8. Luminescence Mechanisms

Contents

- **8.1 Luminescence Definition, Materials and Processes**
- 8.2 Absorption
- 8.3 Excitation Mechanisms
- 8.4 Energy Transfer
- 8.5 Loss Processes
- 8.6 Cross-Relaxation
- 8.7 Configuration Coordinate Diagram
- 8.8 Thermal Quenching
- 8.9 Lifetime of the Excited State
- **8.10 Luminescence of Transition Metal Ions**
- 8.11 Luminescence of Ions with s²-Configuration
- 8.12 Luminescence of Rare Earth Ions
- 8.13 Down-Conversion
- 8.14 Up-Conversion
- 8.15 Afterglow

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster

Chapter Luminescence Mechanisms Slide 1

8.1 Luminescence - Definition

Luminescence is a process that corresponds to emission of electromagnetic radiation beyond thermal equilibrium.

Inorganic materials: Radiative recombination involving impurity levels within the band gap!

- (a) Conduction-band-acceptor-state transition
- (b) Donor-state-valence-band transition
- (c) Donor-acceptor recombination
- (d) Bound-exciton recombination

8.1 Luminescence - Definition

Thermal and non-thermal radiators

Thermal radiators emit a radiation spectrum that equals black body radiation at a corresponding temperature

→ Planck radiation

Examples: Cosmic background radiation, celestial objects, halogen and incandescent lamps

Non-thermal radiators emit a radiation spectrum originating from electronic transitions between discrete electronic energy levels

→ Luminescence

Examples: Luminescent materials, LEDs, Lasers

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster

Inorganic luminescent materials – Requirements for high quantum efficiency

Strong absorption, efficient energy transfer, and high internal quantum yield:

- Highly crystalline particles, low defect density
- High purity (99.99% or higher)
- Redox stable optical centres
- Homogeneous distribution of optical centres
- Low phonon frequencies
- Inert surfaces (core-shell approach)

(A)

(S)

(D)

Absorption process related to

optical centres (impurities)

- activators
- sensitizers
- defects
- host lattice
- (band edge)

Energy transfer often occurs prior to emission processes!

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster

Inorganic luminescent materials – The role of the host lattice

Reflection spectrum of YBO₃

Emission spectrum of YBO₃

upon 160 nm excitation

The overall picture

S0, S1, S2, T1, A0, A1 = Energy levels of activator and sensitizer ions ISC = Intersystem Crossing "spin-forbidden singulett-triplett transition" ET = Energy transfer

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster

Photonic or thermal stimulated luminescence (PSL or TSL)

Electronic Ground States of Atoms and Ions (Dopants)

The electronic energy levels are defined by the spin and orbital momentum of the electrons and by the coupling of these to the total spin and total (orbital) momentum

Atom/Ion	Electron configuration	Spectr	oscopic term ^{2S+1} L _J
Li ⁰	$1s^2 2s^1$	² S _{1/2}	
Li ⁺	1s ²	¹ S ₀	
Na ⁰	[Ne]3s ¹	${}^{2}S_{1/2}$	
Ti ³⁺	[Ar]3d ¹	${}^{2}\mathrm{D}_{3/2}$	
Cr ³⁺ /Mn ⁴⁺	[Ar]3d ³	${}^{4}\mathrm{F}_{3/2}$	
Mn²⁺/Fe³⁺	[Ar]3d ⁵	⁶ S _{5/2}	
Zn ²⁺ /Cu ⁺	[Ar]3d ¹⁰	¹ S ₀	
Ce ³⁺	[Xe]4f ¹	${}^{2}\mathrm{F}_{5/2}$	
Eu ³⁺	[Xe]4f ⁶	${}^{7}\mathbf{F_{0}}$	
Eu ²⁺ /Gd ³⁺ /Tb ⁴⁺	[Xe]4f ⁷	⁸ S _{7/2}	
Tb ³⁺	[Xe]4f ⁸	${}^{7}\mathbf{F_{6}}$	
Lu ³⁺	[Xe]4f ¹⁴	¹ S ₀	
Incoherent Light Sour Prof. Dr. T. Jüstel, FH	ces Münster		Chapter Luminescence Mechanisms Slide 10

Selection rules for electric dipole radiation (transitions)

Overall requirement: Conservation of momentum of the system "atom/ion + photon"

- **1.** Spin selection rule $\Delta S = 0$
- 2. Angular momentum (single electron) $\Delta l = \pm 1$
- **3.** Angular momentum (multi electron)

 $\Delta J = 0, \pm 1 \text{ (but not } J = 0 \rightarrow J = 0)$

$$\Delta L = 0, \pm 1 \text{ (but not } L = 0 \rightarrow L = 0)$$

4. Laporte selection rule

 $g \rightarrow u \text{ or } u \rightarrow g$ not $g \rightarrow g \text{ or } u \rightarrow u$

E	xamples:	Ce ³⁺ Eu ³⁺	$[Xe]4f^{1}({}^{2}F_{5/2}) \rightarrow [Xe]5d^{1}({}^{2}D_{3/2})$ $[Xe]4f^{6}({}^{7}F_{0}) \rightarrow [Xe]4f^{6}({}^{5}D_{0})$	⇒ allowed ⇒ forbidden	~ ns ~ ms
Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster		urces H Münster		Chapter Luminescence Me Slide 11	echanisms

Type Example **Excitation by** (roughly sorted top-down by decreasing energy of the excitation source) Scintillation High energy particles high-energy physics **PET detectors** γ-rays **Radioluminescence** X-rays X-ray amplifier, CT **CRTs**, oscilloscopes Cathodoluminescence **Electrons** (high voltage) **Photoluminescence UV/Vis photons Fluorescent lamps** LEDs, EL displays **Electroluminescence Electrical field** (low voltage) Chemiluminescence **Chemical reaction Emergency signals** Jelly fish, glow worms **Bioluminescence Biochemical reaction** Thermoluminescence Heat **Afterglow phosphors** Sonoluminescence **Ultra sound** Mechanoluminescence Mechanical energy **Peeling scotch tape** (Elasto-, Fracto-, Plasto-, Tribo-) *Lit.: Nature 455 (2008) 1089, blue + UV + x-ray!*

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster

8.2 Absorption

Penetration depth R of photons into matter (Example H_2O)

Photon impingement

 \rightarrow Lambert-Beer equation with T in [%]

 $\mathbf{A}(\lambda) = \boldsymbol{\varepsilon}_{\lambda} \cdot \mathbf{c} \cdot \mathbf{d} = -\log_{10}\mathbf{T}$

R ~ T at 0.135 or 13.5% ~
$$1/e^2$$

Solar irradiation at water surface Photosynthesis limit Full moon Phototaxis planctic Crustacea B/W image vision human Light perc. threshold deep sea fish Light perc. threshold human (~ star 6th magnitude)

8.2 Absorption

Penetration depth R of photons and electrons into matter (Example Y₂O₃)

Photon impingement

 \rightarrow Lambert-Beer equation with T in [%]

 $\mathbf{A}(\lambda) = \boldsymbol{\varepsilon}_{\lambda} \cdot \mathbf{c} \cdot \mathbf{d} = -\log_{10}\mathbf{T}$

R ~ T at 0.135 or 13.5% ~ $1/e^2$

1-10 µm

< 1 µm

$$\begin{split} & E = h\nu < E_g \\ & \text{e.g. 254 or 450 nm} \\ & \text{Absorption by activator or sensitizer} \\ & \text{Whole particle excitation} \end{split}$$

 $E = hv > E_g$ e.g. 172 or 185 nm Absorption by host material Surface excitation

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster

Slide 14

8.2 Absorption

High energy particles, γ - ray, x-ray, and high voltage electron excitation

- 1. Excitation of highly energetic core states
- 2. Thermalization and generation of electron-hole pairs with band gap energy
- 3. Energy transfer to activator ions or centers
- 4. (Center) Luminescence

Efficiency and electron-hole pair generation well understood, but with two different models:

- 1. D.J. Robbins (J. Electrochem. Soc. 127 (1980) 2694)
- 2. R.H. Bartram, Lempicki (J. Luminescence 68 (1996) 225)

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster

Example: BaMgAl₁₀O₁₇ doped by 10% Eu²⁺ (4f-5d transition)

• Host material $VB \rightarrow CB$

180 nm (7.0 eV)

- Mn^{2+} [Ar] $3d^5 \rightarrow$ [Ar] $3d^5$
- 200 nm (6.2 eV) and 450 nm (2.8 eV)
- Forbidden transition \Rightarrow Weak absorption bands and slow decay ($\tau \sim 10$ ms)

Incoherent Light Sources	Chapter Luminescence Mechanisms
Prof. Dr. T. Jüstel, FH Münster	Slide 20

Consequences for luminescence processes

ET causes

- Energy migration
- Concentration quenching
- Thermal quenching
- Cross-relaxation
- Possibility of sensitization

Some rules

- ET efficiency correlates to spectral overlap ρ
- ET from a broad band emitter to a line emitter only possible for nearest neighbors in the host lattice (Ce³⁺ Tb³⁺)
- ET from a line emitter to a band absorber proceeds over long distances (Gd³⁺ Ce³⁺)
- ET strongly depends on average distance and thus concentration of luminescent centers (Eu³⁺ - Eu³⁺)
- ET strongly depends on average lifetime of luminescent centers

El sel engly depends en d'el age medime el l'ammeseent centers				
Incoherent Light Sources		Chapter Luminescence Mechanisms		
Prof. Dr. T. Jüstel, FH Münster		Slide 26		

Example: ET in LaPO₄:Ce³⁺,Tb³⁺

 $\frac{\text{LaPO}_{\underline{4}}:\text{Ce}^{3+}}{\text{Ce}^{3+} \rightarrow (\text{Ce}^{3+})^*}$ $(\text{Ce}^{3+})^* \rightarrow \text{Ce}^{3+}$

 $\frac{\text{LaPO}_{4}:\text{Tb}^{3+}}{\text{Tb}^{3+} \rightarrow (\text{Tb}^{3+})^{**}}$ $(\text{Tb}^{3+})^{**} \rightarrow (\text{Tb}^{3+})^{**}$ $(\text{Tb}^{3+})^{*} \rightarrow \text{Tb}^{3+}$

Excitation 4f - 5d Emission 5d - 4f

Excitation 4f - 5d Relaxation Emission 4f - 4f

 $\frac{\text{LaPO}_{4}:\text{Ce}^{3+},\text{Tb}^{3+}}{\text{Ce}^{3+} \rightarrow (\text{Ce}^{3+})^{*}}$ $(\text{Ce}^{3+)*} + \text{Tb}^{3+} \rightarrow \text{Ce}^{3+} + (\text{Tb}^{3+})^{*}$ $(\text{Tb}^{3+)*} \rightarrow \text{Tb}^{3+}$

Excitation 4f - 5d ET from Ce³⁺ to Tb³⁺ Emission 4f - 4f

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster

Slide 27

8.5 Loss Processes

Overview of the most relevant processes leading to luminescence quenching

- 1. The absorbed energy does not reach the activator ion
 - a) Competitive absorption
 - b) ET to defects or non-luminescent impurity ions
 - c) Excited state absorption (ESA)
 - d) Auger processes
- 2. The absorbed energy reaches the activator ion, but non-radiative channels dominate the radiative return to the ground statea) Crossing of excited and ground state parabola
 - b) Multi-phonon relaxation
 - c) Cross-relaxation
 - d) Photoionization
 - e) Energy transfer to quenching sites = f(T)
- 3. Emitted radiation is re-absorbed by the luminescent material a) Self-absorption due to spectral overlap between excitation

and emission band

b) Additional absorption bands due to degradation of the material,

e.g. by colour centre formation

Incoherent Light Sources		
Prof. Dr. T. Jüstel, FH Münster		

$(\eta_{transfer})$

 (η_{act})

with A, B = fitting parameter p = highest phonon frequency

 (η_{esc})

8.5 Loss Processes

8.5 Loss Processes

Photoionization (PI) of the activator ion

Process of Photionisation (PI)

- Excited Aⁿ⁺ ion gets ionised
 - $Ce^{3+} \rightarrow Ce^{4+}$
 - Pr³⁺ \rightarrow Pr⁴⁺
 - Sm²⁺ \rightarrow Sm³⁺
 - Eu²⁺ \rightarrow Eu³⁺
 - Tb³⁺ \rightarrow Tb⁴⁺
 - $Yb^{2+} \rightarrow Yb^{3+}$
- Released electron is re-trapped, e.g.
 by anion vacancies → reduced EQE
- Causes afterglow in
 - Scintillators
 - Displays phosphors
 - Persistent phosphors

Chapter Luminescence Mechanisms Slide 33

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster

8.7 Configuration Coordinate Diagram

8.7 Configuration Coordinate Diagram

Incoherent Light Sources

Prof. Dr. T. Jüstel, FH Münster

- **1. Weak to no electron-phonon-coupling**
- High IQE, EQE determined by ET processes
- Thermal quenching mainly due to photoionization
- $4f \rightarrow 4f$ transitions (shielded 4f-shell: small crystal field splitting [CFS])
- Eu³⁺, Tb³⁺, Lines
- 2. Moderate electron-phonon-coupling
- High to moderate IQE
- Thermal quenching due to tunnelling or photoionization
- $4f \rightarrow 5d$ transitions (large CFS)
- Narrow bands Eu^{2+}, Ce^{3+}, \dots
- **3.** Strong electron-phonon-coupling
- High to low IQE at RT, strong thermal quenching
- Thermal quenching mainly due to tunnelling
- $ns^2 \rightarrow ns^1 np^1$ or CT transitions
- **Broad bands** Pb^{2+}, Bi^{3+}, \dots
8.7 Configuration Coordinate Diagram

Width of the transitions can be explained by the model "harmonic oscillator"

 $F = -k^{*}(r - r_{0}) \qquad : Integration$ $\Rightarrow E = -1/2^{*}k^{*}(r - r_{0})^{2}$

Quantum mechanics provides: $E_v = (v + 1/2)*hv$

Franck-Condon principle:

Electrons motion is much faster than nuclear motion \rightarrow "vertical transitions"

Transitions: $E_g(v_g = 0) \rightarrow E_e(v_e = x)$ for $v_e = 0$ "zero-phonon line"

 $\begin{array}{ll} r_{0g}=r_{0e} \Rightarrow & \text{narrow bands or lines } (4f \rightarrow 4f \text{ absorption lines}) \\ r_{0g} < r_{0e} \Rightarrow & \text{broad bands } (4f^n \rightarrow 4f^{n+1}L^{-1}, 4f^n \rightarrow 4f^{n-1}5d, 6s^2 \rightarrow 6s6p) \end{array}$

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster

8.8 Thermal Quenching

Model based on a two-level system: Example SrGa₂S₄:Eu²⁺

- Mathematical fit: $I(T) = A_0 + I_0/(1 + B \cdot exp(-\Delta E/k_BT))$, Struck-Fonger-Model"
- $T_{1/2}$ = Temperature at which the phosphor loses 50% of its initial emission intensity (here ~ 170 °C) ~ activator-host lattice interaction
- In many industrially applied phosphors the quantum yield starts to decline between 100 and 150 °C

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster Chapter Luminescence Mechanisms Slide 38

8.8 Thermal Quenching

Eu²⁺ activated phosphors

Blue shift due to thermal expansion of the host and thus reduction in crystal field splitting!

Incoherent Light Sources	Chapter Luminescence Mechanisms
Prof. Dr. T. Jüstel, FH Münster	Slide 39

8.8 Thermal Quenching

Some Rules

- Decreases with increasing energy separation of the ground and excited state
- Increases with increasing phonon frequencies (thus most organic compounds exhibit luminescence only at low temperatures)
- Increases with $\Delta r = r_e r_g$ and thus with Stokes Shift
- Thermal quenching due to photoionization concerns luminescent materials, where the excited state is located close to the conduction band

8.9 Lifetime of the Excited State

Description equal to 1st order kinetics (no energy transfer!)

$$dN_e/dt = -N_e^*P_{eg}$$

 $\Rightarrow dN_e/N_e = -P_{eg}^*dt$: Integration

$$\Rightarrow \ln(dN_e(t)/N_e(0)) = -P_{eg}^*t$$

$$\Rightarrow$$
 N_e(t) = N_e(0)*exp(-P_{eg}/ τ) with τ = 1/P_{eg}

Transition		Time scaleOscillator strep		ngth Activators	
66	allowed"	~ 10 ⁻⁹ s	f ~ 0.1	Eu ²⁺ , Ce ³⁺	
66	weak"	~ 10 ⁻⁶ s	f ~ 0.001	Pr³⁺, Nd³⁺	
66	forbidden"	~ 10 ⁻³ s	f ~ 10 ⁻⁵	Eu ³⁺ , Mn ²⁺	
	Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster			Chapter Luminescence Mechanisms Slide 41	

8.9 Lifetime of the Excited State

Typical decay curves

BaMgAl₁₀**O**₁₇**:E** u^{2+} ($\tau = 1 \ \mu s$)

 $(Y,Gd)BO_3:Eu^{3+} (\tau = 3.5 ms)$

Mono-exponential decay \Rightarrow No energy transfer e.g. to impurities such as Fe^{3+} or Cr^{3+}

Deviation from mono-exponential decay \Rightarrow quenching, energy transfer to defects or impurity ions, afterglow and so on

Incoherent Light Sources	Chapter Luminescence Mechanisms
Prof. Dr. T. Jüstel, FH Münster	Slide 42

Absorption processes of d^n -ions \rightarrow Tanabe-Sugano diagrams

Energy level diagram of a d¹-ion (Ti³⁺, V⁴⁺, Cr⁵⁺, Mn⁶⁺): Russell-Saunders terms Crystal-field terms

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster $\Rightarrow {}^{2}\mathbf{D}_{3/2}$

Absorption in glasses, laser crystals and phosphors

I	on	Configuration	Colour	Pigme	ent	Structure type
T	'i ³⁺	d ¹	violet, brown	Al ₂ O ₃	:Ti	Corundum
V	73+	d^2	green			
V	4+	d ¹	green, blue	(Zr,V)	SiO ₄	Zircon
C	² r ³⁺	d ³	green, yellow	Cr_2O_3	- }	Corundum
\mathbf{N}	In ²⁺	d ⁵	light pink	MnO		NaCl
\mathbf{N}	In ³⁺	d ⁴	violet	Mn ₂ O	3	Corundum
N	In ⁴⁺	d ³	red, brown	MnÕ ₂	2	Rutile
F	e ³⁺	d ⁵	yellow to red	α-Fe ₂	0,	Corundum
F	e ²⁺	d ⁶	blue, green	Fe(C ₂	$O_4)$ ·2H ₂ O	
C	20 ²⁺	d ⁷	blue, violet	CoAl	0,	Spinel
Ν	i ²⁺	d ⁸	green	NiO	· ••	NaCl
C	² u ²⁺	d ⁹	blue, green	CaCu	Si ₄ O ₁₀	Cuprorivaite
Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster				Chapter Lumin Slide 44	nescence Mechanisms	

Absorption processes of transition metal ions with d⁰-configuration

Ionic moieties: VO₄³⁻, NbO₄³⁻, TaO₄³⁻, CrO₄²⁻, MoO₄²⁻, WO₄²⁻, MnO₄⁻

Process:

```
Ligand to Metal Charge-Transfer (LMCT)
```

 $O^{2-} \rightarrow Me^{n+}$ or $p(non-bonding) \rightarrow d(e_g: anti-bonding)$

Phosphor	Absorption [cm ⁻¹]	CN	Polyhedron
CaWO ₄	40000	4	Tetrahedron
Ca ₃ WO ₆	35000	6	Octahedron
⇒ Position o metal cent	of the CT state decreases w ter	with increasing	g CN and effective charge of the
Incoherent Light S Prof. Dr. T. Jüstel.	Sources FH Münster		Chapter Luminescence Mechanisms Slide 45

1,0

MgWO₄

CaWO₄

Mn²⁺ and Mn⁴⁺ Luminescence

 $\Delta < 10,000 \text{ cm}^{-1}$ ${}^{4}T_{1}({}^{4}G) \rightarrow {}^{6}A_{1}({}^{6}S)$ Band emission 500 – 750 nm = f(symmetry) $\Delta \approx 20,000 \text{ cm}^{-1}$ ²E(²G) $\rightarrow {}^{4}A_{2}({}^{4}F)$ Line emission ~ 620 – 730 nm = f(CFS, covalency)

Incoherent Light Sources	Chapter Luminescence Mechanisms	
Prof. Dr. T. Jüstel, FH Münster	Slide 46	

Mn⁴⁺ Luminescence: Line Emission due to spin-forbidden ${}^{2}E({}^{2}G) \rightarrow {}^{4}A_{2}({}^{4}F)$ trans.

Optical properties of Mn⁴⁺ are governed by

- Crystal field splitting Dq, usually 1.9 2.3 · 10⁴ cm⁻¹
- Covalency can be parametrised

Racah Parameter A, B, and C

 $\mathbf{A} = \mathbf{F0} - \mathbf{49} \ \mathbf{F4}$

$$\mathbf{B} = \mathbf{F2} - \mathbf{5} \ \mathbf{F4}$$

$$\mathbf{C} = \mathbf{35} \; \mathbf{F4}$$

(with F0, F2, F4 = Slater integrals)

B: Usually 600 – 800 cm⁻¹

C: Usually 2800 – 3300 cm⁻¹

Determination of B and C \rightarrow

Chapter Luminescence Mechanisms Slide 47

8.11 Luminescence of Ions with s²-Configuration

Examples: Ga⁺, In⁺, Tl⁺, Ge²⁺, Sn²⁺, Pb²⁺, As³⁺, Sb³⁺, Bi³⁺

Electron configuration of s²-ions

Energy level diagram of s²-ions

Lanthanides originates from the Greek word " $\lambda \alpha \nu \theta \alpha \nu \epsilon_{\nu}$ ", which means "to lie hidden" **Instead of "to lie hidden" λανθανειν,** Не a better name would be "to be outstanding" Ne επιφανης – epifanides (A. Meijerink, PGS 2011) F Ν Ar CI В S Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br P Kr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te χe W Re Os Ir Pt Au Hg TI Pb Bi Po At Rn B Lİ Na M9 Ca Sc κ Rb Sr Cs Ba Tm Yb Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Ho Er La Dv Lu Fr Ra Ac **Incoherent Light Sources Chapter Luminescence Mechanisms** Prof. Dr. T. Jüstel, FH Münster Slide 50

Electron configuration of rare earth metals and ions

N	<u>letals</u>																
[]	Ke]	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
6	5	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
5	d	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	
4	ſ	0	2	3	4	5	6	7	7	9	10	11	12	13	14	14	
Ι	ons																
	Kel	La ³⁺	Ce ³⁺	+ Pr ³⁺	Nd ³⁻	+ Pm ³	+ Sm ³⁻	+ Eu ³⁻	+ Gd ^{3.}	+ Th ³	+ Dv ³⁻	+ Ηο ^{3.}	+ Er ³	+ Tm	³⁺ Vh ³	³⁺ Lu ³⁺	
L [_]	rcl		- D 4-	+ NT.J4	+	1 111		Du C ?	2+ F 2	+	Dy	110		1 111	Т	2+ X7L 2+	
		Cerr	Pr					5M-	' Eu-						Im	2 Y D2	
4		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
E	<u>xample</u>	m	-3	-2 -1	0 1	2 3	-	-2 -1	0 1	2	0	-1 0	1				
G	d^{3+}/Eu^{2+}	F		\uparrow \uparrow	↑ ↑		1 Г								1	• 4	
					/ /f			5			6 5				specti	roscopic to	erms
					71			J	u		05	oh				$^{2S+1}L_{J}$	
S	$=\Sigma s = 7$	/2		$\rightarrow 2$	2S+1 :	= 8		\rightarrow st	rongl	y par	amag	netic i	ons	· · · ·			
L	$= \Sigma \mathbf{l} =$	0		ightarrow,,	S"			\rightarrow L	S-Ter	m syı	mbol ⁸	³ S					
	Incohere Prof. Dr.	nt Ligh T. Jüst	t Sourc	ces Mijnste	r								Cha Slid	pter Lui e 52	minesce	nce Mechanisn	ns
			/														

History of distangling the energy level structure

1908 Becquerel Sharp lines in optical spectra of lanthanide ions

1937 Van Vleck The Puzzle of Rare-Earth Spectra in Solids

1960s Judd, Wybourne, Dieke, Carnall

Theory for energy level structure and transition probabilities of 4f-4f transitions

1977 Carnall, Crosswhite & Crosswhite: ANL Report on energy levels in LaF₃

Problem: Complicated Hamiltonian ("total energy operator").....

 $H = H_0 + H_C + H_{SO} + H_{CF} + H_Z$ with $H_0 = -\hbar^2/2m \cdot \nabla^2 + V_0$ (single particle in 3D pot.)

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster Chapter Luminescence Mechanisms Slide 53

Energy level structure of [Xe]4fⁿ ions

Partly filled 4f-shell results in multiple electronic microstates = 14!/((14-n)!*n!)Example: Tb³⁺ [Xe]4f⁸ \rightarrow 8 electrons in 7 f-orbitals \rightarrow 3003 different arrangements

Free ion energy levels due to:

- 1. Electrostatic interactions (comparable to $3d^n$ ions): H_C splitting ~ 10000 cm⁻¹
- 2. Spin-orbit coupling (larger than for 3dⁿ ions):
- 3. Crystal field splitting (smaller than for 3dⁿ ions):

Ground state

1st excited state

$$\mathbf{m}_{\mathbf{l}} = \begin{array}{c} -3 & -2 & -1 & 0 & 1 & 2 & 3 \\ \hline \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \\ 4\mathbf{f} \end{array}$$

Лf

 $m_1 = -3 - 2 - 1 \ 0 \ 1 \ 2 \ 3$

 H_{CF} splitting ~ 100 cm⁻¹

splitting ~ 1000 cm^{-1}

$$S = 6/2, L = 3 (F), J = 6 \rightarrow {}^{7}F_{6}$$

H_{SO}

 $S = 4/2, L = 2 (D), J = 4 \rightarrow {}^{5}D_{4}$

	71		
ncoherent Light Sources Prof. Dr. T. Jüstel, FH Münster		Chapter Luminescence Mechanisms Slide 54	

1. Electrostatic interactions (H_C)

Shielding due to inner electrons described by the so-called Slater parameters (comparable to Racah parameter A, B, and C)

$$F^{(k)} = \frac{e^2}{4\pi\varepsilon_0} \int_0^\infty \int_0^\infty \frac{r_{<}^k}{r_{>}^{k+1}} [R'_{4f}(r_i)R'_{4f}(r_j)]^2 r_i^2 r_j^2 dr_i dr_j$$

Electrostatic interaction increases with effective charge on

the activator ion (ion charge density)

Therefore splitting between different terms depends on

- Oxidation state
- Nucleus charge
- Charge flow back from ligands (polarizibility of surrounding anions)

Incoherent Light Sources	Chapter Luminescence Mechanisms
Prof. Dr. T. Jüstel, FH Münster	Slide 55

2. Spin-orbit coupling (H_{SO})

Spin-orbit coupling constant ζ increases throughout the lanthanide series, i.e. from $\zeta(Ce) = 650 \text{ cm}^{-1}$ to $\zeta(Yb) = 2930 \text{ cm}^{-1}$

