10. OLEDs and PLEDs

Content

- **10.1** Historical Development
- **10.2** Electroluminescent Molecules
- **10.3** Structure of OLEDs and PLEDs
- **10.4** Working Principle of OLEDs
- **10.5** Luminescence of Metal Complexes
- **10.6** Iridium Complexes
- 10.7 White OLEDs
- **10.8 PLEDs Construction**
- **10.9 Operation of a PLED**
- 10.10 Polymer LED Spectra
- **10.11** Development of Lifetime, EQE and Luminance
- **10.12** Application Areas
- **10.13** Future Developments

10.1 Historical Development

Some milestones

- 1953 Observation of the electroluminescence of acridine orange
- 1961 Thermally activated delayed fluorescence (TADF) from Eosin
- 1963 Report of EL in anthracene single crystals
- 1987 Eastman Kodak: OLED with [Al(8-hydroxychinolinate)₃]
- 1990 Cambridge Univ.: Polymer based OLED with poly(p-phenylene vinylene)
- 1999 First report on Ir³⁺ complexes: fac-[Ir(ppy)₃)]⁰
 - 2009Universal Display Corp.102 lm/WNovaled/TU Dresden90 lm/WKonica64 lm/WKodak56 lm/W

- 2019 LG: 88 inch OLED TV with 8K
- 2020 Cynora: Efficient & stable blue OLED emitter

Incoherent Light Sources Prof. Dr. T. Jüstel Chapter OLEDs and PLEDs Slide 2

10.2 Electroluminescent Molecules

10.3 Structure of OLEDs and PLEDs

Layer preparation by

- Vapor deposition (sublimation) of the organic components and metals
- Spin-coating from solutions

Incoherent Light Sources	Chapter OLEDs and PLEDs
Prof. Dr. T. Jüstel	Slide 4

10.4 Working Principle of OLEDs

10.4 Working Principle of OLEDs

10.4 Physical Principle of an OLED

10.4 Physical Principle of an OLED

Spin Statistics

Ground and excited states

Result: 25% singlets and 75% triplets

Result after exciton recombination

Incoherent Light Sources Prof. Dr. T. Jüstel

10.5 Luminescence of Metal Complexes

10.6 Iridium Complexes

Stability of metal complexes

Thermodynamic stabilization

- High charge of metal center: 3+/4+
- Chelate or macrocyclic ligands: Porphyrin, phenanthroline, phenyl pyridine,

Kinetic stabilization by crystal field stabilization energy (CFSE) in octahedral (O_h) complexes

Al^{3+}	[Ne]	$\mathbf{CFSE} = 0$		
Cu+	[Ar]3d ¹⁰	$\mathbf{CFSE} = 0$		$\bigcap_{n=1}^{\infty} \bigcap_{i=1}^{n} \sum_{j=1}^{i=1} \sum_{i=1}^{i=1} \sum_{j=1}^{i=1} T_1$
Eu^{3+}	[Xe]4f ⁶	$\mathbf{CFSE} \sim 0$	_	
Tb ³⁺	[Xe]4f ⁸	$\mathbf{CFSE} \sim 0$	AD	
Re ⁺	[Xe]4f ¹⁴ 5d ⁶ (l.s.)	$\mathbf{CFSE} = -24 \ \mathbf{Dq_o}$	Ŧ	
Ir ³⁺	[Xe]4f ¹⁴ 5d ⁶ (l.s.)	$\mathbf{CFSE} = -24 \ \mathbf{Dq_o}$		R
Pt ⁴⁺	[Xe]4f ¹⁴ 5d ⁶ (l.s.)	$\mathbf{CFSE} = -24 \ \mathbf{Dq}_{0}$	s,	$\sum_{k=1}^{R=H_1} \frac{2}{CH_3} \frac{2}{2} \frac{2}{CF_3} \frac{3}{3}$ EQE = 8.47%
Incoher Prof. Dr	rent Light Sources r. T. Jüstel		Ch	apter OLEDs and PLEDs de 10

10.6 Iridium Complexes

Incoherent Light Sources Prof. Dr. T. Jüstel

Chapter OLEDs and PLEDs Slide 11

10.6 Iridium Complexes

10.7 White OLEDs - Options

Emitter	Colour	Efficiency	Lifetime
	R	+	++
Fluorescent	G	+	++
	В	+	+
	R	++	+
Phosphorescent	G	++	+
	В	+	ο

Expected external quantum efficicency without light outcoupling measures		Al
		n-EIL
Full fluorescent RGB	5-10%	ETL
		Matrix:Blue
Full phosphorescent RGB	20%	Matrix:Green
	20,0	Matrix:Red
Hybrid: B fluorescent	16%	HTL
P C phosphorosco	nt	p-HIL
	in the second seco	ITO
Source: Philips Lighting Aachen		Substrate
Incoherent Light Sources		Chapter OLEDs and PLEDs
Prof. Dr. T. Jüstel		Slide 13

10.7 White OLEDs - Light Out-coupling

10.8 Polymer LEDs - Construction

10.9 Operation of a Polymer LED

10.10 Polymer LED Spectra

Emission spectra of some polymers

Source: Philips Lighting Aachen

Incoherent Light Sources
Prof. Dr. T. JüstelChapter OLEDs and PLEDs
Slide 17

10.11 Development of Lifetime, EQE & Luminance

Degradation due to O_2 and $H_2O \Rightarrow$ Encapsulation and getter are required

Incoherent Light Sources	Chapter OLEDs and PLEDs
Prof. Dr. T. Jüstel	Slide 18

10.12 Application Areas

Flexible displays without backlight and superior contrast

- Shaver displays
- Digital cameras
- Warning signs
- OLED TVsets/displays
- Light tiles
- Smart phones
- Indoor illumination

Philips Lumiblade

Incoherent Light Sources Prof. Dr. T. Jüstel Chapter OLEDs and PLEDs Slide 19

10.13 Future Developments

Novel materials and novel applications

• Deuterated, methylated HTM, ETM, and emitter materials to enhance device lifetime Ref.: H. Tsuij et al., Chem. Comm. 50 (2014) 14870

Deuteration by high-pressure treatment in D_2O vapor \rightarrow up to ~75%

Organic Photovoltaic (OPV)
Efficiency 2023: 19.2%
Ref.: J. Hou et al., Adv. Mater. (2023) 2301583

