Exercises: Stoichiometry in Solid State Chemistry

1) Calculate the elemental composition in mass percent, i.e. the theoretical elemental analysis of the blue pigment $KFe[Fe(CN)_6]$ as well as of the blue emitting phosphor $Sr_5(PO_4)_3Cl:10\%Eu^{2+}!$

2) How many moles of La, Ce, Tb, P and O comprise 100 kg of LaPO₄:Ce³⁺(10%)Tb³⁺(30%)?

3) Establish the following (redox)reaction equations! a) $La_2O_2CO_3 + MgCO_3 + Al_2O_3 \rightarrow LaMgAl_{11}O_{19} + CO_2$ b) $SrCO_3 + H_3BO_3 \rightarrow SrB_4O_7 + H_2O + CO_2$ c) $CaH_2 + AlN + Si_3N_4 + N_2 \rightarrow CaAlSiN_3 + NH_3$ d) $NH_4H_2PO_4 + CeO_2 + H_2 \rightarrow CePO_4 + H_2O + NH_3$ e) $Pr_6O_{11} + NH_4Cl + CO \rightarrow PrOCl + H_2O + NH_3 + CO_2$ f) $MgO + MgF_2 + GeO_2 \rightarrow Mg_8Ge_2O_{11}F_2$

4) Calculate the amount of educts to be weighed for the synthesis of 10 g of the following PDP phosphors! Use oxides as educts, only $(Ln_2O_3, V_2O_5, P_2O_5)!$ a) $(Y_{0.8}Gd_{0.2})VO_4$ b) $(Y_{0.92}Eu_{0.08})VO_4$ c) $(Y_{0.72}Gd_{0.2}Eu_{0.08})VO_4$ d) $(Y_{0.72}Gd_{0.2}Eu_{0.08})(V_{0.8}P_{0.2})O_4$

Comment: No redox reaction takes place for these reactions!

5) Calculate the amount of educts to be weighed for the synthesis of 5 g of the following compounds! Use the following educts, only: MgO, Ln_2O_3 , CeO_2 , Pr_6O_{11} , Tb_4O_7 , H_3BO_3 , MnCO₃! Take into account the charge and size of the dopants when substituting cations in the host structure!

a) YBO₃:2%Pr
b) GdBO₃:5%Tb
c) GdBO₃:10%Ce
d) GdBO₃:5%Ce,20%Tb
e) GdMgB₅O₁₀:10%Ce,30%Tb
f) GdMgB₅O₁₀:10%Ce,30%Tb,10%Mn

Comment: During these reactions redox processes take place, with CO acting as a reducing agents!

6) Establish the reaction equation for the synthesis of $Y_3Al_5O_{12}$ (YAG) doped with 2% Ce³⁺, 20% Gd³⁺ and 0.1% Pr³⁺ and calculate the amount of educts needed to prepare 100 g of this LED phosphor! The synthesis consumes H₂ in order to establish a reducing atmosphere!