Further splitting of *LS* terms into *J*-levels by energy, assuming weak spin-orbit coupling:

```
→ Complete term symbol:
```

```
^{2S+1}L_J with |L-S| < J < L+S
```

 For Tb³⁺
 Ground state:
 $^{7}F_{6,5,4,3,2,1,0}$

 Excited state:
 $^{5}D_{4,3,2,1,0}$

3. Crystal field splitting (H_{CF})

Further splitting of *J* multiplets into a maximum of 2J+1 levels Crystal field splitting ~ 100 cm⁻¹ = sensitive function of site symmetry

Extra fitting parameters B_q^k to graphically fit experimentally observed levels:

$$\mathscr{H}_{c}^{O_{h}} = B_{0}^{4} \left[C_{0}^{(4)} + \sqrt{\frac{5}{14}} (C_{-4}^{(4)} + C_{4}^{(4)}) \right] + B_{0}^{6} \left[C_{0}^{(6)} - \sqrt{\frac{7}{2}} (C_{-4}^{(6)} + C_{4}^{(6)}) \right]$$

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster

In summary: RE ions exhibit a large number of energy levels ^{2S+1}L_J

The number of microstates are

Number
$$\# = \frac{n!}{e!h!}$$

n = number of positions
e = number of electrons
h = number of holes

	Ce (Yb)	Pr (Tm)	Nd (Er)	Pm (Ho)	Sm (Dy)	Eu (Tb)	Gd
n	1	2	3	4	5	6	7
SL	1	7	17	47	73	119	119
SLJ	2	13	41	107	198	295	327
SLJM	14	91	364	1001	2002	3003	3432

Early experimental and theoretical work on LaCl₃:Ln³⁺ and LaF₃:Ln³⁺ by Dieke and Carnall (experiments) and Judd, Crosswhite and Wybourne (theory): "Dieke diagram" and the "Blue book"

Incoherent Light Sources	Chapter Luminescence Mechanisms
Prof. Dr. T. Jüstel, FH Münster	Slide 58

Lit.: W.T. Carnall, G.L. Goodman, K. Rajnak, and R.S Rana, J. Chem. Phys. 90 (1989) 3443

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster **Chapter Luminescence Mechanisms Slide 59**

Complete energy level diagram

Ce ³⁺	~	Yb ³⁺
Pr ³⁺	~	Tm ³⁺
Nd ³⁺	~	Er ³⁺
Pm ³⁺	~	H0 ³⁺
Sm ³⁺	~	Dy^{3+}
Eu ³⁺	~	Tb ³⁺
Gd ³⁺		

Energy level splitting increases from Ce³⁺ to Yb³⁺ due to increasing nucleus charge

Increasing spin-orbit coupling $E_{SO}\left(\xi\right)$

Free ion	Configuration	<u>ξ [cm⁻¹]</u>		
Ce ³⁺	[Xe]4f ¹	650		
Yb ³⁺	[Xe]4f ¹³	-2930		

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster

Intrakonfigurations 4f - 4f Übergänge:

1) Sharp lines (atomic like), Stokes shift ~ 0 cm⁻¹

2) Little influence of environment on energy level scheme

3) Parity forbidden transitions (~ ms life time, $f \sim 10^{-5}$)

Origin: Shielding of 4fⁿ electrons by filled 5s and 5p shells \rightarrow vry little shift of excited state parabola and strong Energy / eV zero-phonon (ZP) lines

Beispiel:

Gd³⁺ in Y₃Al₅O₁₂

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster

Emission spectra and colour points of Eu³⁺ activated phosphors

Emission spectra and colour points of Eu³⁺ activated phosphors

Colour saturation: $Y_2O_2S:Eu > YVO_4:Eu > Y_2O_3:Eu > (Y,Gd)BO_3:Eu$

Incoherent Light Sources	Chapter Luminescence Mechanisms
Prof. Dr. T. Jüstel, FH Münster	Slide 66

Emission spectra and colour points of Eu³⁺ activated phosphors

Observed emission spectrum due to ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ transitions (lines)

a) Inversion symmetry (S_6, D_{3d}) Magnetic dipole transitions, e.g. ${}^5D_0 - {}^7F_1 \Delta J = 0, \pm 1 \ (J = 0 \rightarrow J = 0 \ forbidden)$ MeBO₃:Eu (Calcite, Vaterite) $\tau \sim 8 - 16 \ ms$

b) No inversion symmetry Electric dipole transitions ${}^{5}D_{0} - {}^{7}F_{2,4}$ $\Delta J \le 6 (J_{i} = 0 \rightarrow J_{f} = 2, 4, 6)$ $Y_{2}O_{3}$:Eu (Bixbyite), Y(V,P)O_{4}:Eu (Xenotime) $\tau \sim 2 - 5$ ms

> Chapter Luminescence Mechanisms Slide 67

Excitation and emission spectra of Eu³⁺ and Eu²⁺ activated phosphors

Centroid shift $\varepsilon_c \sim$ electron density between activator and ligands \sim charge flow back

Polarizability of the anions ~ negative charge density (alkalinity!)

