³⁺ auf Wirtsgitterplätzen mit hoher KZ (> 8) ¹G. 10 SrAl₁₂O₁₉:Pr,Mg LaMgB₅O₁₀:Pr LaB₃O₆:Pr

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster

8.13 Down-Conversion

8.13 Down-Conversion

Mechanismen (Anorganische Materialien)

Тур	Beispiel	Effizienz [cm ² W ⁻¹]	
a) Anti-Stokes-Raman	Si Kristalle	~10 ⁻¹³	
b) 2-Photonenanregung	CaF ₂ :Eu ²⁺	~10 ⁻¹²	
c) Second Harmonic Gen. (SHG)	KH ₂ PO ₄ , KNbO ₃	~10 ⁻¹¹	
d) Kooperative Photolumineszenz	YbPO ₄ :Yb ³⁺	~10 ⁻⁸	
e) Kooperative Sensibilisierung	YF ₃ :Yb ³⁺ ,Tb ³⁺	~10 ⁻⁶	
f) ESA	SrF ₂ :Er ³⁺	~10 ⁻⁵	
g) ETU	YF ₃ :Eu ³⁺	~10 ⁻³	
h) Sensibilisierte ETU	NaYF ₄ :Yb ³⁺ ,Tm ³⁺	~10 ⁻¹	
$\mathbf{E} \left[\begin{array}{c} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf$		e)	
Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster		Kapitel Lumineszenzmechanismen Folie 87	

Mechanismen (Anorganische Materialien)

f) Excited State Absorption (ESA)
Subsequent absorption of
2 Photons: Ground state absorption
and then ESA
Single RE ion involved

g) Energietransfer Up-conversion (ETU) Ground state absorption and rnergy transfer Up-conversion Two identical RE ions involvied h) Sensitized energy transfer
up-conversion (sensitized ETU)
Involves a sensitizer, which absorbs energy
and an activator, which can show ETU
Two non-identical RE ions involved

SE³⁺ Up-converter für NIR zu VIS

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster Kapitel Lumineszenzmechanismen Folie 90

Pr³⁺ aktivierte VIS-to-UV up-Konverter

Beispiel: ETU via 445 nm Laserdioden + Y₂SiO₅:Pr,Li Keramic, Georgia, Atlanta

Literatur

1. E.L. Cates, A.P. Wilkinson, J.-H. Kim, J. Luminescence 160 (2015) 202

2. E.L. Cates, J.-H. Kim, J. Photochemistry & Photobiology, B: Biology 153 (2015) 405 **ABSTRACT:** The objective of this study was to develop visible-to-ultraviolet C (UVC) upconversion ceramic materials, which inactivate surface-borne microbes through frequency amplification of ambient visible light. Ceramics were formed by high-temperature sintering of compacted yttrium silicate powders doped with Pr^{3+} and Li⁺. In comparison to previously reported upconversion surface coatings, the ceramics were significantly more durable and had greater upconversion efficiency under both laser and low-power visible light excitation. The antimicrobial activity of the surfaces under diffuse fluorescent light was assessed by measuring the inactivation of *Bacillus subtilis* spores, the rate of which was nearly 4 times higher for ceramic materials compared to the previously reported films. Enhanced UVC emissions were

attributed to increased material thickness as well as increased crystallite size in the ceramics. These results represent significant advancement of upconversion surfaces for sustainable, light-activated disinfection applications.

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster Kapitel Lumineszenzmechanismen Folie 91

Ursache:Speicherung von Elektronen/Löchern auf bestimmten
Plätzen im Gitter (Fehlstellen, Verunreinigungen)

Flache Traps:Auslesen der Traps erfolgt durch die thermische Energie bei RTTiefe Traps:Auslesen der Traps erfolgt durch Aktivierung (PSL oder TSL)

Literatur: Th. Pawlik and J.-M. Spaeth, J. Appl. Phys. 82 (9), 4236 (1997)

Inkohärente Lichtquellen	Kapitel Lumineszenzmechanismen
Prof. Dr. T. Jüstel, FH Münster	Folie 93

Tiefe Traps: Speicherleuchtstoffe - Anwendung

Prozess

- 1. Charging of the material, e.g. by high energy particles, x-rays, or UV radiation
- 2. Stimulation of energy release to induce luminescence
 - Thermally stimulated luminescence (TSL: T >> 300 K)
 - Photostimulated luminescence (PSL: Laser activation)

In a storage phosphor radiation energy is stored inside the material by traps and the light of interest is not produced until the material is activated, either by thermal or optical stimulation. Thus information on the radiation can be obtained at a time later than the actual interaction.

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster Kapitel Lumineszenzmechanismen Folie 94

PSL

PSL

PSL

PSL und TSL (150 °C)

PSL und TSL (157 °C)

PSL und TSL (177 °C)

PSL und TSL (200 °C)

PSL und TSL (240 °C)

PSL und TSL (260 °C)

Tiefe Traps: Speicherleuchtstoffe - Überblick

Etablierte Materalien

- Ba(F,Br):Eu²⁺ PSL
- RbBr:Tl⁺ PSL
- $SrS:Eu^{2+},Sm^{3+}$ PSL
- $Ba_3(PO_4)_2:Eu^{2+}$ PSL
- $Ba_2B_5O_9Br:Eu^{2+}$ PSL
- $Ba_7Cl_2F_{12}:Eu^{2+}$
- $\operatorname{Ba}_{12}\operatorname{Cl}_{5}\operatorname{F}_{19}:\operatorname{Eu}^{2+}$
- $Y_2SiO_5:Ce^{3+}$
- $Ba_5SiO_4Br_6:Eu^{2+},Nb^{3+}$
- $Sr_5(PO_4)_3Cl:Eu^{2+}$
- $Li_6Gd_{0.5}Y_{0.5}(BO_3)_3:Eu^{3+}$
- $LiSr_4(BO_3)_3:Ce^{3+}$
- LiCaAlF₆:Eu²⁺
- LiYSiO₄:Ce³⁺

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster

Kapitel Lumineszenzmechanismen	
Folie 95	

Flache Traps: Nachleuchtpigmente

Zusammensetzung		Farbe	<u>λ_{max} [nm]</u>
•	CaAl ₂ O ₄ :Eu,Nd	blau	440 nm
•	Sr ₂ MgSi ₂ O ₇ :Eu,Dy	blau	469 nm
•	Sr ₄ Al ₁₄ O ₂₅ :Eu,Dy	zyan	490 nm
•	Mg ₂ SnO ₄ :Mn ²⁺	zyan	499 nm
•	SrAl ₂ O ₄ :Eu,Dy	grün	520 nm
•	ZnS:Cu,Co	grün	530 nm
•	Sr ₂ SiO ₄ :Eu,Dy	gelb	570 nm
•	Y ₂ O ₂ S:Eu,Ti,Mg	rot	620 nm
•	CaZnGe ₂ O ₆ :Mn	rot	648 nm
•	CaS:Eu,Tm	rot	655 nm
•	MgSiO ₃ :Eu,Dy,Mn	rot	660 nm
•	SrSc ₂ O ₄ :Eu	rot	685 nm
•	MgSiO ₃ :Eu,Dy,Mn SrSc ₂ O ₄ :Eu	rot rot	660 nm 685 nm

Beispiel: Sr₄Al₁₄O₂₅:Eu²⁺,Ln³⁺

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster