

Anorganische Konvertermaterialien zur Erzeugung von 200-240 nm Strahlung

Prof. Dr. Thomas Jüstel Heike Kätker & Jan-Niklas Keil

27. DAfP-Tagung: Licht in der Medizin, Biologie und Technik

Quedlinburg, 07. Juli 2023

FH Münster University of Applied Sciences Stegerwaldstr. 39, 48565 Steinfurt, Germany

Tel:	+49-(0)2551-9-62100
Fax:	+49-(0)2551-9-62844
E-Mail:	tj@fh-muenster.de
Web:	http://www.fh-muenster.de/juestel
Skype:	thomasjuestel

UV Radiation

History across the last 222 years....

Outline

- 1. Motivation
- 2. Inorganic Conversion Materials
- 3. UV Radiation Sources
- 4. Excimer Discharge Lamps
- 5. Deep UV-C Emitting Converters
- 6. UV-C Filter Materials
- 7. Summary
- 8. References

Source: http://www.instanttrust.com/en/double-blue/

1. Motivation

Outbreaks, Epidemics and Pandemics of some Airborne Viral Diseases

Period	Virus/ -type	Spread	Remarks	Viruses = Volatile nanoparticles
1917 - 1920	Spanish flu	Worldwide	Death toll > 1.10 ⁸	often spread by aerosols
2002 - 2003	SARS-CoV-1	Worldwide		onten spread by derosols
since 2004	Marburg	Angola and Uganda	Aerosols play a minor role, but are not insignificant	
2004 - 2016	A/H5N1	Worldwide	Aerosols hardly play a role, but transmission by aerosol droplets is possible	
2009 - 2010	H1N1	Worldwide		
2019 - today	SARS-CoV-2	Worldwide	Death toll by 07/23 ~ 6.9.10 ⁶ [3]	
Yearly	Influenza	Worldwide	Estimated 290,000 to 645,000 people die each year [1]	

Literature

- [1] A. Danielle Iuliano et al., Estimates of global seasonal influenza-associated respiratory mortality: A modelling study, The Lancet, Volume 391, Issue 10127, P1285-1300, March 31, 2018 <u>https://doi.org/10.1016/S0140-6736(17)33293-2</u>
- [2] Corona-Update: Wie weit ist die Forschung? DAZ.online, 12.03.2020
- [3] Worldometer: https://www.worldometers.info/coronavirus/

1. Motivation

Disinfection of Air, Water, and Surfaces

Thermal treatment

Drinking water: T > 70 °C

Surfaces: T > 120 °C

Drawback: Energy demand due to high heat capacity of water (and humid air)

```
Heating of 1 m<sup>3</sup> H_2O from 10 to 70 °C
```

 $\Delta \mathbf{Q} = \mathbf{m} * \mathbf{c} * \Delta \mathbf{T}$

- = 1000 kg * 4.19 kJ/kgK * 60 K
- ~ 250000 kJ
- ~ 700 kWh/m³

Al layer as UV/Vis reflector

Typical 0.2 – 10 kWh/m³ (Ref.: Dr. M. Salvermoser, Xylem)

1. Motivation

Host

Pr^{3+**}

 τ_{ES}

Pr^{3+*}

CB

 $[Xe]4f^{2}(^{1}S_{0})$

 $[Xe]4f^{2}(^{3}P_{I})$

 $[Xe]4f^{1}5d^{1}(^{3}H_{I})$

5.2 eV

450

U

2

2

 \sim

Photochemistry: New Way to Produce Ammonia?

- $N_2 + 3 H_2 \leftrightarrows 2 NH_3 (400 500 °C)$ Haber-Bosch (α-Fe) •
- $2 N_2 + 10 H^+ + 8 e^- 2 NH_4^+ + H_2 (RT)$ Nitrogenases (Feⁿ⁺)

 $[Xe]4f^{2}(^{3}H_{I})$ Pr³⁺ Host VB Simplified energy level scheme of Pr³⁺

for photocatalytic N₂ activation

Lit.: LaOF-Pr MW hydrothermal synthesis for photocatalytic N fixation, Front Mater Sci. 14 (2020) 43

6

2. Inorganic Conversion Materials

Working Principle

- 1. Excitation
- 2. Energy transfer (ET)
- 3. Relaxation

Absorption of energy from external source (hv, e⁻, x-rays, E-field) To activator ions or defects (storage and afterglow) Radiative: Emission (luminescence) \rightarrow Luminescent pigments Non-radiative: Heat (phonons) \rightarrow Absorption pigments (filter)

2. Inorganic Conversion Materials

Excitation Sources for Deep UV Emission by Micro- or Nanoscale Conversion Materials

2. Inorganic Conversion Materials

Relevant Properties of Deep UV Emission by Micro- or Nanoscale Conversion Materials

FH MÜNSTER

University of Applied Sciences

For the Deep UV-C Range

Hg discharge lamps

- low pressure
- amalgam
- medium pressure

D₂ discharge lamps

Excimer laser

ArF*

Excimer discharge lamps, e.g. Dielectric Barrie nps

 KrBr^a KrCl* Xe₂* + UV phosphor (fluorescent DBD) 	207 n 222 n 190 –
(AI,Ga)N UV LEDs	210 –
X-ray tube + UV phosphor	190 —
Cathode ray tube + UV phosphor	190 –

Blue laser or blue LED + up-converter

ər	^r Discharge (DBD) I 207 nm 222 nm 190 – 400 nm	an
	210 – 365 nm	
	190 – 400 nm	
	190 – 400 nm	
	200 – 250 nm	

185, 254 nm

185, 254 nm

110 – 400 nm

193 nm

Cathode Ray Tube (CRT) with UV-C Converter YBO₃:Pr or Y₂SiO₅:Pr

Accelerated electrons hit a phosphor screen to yield cathodoluminescence (CL): The principle is similar to that of a cathode ray tube for TV sets/monitors

Lit.: J. Silver, M. Broxtermann, T. Jüstel et al., ECS J. SSST 6 (2017) R47

X-ray Tube with UV-C Converter LaPO₄:Pr or YPO₄:Pr

Pr³⁺ doped ortho-phosphates (LuPO₄) and ortho-silicates (Lu₂SiO₅) are efficient UV-C emitting scintillators

Spin-off: Cancer treatment by LnPO₄:Pr,Nd (Ln = Y, La, Lu)

Lit.: J. Kappelhoff, J.N. Keil, M. Kirm, V. Makhov, K. Chernenko, S. Möller, T. Jüstel, J. Chem. Phys. 562 (2022) 111646

Wavelength / nm

• UVC output: ~ 30 W

Lifetime of UV-C lamps
 ~ 9000 hours

4. Excimer Discharge Lamps

700 nm

Care222® Ushio

400 nm

500 nm

600 nm

4. Excimer Discharge Lamps

Novel Application – Indoor Air Disinfection with Deep UV-C

- Recent publications on the influence of deep UV-C radiation on human skin and eye cells showed, that
 radiation between 207 and 222 nm efficiently kills pathogens potentially without harm to exposed
 human tissues [1]
- KrBr* excimer discharge lamps (207 nm) have been successfully tested
- Alternative: KrCl* excimer discharge (222 nm) shows undesired spectral features above 230 nm (Cl₂*)

[3] A. Voronov, Heraeus, Übersicht der UV-Lampen und ihre Einsatzgebiete, Darmstadt Oktober 2009

Suitable Host Matrices and Activator Ions

FH MÜNSTER University of Applied Sciences

Conclusions due to requirements from the application:

Oxidic or fluoridic hosts only

- s² or trivalent RE ions required
- Pr³⁺, Bi³⁺, and Sc³⁺ are ROHs compliable
- YPO₄:Bi emitting at 241 nm is used a reference converter

Suitable Host Matrices and Activator Ions

lon	Eu ²⁺	Ce ³⁺	Pr ³⁺	Nd ³⁺
Energy distance between	34000 cm ⁻¹	50000 cm ⁻¹	61580 cm ⁻¹	72000 cm ⁻¹
[Xe]4f ² and [Xe]4f ¹ 5d ¹ conf.	295 nm	200 nm	160 nm	140 nm

18

Phosphors Activated by Pr³⁺

NaYF,:Pr³+ Fluoride Phosphors Activated by Pr³⁺ 0.8 4 f¹ 5 d¹Intensity [a.u.] NaYF₄:Pr³⁺ CN 9 (2 sites) 50000 S₀ Ε 0,2 · (cm^{-1}) **UV** Lines 214 nm + Vis 200 300 400 500 600 700 40000 Wavelength [nm] LiYF₄:Pr³⁺ → [Xe]4f¹5d¹ [Xe]4f 174 nm 214 nm Intensity [a.u.] ^{9'0} [Xe]4f² LiYF₄:Pr³⁺ **CN 8 (1 site)** 4f¹5d 30000 Y 0.2 **UV Bands** 218 nm + Vis P. 20000 200 300 400 500 600 700 800 Wavelength [nm] KYF₄:Pr³⁺ D_2 0,8 -¹G₄ Intensity [a.u.] 9'0 KYF₄:Pr³⁺ [Xe]4f¹5d CN 7 (6 sites) 10000 ³F, **UV Bands** 0,2 -232 nm 0 0,0 200 300 800

400 500 600 700 Wavelength [nm]

19

Oxidic Phosphors Activated by Pr³⁺

 \Rightarrow CF Splitting and centroid shift reduces lowest CF component of the [Xe]4f¹5d¹ configuration by around 22000 cm⁻¹

- \Rightarrow E(4f¹5d¹) < E(¹S₀)
- \Rightarrow [Xe]4f¹5d¹ [Xe]4f² band emission

Oxidic Phosphors Activated by Pr³⁺ with Deep UV-C Emission: Enhance Host Acidity!

La(PO₃)₃:Pr³⁺

CaSO₄:Pr³⁺Na⁺

First emission maxima at 218 nm

First emission maximum at 222 nm

FH MÜNSTER

University of Applied Sciences

Deep UV-C Phosphors Activated by Pr³⁺

Accessible UV wavelength range 218 – 320 nm

- LiYF₄:Pr
- La(PO₃)₃:Pr
- CaSO₄:Pr
- LuPO₄:Pr
- YPO₄:Pr
- YAIO₃:Pr
- CaLi₂SiO₄:Pr
- YBO₃:Pr
- LiYSiO₄:Pr
- Y₂SiO₅:Pr
- Y₂Si₂O₇:Pr
- Lu₃Ga₂Al₃O₁₂:Pr
- Lu₃Al₅O₁₂:Pr
- Y₃Al₅O₁₂:Pr

218 nm 218 nm 222 nm 232 nm 235 nm 241 nm 252 nm 265 nm 267 nm 270 nm 275 nm **300 nm** 310 nm 320 nm

Structure, emission, and PSD of LuPO₄:Pr

Deep UV-C Emitting Phosphate Phosphors Activated by Sc³⁺

Emission maximum at 230 nm

LuPO₄:Sc³⁺

Emission maximum at 225 nm

Surface Disinfection Claimed by Blue LED or Laser Diode + Blue-to-UV up-Converter

1. SHG: 445 nm laser diode + β -BaB₂O₄ NLO crystal, Germany, Berlin

Lit.: G. Tränkle et al., IEEE Phot. Tech. Lett. 30 (2018) 289

FH MÜNSTER

University of Applied Sciences

ABSTRACT: The objective of this study was to develop visible-to-ultraviolet C (UVC) upconversion ceramic materials, which inactivate surface-borne microbes through frequency amplification of ambient visible light. Ceramics were formed by high-temperature sintering of compacted yttrium silicate powders doped with Pr³⁺ and Li⁺. In comparison to previously reported upconversion surface coatings, the ceramics were significantly more durable and had greater upconversion efficiency under both laser and low-power visible light excitation. The antimicrobial activity of the surfaces under diffuse fluorescent light was assessed by measuring the inactivation of Bacillus subtilis spores, the rate of which was nearly 4 times higher for ceramic materials compared to the previously reported films. Enhanced UVC emissions were

attributed to increased material thickness as well as increased crystallite size in the ceramics. These results represent significant advancement of upconversion surfaces for sustainable, light-activated disinfection applications.

Lit.:

1. E.L. Cates, A.P. Wilkinson, J.-H. Kim, J. Luminescence 160 (2015) 202

2. E.L. Cates, J.-H. Kim, J. Photochemistry & Photobiology, B: Biology 153 (2015) 405

Surface Disinfection by Blue LED or Laser Diode + Blue-to-UV up-Converter

Some published UV up-Converter

- Y₂SiO₅:Pr,Li
- SrLi₂SiO₄:Pr
- CaLi₂SiO₄:Pr
- $Lu_3Al_5O_{12}$:Pr

Sole working activator: Pr³⁺

a) Z. Yin, P. Yuan, Z. Zhu, T. Li, Y. Yang, Pr³⁺ doped Li₂SrSiO₄: an efficient visibleultraviolet C up-conversion phosphor, Ceramics International (2020) b) T. Jüstel et al. WO002021073914 A1, WO002021073915 A1

FH MÜNSTER

University of Applied Sciences

Up-Converter CaLi₂SiO₄:Pr³⁺(%)Na⁺(5%)

Host Material for Pr ³⁺	Emission / nm	Excitation / nm
Ba ₂ SiO ₄	250-360	488 nm
BaY ₂ Si ₃ O ₁₀	255-360	488 nm
Ca ₂ LuSc ₂ GaSi ₂ O ₁₂	280-400	488 nm
Ca ₂ Al ₂ SiO ₇	255-360	488 nm
CaLi ₂ SiO ₄	240-350	488 nm
Ca ₂ Sc ₂ Si ₃ O ₁₂	298-400	488 nm
KYSiO ₄	265-400	488 nm
LiYSiO ₄	255-400	488 nm
Lu ₃ Al ₅ O ₁₂	280-400	488 nm
Lu ₃ (Al,Ga) ₅ O ₁₂	280-400	488 nm
Lu ₃ Al ₃ Sc ₂ O ₁₂	280-400	488 nm
Lu ₂ CaAl ₄ SiO ₁₂	280-400	488 nm
Lu ₂ Si ₂ O ₇	250-360	488 nm
Lu₂SiO₅	250-360	488 nm
NaYSiO ₄	255-320	488 nm
Sr ₂ MgSi ₂ O ₇	260-410	488 nm
Sr ₃ MgSi ₂ O ₆	280-410	488 nm
Y ₂ SiO ₅	255-355	488 nm

10⁻⁶

For Indoor Illumination Involving UV-C Radiation

Typical penetration depth of UV-C radiation into tissue ~ 40 μ m!

Lit.: S. Miwa et al., J. Cellular Biochemistry 114 (2013) 2493

150

100

50

UV fluence (mJ/cm²)

Motivation: Indoor Illumination Involving UV-C Radiation

Idea: Use of Xe₂* excimer discharge lamps with suitable radiation converter screen $(172 \text{ nm} \rightarrow 222 \text{ nm})$

Components of Care222® Ushio

Alternative filter: Absorption pigment with suitable band gap and long edge absorbing dopant

- Host material with absorption edge at 190 to 200 nm (6.2 6.4 eV)
- Activator with high absorption cross section between 250 and 300 nm
- s²-lon Bi³⁺: [Xe]4f¹⁴5d¹⁰6s² \rightarrow [Xe]4f¹⁴5d¹⁰6s¹6p¹ interconfigurational transition

State-of-the-Art: Bi³⁺ Doped ortho-Borates

- Garnets absorption is too red-shifted and thus not suitable
- (Y,Ln)BO₃:Bi³⁺ crystallising in the pseudo-vaterite structure (Ln = Sc, Nd Lu)
- (Lu,Ln)BO₃:Bi³⁺ crystallising in the calcite structure are not suitable

Optimisation of (Y,Lu)BO₃ Doped with Bi³⁺

Reflectance could be increased by the application of a post-treatment, viz. a washing process

Application of (Y,Lu)BO₃ Doped with Bi³⁺

Coated quartz slides were used for spectroscopic characterisation

Finished Coating

- For transmission spectroscopy, the interference filter was removed from a Ushio Care 222 lamp
- The lamp was covered by a black piece of polycarbonate (PC)
- The sample was placed on top of the PC

Application of (Y,Lu)BO₃ Doped with Bi³⁺

Coated quartz slides were used for spectroscopic characterisation

Results

- The Bi³⁺ doped (Y,Lu)BO₃ filter shows the strongest reduction of the undesired emission between 240 and 270 nm
- Strong scattering also reduces the overall 222 nm intensity

Energy Transfer to Shift Harmful Bi³⁺ UV-B Emission to Lower Energy (VIS or NIR)

The $Bi^{3+} \rightarrow Tb^{3+}$ energy transfer reduces the UV-B emission of Bi^{3+} and yields green Tb^{3+} emission

Y_{0.24}Lu_{0.74}BO₃:Bi³⁺ under 254 nm excitation

Y_{0.24}Lu_{0.74}BO₃:Bi³⁺,Tb³⁺ under 254 nm excitation

Other ET schemes

 $Bi^{3+} \rightarrow Eu^{3+}$ red emission, ET efficient but CT band of Eu^{3+} in the UV-C $Bi^{3+} \rightarrow Nd^{3+}$ NIR emission, but ET not efficient $Bi^{3+} \rightarrow Ho^{3+}$ NIR emission, ET efficient

7. Summary

٠

٠

٠

٠

٠

FH MÜNSTER University of Applied Sciences

Deep UV-C Emitting Radiation Sources

LEDs or laser diodes		230 - 240 nm	lifetime?
450 nm LEDs or laser diod	225 nm	efficiency?	
Excimer discharge lamp	KrBr* KrCl*	207 nm 222 nm	side bands side bands
Xe ₂ * Excimer discharge lamp + deep UV-C phosphor		200 - 240 nm	side bands
x-ray tube + deep UV-C ph	200 - 240 nm		
Cathode-ray tube + deep l	200 - 240 nm		

7. Summary

Deep UV-C Emitting Conversion Materials / Filter for KrCI* discharge lamps

Conversion materials

- Suitable activator ions are Pr³⁺, Bi³⁺, and Sc³⁺, however, broad band emission is not limited to 200 240 nm, thus a filter is required yet
- Phosphor must be long-term stable upon VUV, x-ray, or electron excitation

Filter for KrCl* excimer discharge lamps

- Wide band gap and radiation hard host material required
- Absorption at the low energy edge cannot be achieved by the band edge \rightarrow dopant is required
- Most suitable dopant is Bi^{3+} in borates, which emits in the UV-B/A range
- UV-B/A emission can be suppressed by energy transfer due to a co-dopant, e.g. Tb³⁺ or other NIR emitting RE ions

Application areas

- TOC removal (herbizides, hormones, pharmaceuticals, PFAS)
- Indoor air disinfection
- Nitrate decomposition
- Photocatalytical synthesis at RT

< 250 nm 200 – 240 nm < 240 nm 200 – 240 nm

8. References

Literature

- M. Broxtermann, T. Jüstel, Photochemically Induced Deposition of Protective Alumina Coatings onto UV Emitting Phosphors for Xe Excimer Discharge Lamps, Mat. Res. Bull. 80 (2016) 249
- J. Chen, S. Loeb, J-H. Kim, LED Revolution: Fundamentals and Prospects for UV Disinfection Applications, Envir. Sci.: Water Res. Technol. 3 (2017) 188
- M. Laube, T. Jüstel, On the Photo- and Cathodoluminescence of LaB₃O₆:Gd,Bi, Y₃Al₅O₁₂:Pr, Y₃Al₅O₁₂:Gd, Lu₃Al₅O₁₂:Pr, and Lu₃Al₅O₁₂:Gd, ECS J. SSST 7 (2018) R206
- M. Laube, T. Jüstel, Novel UV-A and -B Emitting Device for Medical Treatment, Photo-chemistry, and Tanning Purposes, ECS J. SSST 9 (2020) 065012
- Z. Yin, P. Yuan, Z. Zhu, T. Li, Y. Yang, Pr³⁺ doped Li₂SrSiO₄: An efficient visible-ultraviolet C upconversion phosphor, Ceramics International 47 (2021) 4858
- F. Schröder, S. Fischer, T. Jüstel, On the concentration dependency of Pr doped Li₂CaSiO₄, Austr. J. Chem. 75 (2022) 760
- J.-N. Keil, H. Kätker, R.T. Wegh, M.P.J. Peeters, T. Jüstel, Novel Bandpass Filter for Far UV-C Emitting Radiation Sources Optical Materials 140 (2023) 113866

Internet Links

- Homepage T. Jüstel
- Ushio
- Signify

www.fh-muenster.de/juestel www.ushio.com www.signify.com

Acknowledgements

Dr. Florian Baur Dr. David Enseling **Ines Becker** Dr. Helga Bettentrup Agata Blacha Andre Bleise **Ewelina Broda** Dr. Michael Dierks Dr. Danuta Dutczak Dr. Tobias Dierkes **Emilie Goirand Nadine Engbers** Linda Eickhoff Jörg Exner Joana Flottmann Dr. Rolf Gerdes Dr. Joanna Gondek Dr. Benjamin Herden Alexander Hoffmann **Torsten Hofmann** Marcel Hübner Dr. Thomas Jansen Dr. Arturas Katelnikovas Dr. Ramunas Skaudzius Marlies Maroka Julia Hopster

Heike Kätker Beata Koziara Tim Köcklar Dr. Jagoda Kuc **Stephan Lippert** Maximilian Mäsing Dr. Daniel Michalik Dr. Monika Michalkova Dr. Alexander Milbrat Katarzyna Mocniak Dr. Stephanie Möller Dr. Matthias Müller Jessica Peschel Dr. Julian Plewa Tatjana Rat Carsten Schledorn Dr. Simas Sakirzanovas Carsten Schweder Dr. Sebastian Schwung Andrew Shamu Lisa Siewert Claudia Süssemilch **Dr. Dominik Uhlich** Christine Vogel Florian Rosner Raphael Steinbach **Johannes Moss**

Dr. Nils Wagner Nele Schumacher Natalie Pasberg Dr. Beata Malysa Antonio Lorusso Dr. Stefan Fischer Dr. David Böhnisch Gökhan Öksüz Heike Jenneboer Anne Uckelmann Dr. Sara Espinoza Viktor Anselm Dr. Mike Broxtermann Dr. Simon Korte **Dr. Patrick Pues** Dr. Michael Laube Dr. Max Volhard Jan-Niklas Keil Jan Kappelhoff Franziska Schröder Tim Pier Jury Rosenboom Nils Kuprat Elisa Lindfeld **Anne Westemever** Julia Exeler Sven Reetz

(s)ignify

Bundesministerium für Bildung und Forschung

FORSCHUNG AN FACHHOCHSCHULEN