• selenides > sulfides > nitrides > oxides > fluorides

Charge density of the surrounding anions

•	Type of network former:									
	oxides	alumina	tes si	licates	borates	pł	nosphates	sulfates		
	O ²⁻	AlO ₄ ⁵⁻	Si	iO ₄ ⁴⁻	BO ₃ ³⁻	P	043-	SO ₄ ²⁻		
•	Degree of connectivity of the network former									
	nesosilicates	sorosilic	ates	cyclosi	icates	phyllo	silicates	tectosilicates		
	[SiO ₄] ⁴⁻	[Si ₂ O ₇] ⁶⁻		[Si ₃ O ₉] ⁶⁻		[Si ₄ O ₁₀] ⁴⁻		[(Si ₂ Al ₂)O ₈] ²⁻		
	garnet	akermanite		benitoite beryl		montmorillonite quartz				
	zircon thortveit		tite			talc		feldspar		
olivine hemimo		rphite	ite emerald		kaolinite		zeolites			
Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster						Chapter Lumin Slide 72	escence Mechanisms			

Negative charge density on the anions ~ $\epsilon_c \Rightarrow$ example: Y³⁺ - O²⁻

Low charge density on oxygen

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster

High charge density on oxygen

Crystal field splitting ϵ_{cfs}

Crystal field theory \Rightarrow ionic interaction between metals and point charges (ligands)

Energy splitting of the d-orbitals depends on:

- Anionic charge / anionic radius (spectrochemical series of solid state compounds) I⁻ < Br⁻ < Cl⁻ < S²⁻ < F⁻ < O²⁻ < N³⁻ < C⁴⁻
- Symmetry (coordination number and symmetry) square-planar > octahedral > cubic, dodecahedral, square-antiprismatic > tetrahedral > spherical
- Metal to ligand distance (strong dependence from temperature)!

$\varepsilon_{cfs} = 5Ze^2r^4/3R^5$	R:	Metal (central atom) – ligands (anions) distance	
	Z:	Valence of the ligands (anions)	
	e:	Electron charge	
	r:	Distance of electron in d o	orbital from the nucleus of M
Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster			Chapter Luminescence Mechanisms Slide 75

Crystal field splitting ϵ_{cfs}

- Atomic number of the metal cation $\varepsilon_{cfs}(3d) : \varepsilon_{cfs}(4d) : \varepsilon_{cfs}(5d) = 1 : 1.45 : 1.7$
- Charge of the metal cation $\epsilon_{cfs}(M^{2+}) : \epsilon_{cfs}(M^{3+}) : \epsilon_{cfs}(M^{4+}) = 1 : 1.6 : 1.9$

Luminescence of Y₃Al₅O₁₂:Ce

 \rightarrow ³F,

800

³P.

700

8.13 Down-Conversion

First examples (1974)

Lit.: Sommerdijk et al., J. Lumin. 8 (1974) 288 (Philips) Sommerdijk et al., J. Lumin. 8 (1974) 341 (Philips) Piper et al., J. Lumin. 8 (1974) 344 (GE) $YF_3:Pr(0.1\%)$ and $NaYF_4:Pr(0.1\%)$ ${}^{1}S_0 - {}^{3}P_1$, ${}^{1}I_6$ transitions @ 407 nm ${}^{3}P_0 - {}^{3}H_J$, ${}^{3}F_2$ transitions in the red Internal QY = 166% (total) @ 214 nm excitation Drawbacks of fluorides: Low stability in a Hg discharge causes blackening and fluorides have environmental & safety issues

Oxidic materials with photon cascade emission (PCE)

Lit.: A.M. Srivastava, D.A. Doughty, W.W. Beers (GE) Pr³⁺ on cation host sites with high CN (> 8) SrAl₁₂O₁₉:Pr,Mg

Other examples: LaMgB₅O₁₀:Pr, LaB₃O₆:Pr, SrB₄O₇, BaSO₄, CaSO₄

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster

8.13 Down-Conversion

Example: LiGdF₄:Eu

8.13 Down-Conversion

Mechanisms (inorganic materials)

Туре	Example	Efficiency [cm ² W ⁻¹]
a) Anti-Stokes-Raman	Si crystal	~10 ⁻¹³
b) 2-Photon excitation	CaF ₂ :Eu ²⁺	~10 ⁻¹²
c) Second Harmonic Gener. (SHG)	KH ₂ PO ₄ , KNbO ₃ , ß-BaB ₂	O ₄ ~10 ⁻¹¹
d) Cooperative photoluminescence	YbPO ₄ :Yb ³⁺	~10 ⁻⁸
e) Cooperative sensitization	YF ₃ :Yb ³⁺ ,Tb ³⁺	~10 ⁻⁶
f) Excited State Absorption (ESA)	SrF ₂ :Er ³⁺	~10 ⁻⁵
g) Energy Transfer Up-conv. (ETU)	YF ₃ :Er ³⁺	~10 ⁻³
h) Sensitized ETU	NaYF ₄ :Yb ³⁺ ,Er ³⁺	~10-1
$\mathbf{E} \left[\begin{array}{c} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf$		
Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster		Chapter Luminescence Mechanisms Slide 90

Mechanisms (inorganic materials)

f) Excited State Absorption (ESA)Subsequent absorption of2 Photons: Ground state absorptionand then ESASingle RE ion involved

g) Energy transfer Up-conversion (ETU) Ground state absorption and energy transfer Up-conversion Two identical RE ions involvied h) Sensitized energy transfer
up-conversion (sensitized ETU)
Involves a sensitizer, which absorbs energy
and an activator, which can show ETU
Two non-identical RE ions involved

RE³⁺ activated NIR-to-visible up-converters

Prof. Dr. T. Jüstel, FH Münster

Pr³⁺ activated visible-to-UV up-converters

Example: ETU by 445 nm laser diode + Y₂SiO₅:Pr,Li ceramic, Georgia, Atlanta

Literature

1. E.L. Cates, A.P. Wilkinson, J.-H. Kim, J. Luminescence 160 (2015) 202

2. E.L. Cates, J.-H. Kim, J. Photochemistry & Photobiology, B: Biology 153 (2015) 405 **ABSTRACT:** The objective of this study was to develop visible-to-ultraviolet C (UVC) upconversion ceramic materials, which inactivate surface-borne microbes through frequency amplification of ambient visible light. Ceramics were formed by high-temperature sintering of compacted yttrium silicate powders doped with Pr^{3+} and Li⁺. In comparison to previously reported upconversion surface coatings, the ceramics were significantly more durable and had greater upconversion efficiency under both laser and low-power visible light excitation. The antimicrobial activity of the surfaces under diffuse fluorescent light was assessed by measuring the inactivation of *Bacillus subtilis* spores, the rate of which was nearly 4 times higher for ceramic materials compared to the previously reported films. Enhanced UVC emissions were

attributed to increased material thickness as well as increased crystallite size in the ceramics. These results represent significant advancement of upconversion surfaces for sustainable, light-activated disinfection applications.

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster

Cause: Storage of electrons / holes onto certain sites in the lattice (vacancies, impurities)

Shallow traps:Release of electrons from traps is done by ambient thermal energyDeep traps:Release of electrons from traps is done by stimulation (PSL or TSL)

Example: Ba(F,Br):Eu Storage phosphor for imaging plates (detection of x-rays)

Literature: Y. Iwabuchi et al., J. Appl. Phys. 33 (1994) 178				
	Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster		Chapter Luminescence Mechanisms Slide 95	

Deep traps: Storage phosphors - Example: Cs₂NaYF₆:Ce & Cs₂NaYF₆:Pr (elpasolite)

A = Ce, Pr

Literature: Th. Pawlik and J.-M. Spaeth, J. Appl. Phys. 82 (9), 4236 (1997)

Incoherent Light Sources	Chapter Luminescence Mechanisms	
Prof. Dr. T. Jüstel, FH Münster	Slide 96	

Deep traps: Storage phosphors - Application

Mechanism

- 1. Charging of the material, e.g. by high energy particles, x-rays, or UV radiation
- 2. Stimulation of energy release to induce luminescence
 - Thermally stimulated luminescence (TSL: T >> 300 K)
 - Photostimulated luminescence (PSL: Laser activation)

In a storage phosphor radiation energy is stored inside the material by traps and the light of interest is not produced until the material is activated, either by thermal or optical stimulation. Thus information on the radiation can be obtained at a time later than the actual interaction.

Incoherent Light Sources	Chapter Luminescence Mechanisms	
Prof. Dr. T. Jüstel, FH Münster	Slide 97	

PSL

PSL

PSL

PSL and TSL (150 °C)

PSL and TSL (157 °C)

PSL and TSL (177 °C)

PSL and TSL (200 °C)

PSL and TSL (240 °C)

PSL and TSL (260 °C)

Deep traps: Storage phosphors – Overview

Established storage materials

- Ba(F,Br):Eu²⁺
 PSL
 RbBr:Tl⁺
 PSL
- SrS:Eu²⁺,Sm³⁺ PSL
- $Ba_3(PO_4)_2:Eu^{2+}$ PSL
- $Ba_2B_5O_9Br:Eu^{2+}$ PSL
- $Ba_7Cl_2F_{12}:Eu^{2+}$
- $\operatorname{Ba}_{12}\operatorname{Cl}_{5}\operatorname{F}_{19}:\operatorname{Eu}^{2+}$
- $Y_2SiO_5:Ce^{3+}$
- $Ba_5SiO_4Br_6:Eu^{2+},Nb^{3+}$
- $Sr_5(PO_4)_3Cl:Eu^{2+}$
- $Li_6Gd_{0.5}Y_{0.5}(BO_3)_3:Eu^{3+}$
- $LiSr_4(BO_3)_3:Ce^{3+}$
- LiCaAlF₆:Eu²⁺
- LiYSiO₄:Ce³⁺

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster

also for neutron storage due to neutron capture by ⁶Li!

Shallow traps: Afterglow phosphors

Prof. Dr. T. Jüstel, FH Münster

<u>C</u>	omposition	colour	λ_{max} [nm]
•	CaAl ₂ O ₄ :Eu,Nd	blue	440 nm
•	Sr ₂ MgSi ₂ O ₇ :Eu,Dy	blue	469 nm
•	Sr ₄ Al ₁₄ O ₂₅ :Eu,Dy	cyan	490 nm
•	$Mg_2SnO_4:Mn^{2+}$	cyan	499 nm
•	SrAl ₂ O ₄ :Eu,Dy	green	520 nm
•	ZnS:Cu,Co	green	530 nm
•	Sr ₂ SiO ₄ :Eu,Dy	yellow	570 nm
•	Y ₂ O ₂ S:Eu,Ti,Mg	red	620 nm
•	CaZnGe ₂ O ₆ :Mn	red	648 nm
•	CaS:Eu,Tm	red	655 nm
•	MgSiO ₃ :Eu,Dy,Mn	red	660 nm
•	SrSc ₂ O ₄ :Eu	red	685 nm
Sr	$_{1}Al_{14}O_{25}:Eu^{2+}$ Sr ₄ Al ₁₄ O ₂₅ :Eu ²⁺ ,	Dy ³⁺ SrA	2O4:Eu ²⁺ SrAl ² O ⁴ :Eu ²⁺
	Incoherent Light Sources		

Shallow traps: Afterglow phosphors applications

- watch dials
- self-sustained night vision materials
- luminous paints, 'glow in the dark' toys
- defense surveillance for tagging, tracking and locating the targets of interest
- in-vivo deep-tissue bio-imaging (NIR persistent luminescent phosphors)
- radiation detection or structural damage sensing

Road N329 in Oss (The Netherlands)

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster

