Chemische Materialtechnologie

Lu₃Al₅O₁₂:Pr(s)

<u>Inhalt</u>

- 1. Klassifizierung von Materialien
- 2. Synthesetechniken der Materialtechnologie
 - 2.1. Festkörpersynthesemethoden
 - 2.2. Gasphasenprozesse
 - 2.3. Synthesen in Lösung
 - 2.4. Nanopartikel
 - 2.5. Einkristallzucht

- 3.1. Pigmente
- **3.2.** Leuchtstoffe
- 3.3. Keramiken
- 3.4. Ionenleiter
- 3.5. Biomaterialien

Ionisation

 $I_2(g)$

Sieden

Ga(l) 30-2400 °C

Plasmatypen (TU Eindhoven)

Literaturhinweise

- G. Buxbaum, G. Pfaff, Industrial Inorganic Pigments, Wiley-VCH, 2005
- W. Büchner, R. Schliebs, G. Winter, K.H. Büchel, Industrial Inorganic Chemistry, Wiley-VCH, 1989
- A.R. West, Solid State Chemistry and its Application, Wiley-VCH, 1992
- A.R. West, Basics of Solid State Chemistry, 2nd Edition, John Wiley & Sons, 1999
- N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, Pergamon Press, 1994
- F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, Wiley Interscience, 5th Edition
- U. Schubert, N. Hüsing, Synthesis of Inorganic Materials, Wiley-VCH, 2000
- U. Müller, Anorganische Strukturchemie, Teubner, 4. Auflage

Chemische Materialtechnologie Prof. Dr. T. Jüstel

1. Klassifizierung von Materialien

Nach ihrer Anwendung

- Strukturmaterialien (Klassische Materialien)
 - Baustoffe (Gips, Kalk, Mörtel, Zement)
 - Biomaterialien (Endoskelette von Vertebrata, Molluskenschalen, Exoskelette von Echinodermata und Anthropoda)
 - Gläser
 - Keramiken (Baukeramik, Gefäßkeramik, Porzellan)
- Funktionsmaterialien (Moderne Materialien)
 - Bioersatzmaterialien (Zahnimplantate, Knochenersatzkeramik)
 - Elektrische Materialien (Piezokeramiken, Halbleiter, Supraleiter)
 - Hochtemperaturkeramik (Lager, Ventile, Kolben)
 - Katalysatoren
 - Magnetische Materialien (Permanentmagnete, Tonträgerbeschichtungen)
 - Optische Materialien (Pigmente, Glasfasern, Leuchtstoffe, Laserkristalle)

1. Klassifizierung von Materialien

Nach ihrer chemischen Zusammensetzung

- Anorganische Materialien
 - Elemente (Si, Cu, Al)
 - Legierungen (Stahl: Fe-C, Messing: Cu-Zn, Bronze: Cu-Sn)
 - Verbindungen (Al₂O₃, SiO₂, TiO₂)
 - Gläser (Quarzglas, Natrium-Kalk-Glas, Bleiglas)
 - Keramiken (Oxid-, Nitrid-, Karbidkeramiken)
- Organische Materialien
 - Polymere (Polyethylen PE, Polystyrol PS, Teflon PTFE)
- Hybridmaterialien
 - Silikone
 - Ormosil (organic modified silica = organisch modifiziertes SiO₂)
 - Faserverstärkte Kunststoffe

1. Klassifizierung von Materialien

Anorganische Festkörperverbindungen

Nach Art der Anionen und Anzahl der Kationen

Anionen	Binär	Ternär	<u>Quaternär</u>
Halogenide	NaF	Na ₃ AlF ₆	LiCaAlF ₆
Oxide	MgO	MgAl ₂ O ₄	BaMgAl ₁₀ O ₁₇
Sulfide	SrS	SrGa ₂ S ₄	Na ₂ SrTiS ₄
Nitride	Si ₃ N ₄	$Sr_2Si_5N_8$	$SrYbSi_4N_7$
Carbide	SiC		
Oxyhalogenide	LaOBr		
Oxysulfide	Y ₂ O ₂ S		
Oxynitride	Si ₂ N ₂ O	SrSi ₂ N ₂ O ₂	
Carbonitride		Y ₂ Si ₄ N ₆ C (Lit.: 0	Ceramics Int. 39 (2005) 1097)
Chemische Materialtechnologie Prof. Dr. T. Jüstel			Folie 5

2. Synthesetechniken der Materialtechnologie

2.1. Festkörpersynthesemethoden

2.1.1 Grundlagen der Festkörperreaktionen

Allgemeine Prinzipien

Grundlegende Prozessschritte

2.1.2 Precursormethoden

Co-Präzipitation Andere Precursormethoden

2.1.3 Technische Ausrüstung

Container

Öfen

Syntheseatmosphäre

- 2.1.4 Spezielle Synthesetechniken
 - Flussmittelzusatz

Schmelzsalzmethode

Karbothermische Reduktion

- Verbrennungsmethoden
- Interkalationsreaktionen

Allgemeine Prinzipien

Reaktionen zwischen Festkörpern basieren grundsätzlich auf Diffusionsprozessen

Beispiel: MgO + $Al_2O_3 \rightarrow MgAl_2O_4$

Teilreaktionen:

Grenzschicht: MgO/MgAl₂O₄ 2 Al³⁺ + MgO + 3 O²⁻ \rightarrow MgAl₂O₄

Grenzschicht: $MgAl_2O_4/Al_2O_3$ 3 $Mg^{2+} + 3Al_2O_3 + 3 O^{2-} \rightarrow 3 MgAl_2O_4$

Die Wachstumsraten der beiden Grenzflächen stehen im Verhältnis 1:3

MgAl₂O₄ Produktschichtdicke x

Chemische Materialtechnologie Prof. Dr. T. Jüstel Folie 7

Allgemeine Prinzipien

Reaktionsgeschwindigkeit von Festkörperreaktionen

$$\frac{dx}{dt} = kx^{-1}$$

bzw.

$$x = (k't)^{1/2}$$

mit

t

- x = Reaktionsumsatz
 - = Zeit
- k, k' = Geschwindigkeitskonst. = f(a, b, c, ...)

Wovon hängt die effektive Geschwindigkeit ab?

Kontaktfläche zwischen den Reaktionspartnern
 ⇒ Spezifische Oberfläche bzw. Teilchengröße

2. Keimbildungsgeschwindigkeit des Produkts (Strukturtyp der Edukte und des Produkts)

3. Diffusionsgeschwindigkeit der Ionen durch beteiligte Phasen, insbesondere der Produktphase (Ionenladung, Strukturtyp)

Allgemeine Prinzipien

1. Die spezifische Oberfläche bzw. die Teilchengröße bestimmt die Kontaktfläche Beispiel: MgO mit ρ = 3,58 g/cm³, M = 40,31 g/mol

Einkristall (d = 10 mm)	Mikropulver (d = 10 µm)	Nanopulver (d = 10 nm)
$1 \text{ cm}^3 \Rightarrow 1 \text{ Teilchen}$	1000 μ m ³ \Rightarrow 10 ⁹ Teilchen	$1000 \text{ nm}^3 \Rightarrow 10^{18}$ Teilchen
~ 1*10 ²³ Ionen	~ 10 ¹⁴ Ionen	~ 10 ⁵ Ionen
~ 1·10 ⁻⁵ %	~ 1·10 ⁻² %	~ 10% an der Oberfläche
10 mm		
$O = 6.1 \text{ cm}^2 = 6.10^{-4} \text{ m}^2$	$= 10^{9} \cdot 6 \cdot 10^{-10} \text{ m}^2 = 6 \cdot 10^{-1} \text{ m}^2$	$= 10^{18} \cdot 6 \cdot 10^{-16} \text{ m}^2 = 6 \cdot 10^2 \text{ m}$
$O = 1,68 \cdot 10^{-4} m^2/g$	$= 0,168 \text{ m}^2/\text{g}$	$= 168 \text{ m}^2/\text{g}$
Chemische Materialtechnologie Prof. Dr. T. Jüstel		Folie 9

Allgemeine Prinzipien

2. Die Keimbildungsgeschwindigkeit des Produkts hängt von dem Grad der Ähnlichkeiten der Kristallstruktur der Edukt- und Produktphase ab. Beispiel: MgO + $Al_2O_3 \rightarrow MgAl_2O_4$

MgO (Kochsalzstruktur) Kubisch dichte Packung der O²⁻ Ionen

Mg²⁺-Ionen besetzen Oktaederlücken

<u>MgAl₂O₄ (normaler Spinell)</u> Kubisch dichte Packung der O²⁻ Ionen

Mg²⁺ -Ionen besetzen Tetraederlücken Al³⁺⁻Ionen besetzen Oktaederlücken

⇒ Einfache Keimbildung der Produktphase an der Oberfläche von MgO

Epitaktische Reaktionen: Topotaktische Reaktionen:

Strukturelle Ähnlichkeit an der Oberfläche 3-dimensionale strukturelle Ähnlichkeit

Allgemeine Prinzipien

3. Die Diffusionsgeschwindigkeit der Ionen durch an der Reaktion beteiligte Phasen und damit die Produktbildungsrate hängt von folgenden Faktoren ab:

- Sintertemperatur bzw. Temperaturdifferenz zum Schmelzpunkt
- Ionenleitfähigkeit der beteiligten Phasen (Produktphase)
 Fluoride > Oxide > Nitride > Carbide
 - β -Al₂O₃ (NaAl₁₁O₁₇) >> γ -Al₂O₃ > α -Al₂O₃
- Bildung von Eutektika (Schmelzpunkterniedrigung)
- Bildung volatiler Zwischenstufen SiO₂(g) + 4 NH₄F(s) \rightarrow SiF₄(g) + 4 NH₃(g) + 2 H₂O(g)

Allgemeine Prinzipien

Allgemeine Prinzipien

Einfluss der Ionenleitfähigkeit der Produktphase

 $5 \operatorname{Al}_2O_3 + 3 \operatorname{Y}_2O_3 \rightarrow 2 \operatorname{Y}_3\operatorname{Al}_5O_{12}$ Produkt: Granatstruktur

Stark vernetzte Struktur Synthesetemperatur 1600 – 1700 °C $5 \operatorname{Al}_2\operatorname{O}_3 + \operatorname{BaO} + \operatorname{MgO} \rightarrow \operatorname{BaMgAl}_{10}\operatorname{O}_{17}$ Produkt: β -Al₂O₃ Struktur

Chemische Materialtechnologie Prof. Dr. T. Jüstel

Grundlegende Prozessschritte

- 1. Eduktvorbereitung
 - Reinigung
 - Gehaltsbestimmung
- 2. Homogenisierung der Eduktmischung
- 3. Sintern

4. Nachbehandlung

- Waschen
- Mahlen
- Auftrennung

Grundlegende Prozessschritte

1. Eduktvorbereitung – Reinigung

Beispiel: Entfernung von Übergangsmetallionen aus den Erdalkalikarbonaten MeCO₃ (Me = Mg, Ca, Sr, Ba)

- Lösung von Me(NO₃)₂ oder Me(CH₃COO)₂ in Wasser
- Zugabe einer $(NH_4)_2S$ Lösung \Rightarrow Fällung von Fe₂S₃, Co₂S₃,
- Abtrennen des Niederschlags durch Filtration
- Filtrat mit (NH₄)₂CO₃-Lösung versetzen ⇒ Fällung von.....

 $\begin{array}{cccc} MgCO_3 & CaCO_3 & SrCO_3 & BaCO_3 \\ & & 600 - 900 \ ^{\circ}C & 1000 - 1200 \ ^{\circ}C & MgO & CaO \end{array}$

Grundlegende Prozessschritte

1. Eduktvorbereitung – Gehaltsbestimmung

Viele Ausgangsmaterialien reagieren (zumindest oberflächlich) mit H₂O oder CO₂, wie z.B.

 $MgO + H_2O \rightarrow Mg(OH)_2$

 $La_2O_3 + CO_2 \rightarrow La_2O_2CO_3$

⇒ Effektive Abnahme des Metallgehaltes der Edukte

- ⇒ Gehaltsbestimmung notwendig:
- 1. Einwiegen

2. Glühen bei der anvisierten Reaktionstemperatur, z.B. bei 1200 $^\circ\mathrm{C}$

3. Auswiegen

 $\mathbf{F}_{\text{Edukt}} = \mathbf{m}_{\text{Auswaage}} / \mathbf{m}_{\text{Einwaage}}$

Grundlegende Prozessschritte

- 2. Homogenisierung der Eduktmischung
- in einem Mörser aus Achat oder Porzellan
- in einer Kugelmühle mit Mahlkugeln
- in einer mit Mahlkugeln gefüllten PE-Flasche auf der Rollenbank Mahlkörperkeramik: Al₂O₃, ZrO₂, Si₃N₄, Achat

Weitere "Tricks"

- Zugabe eines organischen Lösungsmittels (Aceton, Ethanol) zur Bildung einer Paste, wobei beim Mahlen das LM langsam verdampft
- Anwendung von Ultraschall zur Zerstörung von Agglomeraten
- Precursormethoden → Kapitel 2.1.3

Grundlegende Prozessschritte

3. Sintern

Temperaturprofil ohne reaktive Edukte

Temperaturprofil mit reaktivem Edukt $Y_2O_3 + 2 H_3BO_3 \rightarrow 2 YBO_3 + 3 H_2O$

 $T = 150 \ ^{\circ}C: H_{3}BO_{3} \rightarrow HBO_{2} + H_{2}O^{\uparrow}$ $T = 500 \ ^{\circ}C: 2 \ HBO_{2} \rightarrow B_{2}O_{3} + H_{2}O^{\uparrow}$

Chemische Materialtechnologie Prof. Dr. T. Jüstel

Grundlegende Prozessschritte

4. Nachbehandlung

Waschen

- Entfernen von Flussmittelresten (Fluoride)
- Entfernen von Überschusskomponenten (B₂O₃, P₂O₅)

Mahlen

- Zerkleinerung des Sinterkuchens
- Reduktion der mittleren Teilchengröße (Zerkleinerung von Agglomeraten)

Auftrennung

- Sieben zur Abtrennung von großen Partikeln bzw. Agglomeraten
- Sedimentation zum Abtrennen von Nanoteilchen
- Zentrifugation zur Isolierung von Nanoteilchen

Co-Präzipitation

- a) Auflösung der Metallnitratsalze in Wasser (Übergangsmetalle, Lanthanide)
- b) Fällung als Oxalate durch Zugabe von Natriumoxalat
- c) Umsetzung zu den Oxiden bei T = 1000 1600 °C

1. Beispiel: Synthese von Zinkeisenspinell $Zn^{2+} + 2 Fe^{3+} + 4 C_2O_4^{2-} \rightarrow Fe_2(C_2O_4)_3 + ZnC_2O_4$

$$\operatorname{Fe}_{2}(\operatorname{C}_{2}\operatorname{O}_{4})_{3} + \operatorname{ZnC}_{2}\operatorname{O}_{4}^{1000} \stackrel{\circ \mathrm{C}}{\rightarrow} \operatorname{ZnFe}_{2}\operatorname{O}_{4} + 4\operatorname{CO}_{2} + 4\operatorname{CO}_{2}$$

2. Beispiel: Synthese des roten Leuchtstoffes Y_2O_3 :Eu	Salz	k _L [mol ⁿ l ⁻ⁿ]
2(1-x) $Y^{3+} + 2x Eu^{3+} + 3 C_2O_4^{2-} \rightarrow (Y_{1-x}Eu_x)_2(C_2O_4)_3$	FeC ₂ O ₄	3,2·10 ⁻⁷
$(Y_{1-x}Eu_x)_2(C_2O_4)_3 \xrightarrow{1600 \circ C} (Y_{1-x}Eu_x)_2O_3 + 3 CO_2 + 3 CO_3 = 0,03 - 0,05$	ZnC_2O_4 $Y_2(C_2O_4)_3$ $Eu_2(C_2O_4)_3$	2,7·10 ⁻⁸ 5,3·10 ⁻²⁹ 5,0·10 ⁻²⁸

Co-Präzipitation: Methoden zur Erzeugung der Fällungsreagenzien

Fällung von Sulfiden

Hydrolyse von Thioacetamid

 CH_3 -CS- NH_2 + 2 $H_2O \xrightarrow{RT} H_2S + CH_3$ - $COO^- + NH_4^+$

<u>Fällung von Hydroxiden/Oxiden</u> Hydrolyse von Harnstoff Hydrolyse von Kaliumcyanat Hydrolyse von Urotropin

 $\begin{array}{l} 80-90\ ^{\circ}\mathrm{C}\\ \mathrm{H_2N-CO-NH_2}+\mathrm{H_2O}\xrightarrow{}2\ \mathrm{NH_3}+\mathrm{CO_2}\\ \mathrm{HOCN}+2\ \mathrm{H_2O}\xrightarrow{} \mathrm{NH_3}+\mathrm{CO_2}\\ \mathrm{N_4}(\mathrm{CH_2})_6\ +6\ \mathrm{H_2O}\xrightarrow{}4\ \mathrm{NH_3}+6\ \mathrm{CH_2O}\\ \mathrm{(keine\ Carbonate)}\\ \mathrm{NH_3}+\mathrm{H_2O}\rightleftharpoons\mathrm{NH_4^+}+\mathrm{OH^-}\\ \end{array}$

<u>Fällung von Phosphaten</u>

Hydrolyse von Trimethylphosphat

 $(CH_3O)_3P=O+3H_2O \rightarrow 3CH_3OH+PO_4^{3-}+3H^+$

Fällung von Sulfaten

Hydrolyse von Dimethylsulfat

 $(CH_3O)_2SO_2 + 2 H_2O \rightarrow 2 CH_3OH + SO_4^{2-} + 2 H^+$

Andere Precursormethoden

Präzipitation von thermisch abbaubaren binären oder ternären Metallsalzen:

1. Beispiel: Synthese von Nickeleisenspinell 3 Ni²⁺ + 6 Fe³⁺ + 4 OH⁻ + 17 CH₃COO⁻ + 12 C₅H₅N \rightarrow Ni₃Fe₆(CH₃COO)₁₇O₃(OH)·12C₅H₅N + 3 H⁺

 $Ni_{3}Fe_{6}(CH_{3}COO)_{17}O_{3}(OH) \cdot 12C_{5}H_{5}N + 109 O_{2} \rightarrow 3 NiFe_{2}O_{4} + 94 CO_{2} + 56 H_{2}O + 6 N_{2}O_{4} + 6 N_{2}O_{5} +$

2. Beispiel: Synthese von ortho-Boraten $H_2N-CO-NH_2 + H_2O \rightarrow 2 NH_3 + CO_2$ $Ln^{3+} + H_3BO_3 + 3 OH^- + CO_2 \rightarrow LnB(OH)_4CO_3 + H_2O$ (Moydit, orthorhombisch) $1100 \circ C$ $LnB(OH)_4CO_3 \rightarrow LnBO_3 + 2 H_2O + CO_2$ (Ln = Sc, Y, La - Lu)

Chemische Materialtechnologie Prof. Dr. T. Jüstel

Andere Precursormethoden

Zersetzung redoxaktiver Precursor:

Synthese eines Cr₂O₃ Pigments (Viridian)

a) $(NH_4)_2Cr_2O_7 \rightarrow Cr_2O_3 + N_2 + 4H_2O$ (\rightarrow künstlicher Vulkan)

b) $2 \text{ K}_2 \text{Cr}_2 \text{O}_7 + 4 \text{ H}_3 \text{BO}_3 \rightarrow 4 \text{ CrBO}_3 + 2 \text{ K}_2 \text{O} + 6 \text{ H}_2 \text{O} + 3 \text{ O}_2$ $2 \text{ CrBO}_3 + 3 \text{ H}_2 \text{O} \rightarrow 2 \text{ H}_3 \text{BO}_3 + \text{Cr}(\text{OH})_3 \text{ (Nanopartikel)}$ $2 \text{ Cr}(\text{OH})_3 \rightarrow \text{Cr}_2 \text{O}_3 + 3 \text{ H}_2 \text{O}$

Chemische Materialtechnologie Prof. Dr. T. Jüstel Folie 23

Container

Form: Boote, Folien, Schiffchen, Tiegel		
Betriebsmodus:	offen	Reaktion mit Gasen, z.B. CO
	abgedeckt	Verdampfen flüchtiger Komponenten, z.B. B ₂ O ₃

Materialien: Auswahl gemäß chemischer Reaktivität gegenüber den Reaktanden

Keramik:	Al ₂ O ₃ SiO ₂ (ZrO ₂ SiC (S BN (B	(Korund, Degussit) [–] Quarz) (Zirkon) Siliciumcarbid) Soronitrid)	Geringe gegenübe	er Stabil er Alkali	lität ioxide
EdelMetalle:	Ni Pt Ir Mo	$T_m = 1453 \ ^\circ C$ $T_m = 1772 \ ^\circ C$ $T_m = 2430 \ ^\circ C$ $T_m = 2620 \ ^\circ C$	Nb Ta <mark>R</mark> e	$T_{m} = T_{m} = T_{m} = T_{m}$	2469 °C 2996 °C 3186 °C
	\mathbf{W}	$T_m = 3410 \ ^\circ C \rightarrow S$	Synthese von	Nitride	n und Carbiden
Chemische Materialte Prof. Dr. T. Jüstel	echnologie				Folie 24

Öfen - Labor

Kammeröfen

- "MgO" Kammeröfen bis 1750 °C
- Graphitöfen bis 3000 °C (reduktive Atmosphäre)
- Atmosphäre schwierig zu kontrollieren

Rohröfen

- Quarzrohre < 1200 °C
- Al-Sint (Korund)rohr < 1800 °C
- Mehrzonenbetrieb möglich
- Kontrollierte Syntheseatmosphäre
 - N₂, N₂/H₂, Ar, H₂S, NH₃.....

Öfen - Labor

Hochfrequenzöfen (Radio Frequency RF)

- 50 500 kHz
- Bis über 2000 °C
- Extrem steile Temperaturrampen möglich
- W- oder C-Tiegel
- Intertgasatmossphäre erforderlich \Rightarrow N₂, Ar

Anwendung: Synthese hochschmelzender Nitride ausgehend von Me (Me = Ca, Sr, Ba), Ln (Ln = La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Yb) und $Si(NH)_2$

- BaSi₇N₁₀
- MeYb[Si₄N₇]

- Chem. Eur. J. 3 (1997) 249 Angew. Chem. 108 (1996) 2115
- $Ln_2[Si_4N_6C]$
- J. Mater. Chem. 2001
- $Ba_2Nd_7[Si_{11}N_{23}]$
- Angew. Chem. 109 (1997) 2765

Öfen – Technikum/Produktion

Hochdrucköfen (→ mehrere 1000 bar)

- Isostatische Heißpressen (Hot isostatic presses HIP)
- Uniaxialpressen
- Multianvilpressen (Diamantsynthese)

Durchschuböfen

- Massenproduktion
- Temperaturprofil wird über die Durchschubgeschwindigkeit gesteuert
- Oxidierendes oder reduzierendes Heizen möglich

Syntheseatmosphäre

A	rt	Gas	Anwendung z	zur Synthese von
•	Inert	N ₂ , Ar	Zn-, Ga-, In-	Verbindungen
•	Oxidierend	Luft, O ₂	Oxiden	
•	Reduzierend	N ₂ /H ₂	Mn ²⁺ , Eu ²⁺ , Y	b ²⁺ Leuchtstoffen
		$NH_3 \rightarrow N_2 + 3 H_2$	Nitriden	
		H_2S	Sulfiden	
		$CO(C + CO_2 \rightleftharpoons 2CO)$	Ce ³⁺ , Pr ³⁺ , Th	0 ³⁺ Leuchtstoffen
		(Boudouard Gleichgewich	ht)	
•	Fluorierend	NH_4F, CF_4, NF_3	Fluoride	
•	Hochdruck	N ₂ , Ar	Nitriden	Graphit CO
•	Vakuum		Keramik	
	Chemische Materialtechnologie Prof. Dr. T. Jüstel			Folie 28

Flussmittelzusatz

Flussmittel erhöhen die Reaktionsgeschwindigkeit, indem sie den Schmelzpunkt senken oder indem sie reaktive Zwischenprodukte bilden

Die Auswahl richtet sich nach der erforderlichen Synthesetemperatur (Sublimation) und der Reaktivität gegenüber den Reaktanden und gegenüber dem Tiegelmaterial

Beispiel	Schmelzpunkt [°C]	Anwendung zur Synthese von	
• NH ₄ Cl	340 (sublimiert)	BaSi ₂ O ₅ :Pb	
• NH ₄ I	551 (Zersetzung)	SrS:Eu	
• NaCl	801	CaWO ₄	
• Li_2SO_4	845	GdTaO ₄ :Tb	
• $Li_2B_4O_7$	930	LaPO ₄ :Ce,Tb	
• MgF_2	1261	BaMgAl ₁₀ O ₁₇ :Eu	
• AlF_3	1291 (sublimiert)	(Y,Lu,Gd) ₃ (Al,Ga) ₅ O ₁₂ :Ce	

Schmelzsalzmethode (zur Kristallzucht)

Die Zusammensetzung einer geeigneten Schmelzmischung muss folgende Kriterien erfüllen

- Hohe Löslichkeit der zu kristallisierenden Komponente
- Hoher Temperaturkoeffizient der Löslichkeit
- Keine Mischkristallbildung mit der zu kristallisierenden Verbindung
- Keine oder geringe Reaktivität gegenüber dem Tiegelmaterial

Beispiel	Schmelzpunkt (Eutektikum) [°C]	Anwendung zur Kristallisation von
BaO/B ₂ O ₃	870	BaZn ₂ Fe ₁₂ O ₂₂ , Y ₃ Fe ₅ O ₁₂
BaO/B ₂ O ₃ /Bi ₂ O ₃	600	NiFe ₂ O ₄ , ZnFe ₂ O ₄
$Na_2B_4O_7$	740	NiFe ₂ O ₄ , Fe ₂ O ₃
PbF ₂	840	$MgAl_2O_4, Al_2O_3$
PbO/B ₂ O ₃	500	YFeO ₃ , In ₂ O ₃
PbO/PbF ₂	494	GdAlO ₃ , Y ₃ Fe ₅ O ₁₂
PbO/PbF ₂ /B ₂ O ₃	494	Al ₂ O ₃ , Y ₃ Al ₅ O ₁₂
$Pb_2P_2O_7$	824	Fe_2O_3 , $GdPO_4$
$Pb_2V_2O_7$	720	Fe ₂ TiO ₅ , YVO ₄
Chemische Materialteo Prof. Dr. T. Jüstel	chnologie	Folie 30

Karbothermische Reduktion

Reduktion von Oxiden durch Kohlenstoff (oder Kohlenwasserstoffen), durch Reaktionen zwischen Festkörper und gasförmigen Zwischenprodukten

Beispiel: Synthese von Siliciumcarbid $C(s) + SiO_2(s) \rightarrow SiO(g) + CO(g)$

 $SiO_2(s) + CO(g) \rightarrow SiO(g) + CO_2(g)$

 $C(s) + CO_2(g) \rightarrow 2 CO(g)$

 $C(s) + SiO(g) \rightarrow SiC(s) + CO(g)$

Überschuss von Kohlenstoff \Rightarrow **Produkt mit Kohlenstoff verunreinigt**

Karbothermische Reduktion

Die karbothermische Reduktion wird zur Synthese von Carbiden, Boriden und Nitriden eingesetzt, wobei CO als Nebenprodukt entsteht und reduzierend wirkt

Reaktion	Minimale Reaktionstemperatur [°C]
$SiO_2 + 3 C \rightarrow SiC + 2 CO$	1500
$TiO_2 + 3 C \rightarrow TiC + 2 CO$	1300
$WO_3 + 4 C \rightarrow WC + 3 CO$	700
$TiO_2 + B_2O_3 + 5 C \rightarrow TiB_2 + 5 CO$	1300
$Al_2O_3 + 3C + N_2 \rightarrow 2AlN + 3CO$	1700 "karbothermische Nitridierung"
$3 \operatorname{SiO}_2 + 6 \operatorname{C} + 2 \operatorname{N}_2 \rightarrow \operatorname{Si}_3 \operatorname{N}_4 + 6 \operatorname{CO}$	1550
$2 \operatorname{TiO}_2 + 4 \operatorname{C} + \operatorname{N}_2 \rightarrow 2 \operatorname{TiN} + 4 \operatorname{CO}$	1200

Verbrennungsmethoden

Thermitverfahren

Allgemeines Vorgehen:

Reduktion von Metalloxiden mit Mg oder Al (stark exotherm)

Erstes Beispiel (Goldschmidt-Verfahren: Aluminothermisch) 3 $Fe_3O_4(s) + 8 Al(s) \rightarrow 9 Fe(l) + 4 Al_2O_3(s)$ Anwendung: Nahtloses Verschweißen von Schienen (siehe Abb.)

Weitere Beispiele:

 $SiO_{2}(s) + C(s) + Mg(s) \rightarrow SiC(s) + 2 MgO(s)$ $TiO_{2}(s) + B_{2}O_{3}(s) + 5 Mg(s) \rightarrow TiB_{2}(s) + 5 MgO(s)$

Shortcut to thermit.mpg.lnk

Interkalationsreaktionen

Modifikation einer existierenden Struktur durch Einlagerung von Ionen/Atomen ⇒ in Schichtstrukturen: Graphit, TiS₂, β-Al₂O₃, FeOCl, LiCoO₂

Beispiel: Graphit

Reversible Einlagerung von Atomen oder kleinen Molekülen

$$+ K \rightarrow C_8 K \text{ (bronze)} \rightarrow C_{24} K \text{ (blau)} \rightarrow C_{36} K \rightarrow C_{60} K$$

+ Br₂ $\rightarrow C_8 Br$
+ FeCl₃ \rightarrow Graphit/FeCl₃ Interkalat

Chemische Materialtechnologie Prof. Dr. T. Jüstel

Interkalationsreaktionen

Weitere Beispiele:

• Na in WO₃: Na + WO₃ \rightarrow Na_xWO₃ (Wolframbronzen)

• Li in TiS₂ (CdI₂-Typ mit Schichtstruktur):

Exkurs: Elektrochemische Zellen (Batterien)

Schematischer Aufbau einer elektrochemischen Zelle

Anode
 $M \rightarrow M^+ + e^-$
 $E_{Anode} = E_0 + RT/zF*log[M^+]/[M]$ Elektrolyt
(fest oder
flüssig)Kathode
 $X + e^- \rightarrow X^-$
 $E_{Kathode} = E_0 + RT/zF*log[X]/[X^-]$ EMK = $E_{Kathode} - E_{Anode}$

Anforderungen an Batterien

- Hohe Ladungsdichte und geringes Gewicht
- Ausreichend hohe Zellspannung
 - \Rightarrow Pb-Akkumulator: Pb + PbO₂ + 2 H₂SO₄ \leftrightarrows 2 PbSO₄ + 2 H₂O: EMK = 2.04 V
 - \Rightarrow Na-S-Zelle: 2 Na + 5 S \leftrightarrows Na₂S₅: EMK = 2,08 V, Ladungsdichte: 720 Whkg⁻¹
- Langlebigkeit

 \Rightarrow 2 Li + I₂ \leftrightarrows 2 LiI: EMK = 2,8 V (Herzschrittmacher)
2.1.4 Spezielle Synthesetechniken

2. Synthesetechniken der Materialtechnologie

2.2. Gasphasenprozesse

2.2.1 Chemische Transportreaktionen

Grundlagen

Anwendung in Reinigung und Präparation

Exkurs: Halogen- und Halogenidlampen

2.2.2 Chemische Gasphasendeposition

Allgemeine Aspekte

Diamant CVD

Abscheidung von Metallen

Abscheidung von Metalloxiden

Abscheidung von III-V Halbleitern

2.2.3 Aerosolprozesse

Definition und Vorteile

Synthese von Aerosil®

Gas-Partikel-Konversion

Sprüh-Pyrolyse

2.2.1 Chemische Transportreaktionen

Grundlagen

Definition:

Reaktionen, bei denen mit Hilfe reversibler fest/gas-Reaktionen feste Substanzen über die Gasphase transportiert werden, wobei man die Temperaturabhängigkeit des Gleichgewichts ausnutzt.

Prinzipeller Ablauf:

- 1. Reaktion zwischen Gasphase + Festkörper
- 2. Stofftransport in der Gasphase
- 3. Abscheidung aus der Gasphase

Anwendungen:

Präparation, Reinigung, Einkristallzucht

A(s) + n B(g) $AB_n(g)$ T, **B(g)** A(s) T_1 T_2 $\bullet \underline{A(s)} \longrightarrow \underline{AB_n(g)} T_1$ T_2 **B(g)** Folie 39

2.2.1 Chemische Transportreaktionen

Thermodynamik

Temperaturabhängigkeit der Gleichgewichtskonstante (van't Hoff Gleichung):

2.2.1 Chemische Transportreaktion

Anwendung in Reinigung und Präparation

Reinigung von Metallen (Arkel de-Boer Prozess) $Ti + 2 I_2 \implies TiI_4$ $Cr + I_2 \longrightarrow Cr I_2$

Präparation durch Kopplung der Transport- mit einer Folgereaktion

a) Synthese von Calciumstannat $SnO_2 + CO \implies SnO + CO_2$ $SnO + 2 CaO + CO_2 \rightarrow Ca_2SnO_4 + CO$

"Transportreaktion" "Folgereaktion"

b) Synthese von Niobsilizid $SiO_2 + H_2 \implies SiO + H_2O$ $3 \operatorname{SiO} + 8 \operatorname{Nb} \rightarrow \operatorname{Nb}_5 \operatorname{Si}_3 + 3 \operatorname{NbO}$

"Transportreaktion" "Folgereaktion"

2.2.1 Chemische Transportreaktionen

Exkurs: Chemischer Transport in Glühlampen

W-Transport von der Wendel zum Glaskolben (Schwärzung)

<u>Wendeltemperatur</u>	sichtbares Licht	<u>Lebensdauer</u>		
2600 K	7%	1000 h		
3400 K	18%	10 h		
Chemische Materialtechnologie Prof. Dr. T. Jüstel			Folie 42	

2.2.1 Chemische Transportreaktionen

Exkurs: Chemischer Transport in Halogenglühlampen

Füllung:

- Inertgas: Ar, N₂
- Halogenidverbindungen: I₂, CH₃Br oder HBr

W(g)

 $O_2 + I_2$

"cold spot"

Wandreaktion:
$$W + O_2 + I_2$$
 $600 \circ C$
 WO_2I_2 Wolfram-Halogenid ZyklusReaktion am W-Filament (3000 °C):
 $WO_2I_2 \rightarrow WO_2 \rightarrow WO \rightarrow W$ $W(s) ``Wand`` \rightarrow WO_2I_2 \rightarrow UO_2 + I_2$ $O_2 + I_2$ W kondensiert an der kältesten Stelle
des W-Filaments (cold spot), es verdampft
aber von der heißesten Stelle (hot spot) $W(s)$ ", hot spot" $W(s)$ ", cold s

2.2.1 Chemische Transportreaktion

Exkurs: Chemischer Transport in Hg-Hochdrucklampen Brenner: Polykristallines Al₂O₃ oder Quarz (SiO₂)

Füllung:

- Hg und Ar \Rightarrow bläulich-weißes Spektrum (Hg Linien)
- Iodide: NaI, DyI₃, TmI₃, HoI₃ \Rightarrow weißes Spektrum (Ln³⁺ Linien)

Reine Hg-Entladung

Hg + **Metallhalogenide**

2.2.1 Chemische Transportreaktion

Exkurs: Chemischer Transport in Hg-Hochdrucklampen

Ln³⁺ Ionen emittieren eine Vielzahl von Linien im sichtbaren Spektralbereich

 $NaI + DyI_3 \rightarrow NaDyI_4$

 $NaDyI_4 \rightarrow Na^+ + 4 I^- + Dy^{3+*}$

 $Dy^{3+*} \rightarrow Dy^{3+} + hv (480, 570 nm)$

 $Dy^{3+} + Na^+ + 4 I^- \rightarrow NaDyI_4$

Nebenreaktion

Bildung von Wolfram(oxy)halogeniden

 \Rightarrow Transport von W \rightleftharpoons Elektroden

 \Rightarrow Umbau der Elektrodenstruktur

Folie 45

Allgemeine Aspekte (Chemical Vapour Deposition CVD)

Definition:

CVD ist ein chemischer Prozess, bei dem eine oder mehrere gasförmige Edukte in eine Reaktionskammer geführt werden, wo sie sich zersetzen und auf einen geheiztem Substrat abgeschieden werden.

Anwendungen:

- Synthese von sehr hochschmelzenden oder schwer zugänglichen Verbindungen, z.B. Diamant oder TiB₂
- Präparation von d
 ünnen Filmen auf Substraten,
 z.B. Beschichtung von Glas mit SnO₂ (Coating)

Beispiel:

 $TiCl_4(g) + 2 \operatorname{BCl}_3(g) + 5 \operatorname{H}_2(g) \rightarrow TiB_2(s) + 10 \operatorname{HCl}(g)$

Precursormaterialien

Voraussetzung: Leichte Verdampfbarkeit, d.h. ausreichend hoher Dampfdruck bei Temperaturen unterhalb der Zersetzungstemperatur

Metallhydride: $SiH_4(g) \xrightarrow{h\nu} Si(s) + 2 H_2(g)$ $GeH_4(g) \rightarrow Ge(s) + 2 H_2(g)$

Metallhalogenide: $SiCl_4(g) + 2 H_2(g) \rightarrow Si(s) + 4 HCl(g)$ $ZnCl_2(g) + H_2S(g) \rightarrow ZnS(s) + 2 HCl(g)$ $WF_6(g) + 3 H_2(g) \rightarrow W(s) + 6 HF(g)$

⇒ Bildung korrosiver Nebenprodukte

Organometallverbindungen (MOCVD):

 $\begin{array}{l} Si(C_2H_5)_4(g) + 14 \ O_2(g) \rightarrow SiO_2(s) + 8 \ CO_2(g) + 10 \ H_2O(g) \\ Ga(CH_3)_3(g) + NH_3(g) \rightarrow GaN(s) + 3 \ CH_4(g) \end{array}$

Exkurs: Fluidised Bed Chemical Vapour Deposition (FB-CVD)

Abscheidung von Oxiden auf einem Pulversubstrat im fluidisierten Zustand (Wirbelschichtreaktor)

Beispiel:

Abscheidung von Al_2O_3 auf Leuchtstoffpulvern als Schutzcoating $2 Al(CH_3)_3 + 12 O_2 \rightarrow Al_2O_3 + 6 CO_2 + 9 H_2O$

Homogene Beschichtung von Mikropartikeln zur Erhöhung der mechanischen und chemischen Stabilität:

- QDots Cd(S,Se), Ga(P,As)
- Oxide (Ca,Sr,Ba)₂SiO₄:Eu, BaMgAl₁₀O₁₇:Eu
- Nitride Ba₂Si₅N₈:Eu, CaAlSiN₃:Eu

Chemische Materialtechnologie Prof. Dr. T. Jüstel

Exkurs: Fluidised bed chemical vapour deposition (FB-CVD)

Beschichtung mit Al(CH₃)₃ bzw. AlR₃

- \rightarrow Oxidation
- \rightarrow Pyrolyse

Polymerisation durch Pyrolyse führt zu brauen (polymeren) Nebenprodukten im Prozess

- Verstopfung der Fritte
- Vergrauung des (Leuchtstoff)Pigments

Varianten der CVD

- a) Thermische CVD (siehe oben)
 - ⇒ Beschichtung von Oberflächen oder Pulverpartikeln
- b) Molekularstrahl CVD Molecular Beam CVD (MBCVD)
- c) LASER oder Licht aktivierte CVD LASER Assisted CVD (LACVD)
- d) Plasma aktivierte CVD
 Plasma Assisted CVD (PACVD)
 ⇒ Herstellung von Diamantfilmen
 - (P. Bachmann, U. Linz, Spektrum der Wissenschaft 9/1992, 30)

Epitaxie \Rightarrow Abscheidung von einkristallinen Filmen

Plasma Assisted CVD für Diamantschichten

Eigenschaften von Diamant

- C-Atome sp³-hybridisiert
- **C-C** Abstand = 155 pm
- $v(C-C) = 1332 \text{ cm}^{-1}$
- Große Bandlücke E_g = 5,4 eV
- Extreme Härte
- Geringe Kompressibilität 8,3·10⁻¹³ m²N⁻¹
- Hohe Schallgeschwindigkeit 18,2 kms⁻¹
- Hohe Wärmeleitfähigkeit
 2,0·10³ Wm⁻¹K⁻¹

Plasma Assisted CVD für Diamantschichten

a) Energiequelle: Mikrowellen

Chemische Materialtechnologie Prof. Dr. T. Jüstel

Plasma Assisted CVD für Diamantschichten - Grundlegendes Prinzip

Prof. Dr. T. Jüstel

Abscheidung von Metallen

Aluminium: Metallisierung von Polymeren (Verpackungen), Metallkontakte

 $Al(iso-butylat)_3 \rightarrow Al + 3 CH_2 = C(CH_3)_2 + 3/2 H_2$ B-Wasserstoffeliminierung

 $Al_2(CH_3)_6 \rightarrow$ keine ß-Wasserstoffeliminierung möglich

In $N_2 \Rightarrow 2 \operatorname{Al}_2(\operatorname{CH}_3)_6 \rightarrow \operatorname{Al}_4C_3 + 9 \operatorname{CH}_4$ Al_4C_3 ist thermodynamisch stabiler

In $H_2 \Rightarrow Al_2(CH_3)_6 + 3 H_2 \rightarrow Al + 6 CH_4$

Abscheidung von Metallen

Wolfram: Beschichtung von Schneide- und Mahlwerkzeugen Metallkontakte auf Silizium (ICs)

 $2 \operatorname{WF}_6(g) + 3 \operatorname{Si}(s) \rightarrow 2 \operatorname{W}(s) + 3 \operatorname{SiF}_4(g) < 400 \ ^\circ C$ WF₆(g) + 3 Si(s) $\rightarrow \operatorname{W}(s) + 3 \operatorname{SiF}_4(g) > 400 \ ^\circ C$

Kupfer: Metallkontakte auf Silizium (ICs)

Cu²⁺ Precursor (β -Diketonatkomplexe) Cu(hfac)₂(g) + H₂(g) \rightarrow Cu(s) + 2 H-hfac(g)

Cu⁺ Precursor (Komplexe mit β -Diketonat + co-Ligand) 2 Cu(hfac)(PMe₃)(g) \rightarrow Cu(s) + Cu(hfac)₂(g) + 2 PMe₃(g)

Abscheidung von Metalloxiden

SiO₂: Elektrische Isolationsschichten, Oberflächenpassivierung

Ausgehend von gasförmigen Silan $SiH_4 + O_2 \rightarrow SiO_2 + 2H_2$ $SiH_4 + 2 O_2 \rightarrow SiO_2 + 2 H_2O$ $SiH_4 + 2 N_2O \rightarrow SiO_2 + 2 N_2 + 2 H_2$

Sauerstoffüberschuss notwendig Keine Bildung von Wasser

Ausgehend von Tetraalkoxysilanen, z. B. Tetraethoxysilan (TEOS) $Si(OC_2H_5)_4 \rightarrow SiO_2 + 2H_2O + 2C_2H_4 + 2C_2H_5OH$

Reaktionsmechanismus Si-OC₂H₅ Si-OH + Si(OC₂H₅)₄ \rightarrow Si-O-Si(OC₂H₅)₃ + C₂H₅OH

$$-SI-OH + C_2H_4$$

Chemische Materialtechnologie Prof. Dr. T. Jüstel

Abscheidung von Halbleitermaterialien

Abscheidung von Halbleitermaterialien

Herstellung von

- Solarzellen Si, GaAs
- Leuchtdioden (Al,Ga,In)As (Al,Ga,In)P (Al,Ga,In)N
- Festkörperlaser
 (Al,Ga,In)(N,P,As,Sb)
 (Laserpointer, Blue-ray,
 4K-, DVD-, CD-Player)
- High-speed ICs

GaAs

(S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers, Springer, Berlin, 1997)

Folie 60

Abscheidung von Halbleitermaterialien durch Metal Organic CVD (MOCVD)

Herstellung von Halbleitern für LEDs

Abscheidung von Halbleitermaterialien durch MOCVD

$$x (CH_3)_3Al + y (CH_3)_3Ga + z (CH_3)_3In + PH_3 \rightarrow Al_xGa_yIn_zP + 3 CH_4 (x + y + z = 1)$$

 $x (CH_3)_3Al + y (CH_3)_3Ga + z (CH_3)_3In + NH_3 \rightarrow Al_xGa_yIn_zN + 3 CH_4 (x + y + z = 1)$

p-dotierte Schichten MeN:Mg MeP:Mg

n-dotierte Schichten MeN:Si

MeP:Si

Folie 63

2.2.3 Aerosolprozesse

Definitionen und Vorteile

<u>Aerosol</u>

Suspension von Tröpfchen oder Nanopartikeln in einem gasförmigen Medium

Aerosolprozess (Gasphasenpulversynthese)

Syntheseverfahren, bei dem Pulverpartikel durch physikalische der chemische Prozesse in der Gasphase hergestellt werden

Vorteile (gegenüber Flüssigphasensynthesen)

- Lösungsmittelfrei
- Hoher Reaktionsumsatz möglich
- Produkte mit hoher Reinheit möglich
- Einfache Synthese von Nanopartikeln

2.2.3 Aerosolprozesse

Synthese von Aerosil®

Durch einen pyrolytischen Prozess, bei dem nanopartikuläres SiO₂-Pulver entsteht

 $\begin{array}{l} 2 \ \mathrm{H_2} + \mathrm{O_2} \ \rightarrow \ 2 \ \mathrm{H_2O} \\ \mathrm{SiCl_4} + 2 \ \mathrm{H_2O} \ \rightarrow \ \mathrm{SiO_2} + 4 \ \mathrm{HCl} \end{array}$

 $SiCl_4 + 2 H_2 + O_2 \rightarrow SiO_2 + 4 HCl$

Produkt mit hoher spezifischer Oberfläche

 Aerosil[®] 130
 $130 \pm 25 \text{ m}^2/\text{g}$

 Aerosil[®] OX50
 $50 \pm 15 \text{ m}^2/\text{g}$

Anwendungen: Thermische Isolation Ausgangsmaterial zur Synthese von Silikaten

2.2.3 Aerosolprozesse

Gas-Partikel-Konversion

Reaktion von gasförmigen Precursorn, wie z.B. SiCl₄, AlCl₃ oder TiCl₄, bei hohen Temperaturen

Produkt ist häufig porös

۲

2.2.3 Aerosolprozesse

Sprüh-Pyrolyse

Versprühen einer Precursorlösung im Trägergasstrom, wobei das erhaltene Aerosol durch einen Rohrofen geführt wird

Die Teilchengröße des erhaltenen Produkts ist

proportional zu den Tröpfchengrößen

Sphärische Teilchen, die hohl sein können

Folie 67

2. Synthesetechniken der Materialtechnologie

2.3. Synthesen in Lösungen

2.3.1 Solvothermalsynthesen **Definition und Anwendungen Allgemeine Aspekte** Hydrothermale Einkristallzucht Hydrothermale Synthese Hydrothermales Auslaugen Nicht wäßrige Lösungsmitteln **2.3.2 Sol-Gel Synthesen Definition von Solen und Gelen Der Sol-Gel Prozess Exkurs: PZC von Oxiden** Physik der Sole **PZT Keramik** Sol-Gel Chemie von Silikaten

Sol-Gel Chemie von Metalloxiden

Definition und Anwendungen

Definition:

Allgemein wird mit Solvothermalsynthese eine Präparationstechnik bezeichnet, die zu einer Kristallisation der Produkte aus hocherhitzten Lösungen führt (solvothermale Lösung = Temp. > T_b (Lösungsmittel) und Druck > 1 bar)

Wichtigste Lösungsmittel: H₂O (hydrothermal) NH₃ (ammonothermal)

Anwendung hydrothermaler Verfahren:

- Kristallisation (geologische Prozesse) \rightarrow Edelsteine
- Synthese von Oxiden \rightarrow Zeolithe
- Auslaugen von Erzen \rightarrow Bauxit

Natürliche Quarzkristalle

Allgemeine Aspekte

Vorteile solvothermaler Prozesse:

- Erhöhung der Löslichkeit der Edukte
- Erhöhung des Ionenproduktes des Solvens
- Herabsetzung der Viskosität des Lösungsmittels

Durchführung:

- In geschlossenem Quarz oder Teflongefäß, das in einem Druckbehältern (Stahlautoklav) positioniert wird
- Füllgrad des Lösungsmittels ca.
 10 60%
- Reaktionsdauer: Einige Tage

Temperatur-Dichte-Diagramm von Wasser

Folie 70

Allgemeine Aspekte

Der erreichte Druck in dem Druckgefäß hängt vom Füllgrad und von der Temperatur des Reaktionsgefäßes ab, wobei das Lösungsmittel oberhalb der kritischen Temperatur in den superkritischen Zustand übergeht.

<u>Beispiel</u>

Lösungsmittel: H_2O $T_c = 374,15 \ ^{\circ}C$ Füllgrad = 30% Temperatur = 600 \ ^{\circ}C \Rightarrow Druck = 800 bar

Hydrothermale Einkristallzucht

Beispiel: Wachstum von Quarz-Einkristallen

Heiße Zone (T₂) SiO₂(s) \rightarrow SiO₂(aq) Löslichkeit bei 600 °C ~ 0,1 wt-%

Kalte Zone (T_1) SiO₂(aq) \rightarrow SiO₂(s)

Weltjahresproduktion 1985: 1500 t

Anwendung von Quarz-Einkristallen:

- Piezokristalle (Quarzuhren)
- Optische Kristalle (Prismen, Fenstermaterialien)
 ⇒ E_g = 8,4 eV (148 nm)

Hydrothermale Einkristallzucht

In vielen Fällen reicht das Lösungsvermögen selbst im superkritischen Zustand nicht aus, um eine ausreichend hohe Reaktionsgeschwindigkeit zu erreichen

 \Rightarrow Addition eines Mineralisators Hydroxide der Alkalimetalle Alkalisalze schwacher Säuren, wie Na₂CO₃

Für SiO₂: NaOH, KOH, NaF $SiO_2(s) + 2 OH^- \implies SiO_3^{2-}(aq) + H_2O$

Für Al₂O₃: NaOH, KOH $Al_2O_3(s) + 3 H_2O + 2 OH^- \implies 2 Al(OH)_4(aq)$ (Dotierung mit Cr³⁺ ergibt Rubin-Kristalle Al₂O₃:Cr(0,2-0,3%)

Hydrothermale Einkristallzucht

Löslichkeit von SiO₂ in H₂O (links) und in 0,5 M NaOH-Lösung (rechts)

A.R. West, Solid State Chemistry and its Applications, Wiley & Sons, 1984

Chemische Materialtechnologie Prof. Dr. T. Jüstel

Exkurs: Rubin-LASER

Rubin Al₂O₃:Cr³⁺

Pumpen durch Blitzlichtanregung im blauen und grünen Spektralbereich ergibt die Anregung des Cr^{3+} [Ar] $3d^{3}$ (RS Grundterm: ${}^{4}F_{J} \rightarrow Spaltterme: {}^{2}E, {}^{4}T_{1}, {}^{4}T_{2}$)

Die Lebensdauer der ${}^{4}F_{J}$ Zustände ist sehr kurz, wobei Relaxation in das metastabile E-Niveau stattfindet

Auf dem E-Niveau reichern sich die Elektronen an, wodurch eine Besetzungsinversion entsteht

Weitere Einstrahlung eines Photons führt zur stimulierten Emission und zur vollständigen Entleerung des E-Zustandes

Hydrothermale Synthese

1. Synthese von BaTiO₃ (hohe Dielektrizitätskonstante: Kondensatoren, Piezokrist.)

 $Ba(OH)_2(aq) + TiO_2(s) \rightarrow BaTiO_3(s) + H_2O$

2. Synthese von Zeolithen (hohe spez. Oberfläche: Ionenaustauscher, Katalysatoren)

```
NaAl(OH)_{4}(aq) + Na_{2}SiO_{3}(aq) + NaOH(aq)
25 °C
Na_{a}(AlO_{2})_{b}(SiO_{2})_{c} \cdot NaOH \cdot H_{2}O(Gel)
125 - 200 °C, 1 - 100 bar
Na_{5b+4c}(AlO_{2})_{b}(SiO_{2})_{c} \cdot mH_{2}O
```

Hydrothermales Auslaugen

Gewinnung von Aluminiumhydroxid und Aluminiumoxid aus Bauxit (AlOOH + Al(OH)₃) durch den Bayer Prozess

- $\begin{array}{c} 120 250 \ ^{\circ}C \\ \rightarrow \ NaAl(OH)_4 \ (aq) \end{array}$ $Al(OH)_3 + NaOH$ 1. $AlOOH + 2 NaOH + H_2O \rightarrow NaAl(OH)_4 (aq)$
- Filtration zur Abtrennung von SiO₂ und Fe₂O₃ 2.
- 3. Abkühlen und Zugabe von Al(OH), Keimen $Al(OH)_4^- \rightarrow Al(OH)_3 + OH^-$
- Sintern 4.
 - $2 \operatorname{Al}(OH)_3 \rightarrow \alpha \operatorname{Al}_2O_3 (Korund) + 3 H_2O$ ⇒ Al-Herstellung, Gläser, Keramiken, Fasern......

Nicht-wäßrige Lösungsmitteln

Lösungsmittel	krit. Temp. [°C]	krit. Druck [bar]	Einige Beispiele
H ₂ O	374	221	SiO ₂ , Al ₂ O ₃ , Fluoride
NH ₃	132	111	Nitride, Amide, Imide
Cl ₂	144	77	
HCl	51	83	AuTe ₂ Cl, Mo ₃ S ₇ Cl ₄
CO ₂	31	73	
SO ₂	158	79	
H ₂ S	100	90	B-Ag ₂ S
CS ₂	279	79	monoklines Se
C ₂ H ₅ OH	243	64	SbI ₃ , BiI ₃
CH ₃ NH ₂	157	41	CH ₃ NHLi
CH ₃ OH	240	81	

Definition von Solen und Gelen

<u>Sol</u>

Ein Sol ist eine stabile Suspension von festen kolloidalen Partikeln in einem Dispersionsmittel:

Gläser, Polymere Wasser Luft

Vitreosol (Goldrubinglas) Lyosol (kolloidale Au-Lösung) Aerosol (Nebel)

<u>Gel</u>

Eine Gel besteht aus einem dreidimensionalen Netzwerk von festen kolloidalen Partikeln, welches durch Koagulation eines kolloidalen Systems entsteht

Kolloidales System	Koagulation Gel	8000
	Peptisation	
Chemische Materialtechnologi Prof. Dr. T. Jüstel	ie	

Physik der Sole

Die Koagulation der Kolloide wird durch Van der Waals Kräfte ausgelöst (Dipol-Dipol-WW). Diese sind schwach und haben nur eine geringe Reichweite (einige nm)

Stabilisierung von kolloidalen Suspensionen

- Elektrostatische Abstoßung: Stabilität ist proportional zur Größe des ζ-Potentials
- 2. Sterische Hinderung: Adsorption einer organischen Schicht Tenside: Na-Stearat, Na-Dodecylsulfat Polymere: Gelatine, Polyvinylalkohol

Physik der Sole

Koagulation findet statt, wenn die zwischen den Teilchen wirkende elektrostatische Abstoßung kleiner als die Van der Waals Wechselwirkung wird, d.h. das ζ -Potential gegen null geht also am point of zero charge (PZC).

2. Erhöhung der Ionenstärke \Rightarrow Reduktion der Dicke der Diffusionsdoppelschicht

Chemische Materialtechnologie Prof. Dr. T. Jüstel

Exkurs: PZC von Oxiden

Die elektrische Aufladung einer Festkörperoberfläche in Suspension hängt vom pH-Wert und von der Natur der chemischen Verbindungen ab.

Material	PZC [pH]	_
SiO ₂	2,5	
SnO ₂	4,5	
TiO ₂	6,0	Elektronendichte auf
Al_2O_3	9,0	den (O ²⁻)-Anionen
Y_2O_3	9,0	~ Basizität des Oxids
La_2O_3	10,5	
MgO	12,0	ļ

Der PZC bestimmt somit das Agglomerationsverhalten und die Haftung auf Oberflächen bzw. die Adsorption von geladenen Spezies

Beispiel: Adsorption (Verbrauch) von Hg+ in Hg-Niederdruckentladungslampen

Chemische Materialtechnologie Prof. Dr. T. Jüstel

Exkurs: Bestimmung des IEPs mittels Electrokinetic Sonic Amplitude (ESA) Mess.

<u>Vorgehen</u>

- 1. Suspension der Probe in einer leitfähigen Lösung, z.B. in H₂O/KNO₃
- 2. Anwendung von Hochspannungs AC-Pulsen
- 3. Oszillation der geladenen Partikel der Probe
- 4. Registrierung der ausgesendeten elektro-akustischen Wellenamplitude ⇒ ESA Signal ~ ζ-Potential
- 5. Durchführung einer oder mehrerer Säure-Base-Titrationen zur Aufnahme des ESA-Signal als Funktion des pH-Wertes

PZT Keramik

Perowskite mit der Zusammensetzung $PbZr_{1-x}Ti_xO_3$ (PZT, $x_{opt} \sim 0,47$) finden breite Verwendung als ferro- und piezoelektrische Keramik

Keramische Synthese $PbO + x TiO_2 + (1-x) ZrO_2 \rightarrow PbZr_{1-x}Ti_xO_3$ bei 1100 °CDurch die hohe Flüchtigkeit von PbO ist die exakte Zusammensetzung schwer zukontrollieren

Sol-Gel Synthese

1. $Pb(OAc)_2 \cdot 3H_2O + Ti(OPr)_4 + Zr(OPr)_4 + Acetylaceton$

2. Eindampfen

3. Aufnehmen in Ethanol

4. Substratbeschichtung und Sintern bei 575 – 700 $^\circ C$

 \Rightarrow Reaktionslösung

- \Rightarrow PZT Precursor
- \Rightarrow PZT Coating Sol
- ⇒ polykristalliner PZT Film

Sol-Gel Chemie von Silikaten

Genereller Ablauf

- 1. Hydrolyse und Kondensation molekularer Precursor \Rightarrow Sol
- 2. Gelbildung (Sol-Gel-Umwandlung)
- 3. Alterung
- 4. Trocknung

Typische Precursor

Na₂SiO₃ "Wasserglas" Si(OCH₃)₄ Si(OC₂H₅)₄ Si($OC_{3}H_{7}$)₄ Si($I-OC_{3}H_{7}$)₄

Fundamentelle Reaktionsschritte

Hydrolyse: \equiv Si-OR + H₂O $\rightarrow \equiv$ Si-OH + ROH (saure oder basische Katalyse)

Kondensation: \equiv Si-OH + -Si-OR $\rightarrow \equiv$ Si-O-Si- + ROH \equiv Si-OH + HO-Si $\equiv \rightarrow \equiv$ Si-O-Si $\equiv +$ H₂O

Sol-Gel Chemie von Silikaten

Abhängigkeit von Reaktionsverlauf und Geschwindigkeit

- Art und Konzentration der Precursor
- Alkoxygruppen/H₂O-Verhältnis (R_w)
- Art des Katalysators
- Art des Lösungsmittels
- pH-Wert
- Temperatur
- Komplexbildner (Liganden)
- Ionenstärke
- Rührgeschwindigkeit

Sol-Gel Chemie von Silikaten

Art der Precursor

```
Sterischer Anspruch von R
Si(OCH<sub>3</sub>)<sub>4</sub> > Si(OC<sub>2</sub>H<sub>5</sub>)<sub>4</sub> > Si(n-OC<sub>3</sub>H<sub>7</sub>)<sub>4</sub> > Si(i-OC<sub>3</sub>H<sub>7</sub>)<sub>4</sub>
\Rightarrow Hydrolysegeschwindigkeit sinkt mit Größe und Verzweigung von R
```

Elektronendichte am Si-Atom

 \equiv Si-R > \equiv Si-OR > \equiv Si-OH > \equiv Si-O-Si \equiv

Geschwindigkeit der sauren Katalyse

→Geschwindigkeit der basischen Katalyse

- ⇒ saure Katalyse liefert kettenartige Netzwerke
- \Rightarrow basische Katalyse liefert hochverzweigte Netzwerke

Sol-Gel Chemie von Silikaten

 $\begin{array}{ll} \underline{Alkoxygruppen/H_2O-Verhältnis}(R_w)\\ \hline Vollständige Kondensation (wenig H_2O) & R_w = 2\\ Si(OR)_4 + H_2O & \rightarrow [Si(OH)(OR)_3] + ROH\\ [Si(OH)(OR)_3] + H_2O & \rightarrow [Si(OH)_2(OR)_2] + ROH & etc.. \rightarrow SiO_2 \end{array}$

Keine Kondensation, d.h. zunächst nur Hydrolyse (viel H_2O) $R_w = 1$ Si(OR)₄ + 4 $H_2O \rightarrow$ Si(OH)₄ + 4 ROH $\downarrow \uparrow$ SiO₂ + 2 H_2O

Bevorzugung der Kondensationsreaktion von $[SiO_x(OH)_v(OR)_z]_n$ $R_w >> 2$

Die Bildung von Silanolgruppen wird favorisiert, da die $R_w < 1$ Kondensation zu SiO2 prinzipiell reversibel ist.

Sol-Gel Chemie von Silikaten

<u>Art des Katalysators</u> Die Hydrolyse der Alkoxide wird von H⁺ und OH⁻ katalysiert, bzw. ist im neutralen pH Bereich langsam

<u>pH < 2,5 "Säurekatalysiert"</u> Hydrolyse ist favorisiert und Kondensation ist der geschwindigkeitsbestimmende Schritt

⇒ Gleichzeitige Bildung vieler Silanolgruppen, die dann polymerisieren "Gel"

<u>pH > 2,5 "Basenkatalysiert"</u> Kondensation ist favorisiert und Hydrolyse ist der geschwindigkeitsbestimmende Schritt ⇒ Bildung vieler agglomerierter Cluster

Sol-Gel Chemie von Silikaten

Synthese von monodispersen SiO₂-Partikeln (Stöber-Prozess)

- Kleine kolloidale Teilchen haben eine größere Löslichkeit als große Teilchen
- Große Teilchen wachsen auf Kosten der kleinen Teilchen, die sich auflösen, bis eine einheitliche Teilchengröße vorliegt
- Bildung eines stabilen Kolloids
- \Rightarrow Ostwald-Reifung

Beispiel

Hydrolyse von Si $(OC_2H_5)_4$ bei hohem pH mit NH₃ als Katalysator und niedrigem R_w (~ 0,5 – 0,05)

 \Rightarrow SiO₂ Partikel mit 0,1 - 1 µm Teilchendurchmesser

500 nm Monosphere

Sol-Gel Chemie von Metalloxiden

Prinzipiell kann die Sol-Gel Chemie auf alle Metalloxide übertragen werden, wobei die Reaktivität bzw. Reaktionsgeschwindigkeit stark von der Elektronegativität und der bevorzugten Koordinationszahl KZ des Metallkations abhängt.

k	Kation	EN (Allred-Rocho)w)	r [Å]	bev	vorzugte KZ
S	i ⁴⁺	1.74		0.40	4	I
S	n ⁴⁺	1.72		0.69	6	
T	1 ⁴⁺	1.32		0.56	6	Reaktivität
Z	2 r ⁴⁺	1.22		0.73	7	
0	Ce ⁴⁺	1.08		1.02	8	ļ
F	'e ²⁺	1.83		0.92	6	Hydrolyse bei ca. pH 6
F	'e ³⁺	1.96		0.69	6	Hydrolyse bei ca. pH 3
	Chemisch Prof. Dr.	ne Materialtechnologie T. Jüstel				Folie 92

Sol-Gel Chemie von Metalloxiden

Hydrolyse von Al³⁺ Salzen in wäßriger Lösung

pH < 3: Al³⁺ + 6 H₂O \rightarrow [Al(H₂O)₆]³⁺ "Hexaquoaluminatkation"

 $pH > 3: [Al(H_2O)_6]^{3+} + \rightarrow [Al(OH)_x(H_2O)_{6-x}]^{(3-x)+} + x H^+$

Kondensationsreaktionen von $[Al(OH)_x(H_2O)_{6-x}]^{(3-x)+}$ in konzentrierter Lösung:

- 1. Olation: Bildung von μ -Hydroxobrücken Al-OH + HO-Al $\rightarrow Al \stackrel{OH}{\underset{OH}{\overset{OH}{\overset{}}}Al}$
- 2. Oxolation: Bildung von µ-Oxobrücken

 $Al-OH + HO-Al \rightarrow Al-O-Al + H_2O$

```
Sol-Gel Chemie von Metalloxiden
```

Reaktivität von Alkoxid-Precursorn:

- $Si(O^{i}-Pr)_{4} <<< Sn(O^{i}-Pr)_{4}, Ti(O^{i}-Pr)_{4} < Zr(O^{i}-Pr)_{4} < Ce(O^{i}-Pr)_{4}$
- Ganz allgemein sind Metallalkoxide stärkere Lewis-Säuren als Siliziumalkoxide und damit reaktiver (leichterer Angriff durch Nukleophile)

Moderation der hohen Reaktivität durch Komplexbildner, wie z.B. Carboxylate

```
2 \operatorname{Ti}(O^{i}-Pr)_{4} + 2 \operatorname{CH}_{3}COOH \rightarrow 2 \operatorname{Pr}^{i}OH +
```

oder Acetylaceton (H-acac)

 $Ti(O^{i}-Pr)_{4} + CH_{3}-CO-CH_{2}-CO-CH_{3} \rightarrow Ti(O^{i}-Pr)_{3}(acac) + Pr^{i}OH$

Die neuen Precursor haben eine geringere Reaktivität gegenüber Hydrolyse und Kondensation

2. Synthesetechniken der Materialtechnologie

2.4. Nanopartikel

2.4.1 Abgrenzung von Nanopartikeln

2.4.2 Physikalische und chemische Eigenschaften

Optische Eigenschaften

Elektrische Eigenschaften

Thermodynamische Eigenschaften

Oberflächenchemie

2.4.3 Synthese von Nanopartikeln

Abscheidung aus der Gasphase

Reduktion von Metallsalzen

Polyolmethode

Sol-Gel chemische Synthese

Mikroemulsionsmethoden

Exkurs: Nanoröhren

2.4.4 Anwendungen von Nanopartikeln

2.4.1 Abgrenzung von Nanopartikeln

2.4.1 Abgrenzung von Nanopartikeln

2.4.1 Abgrenzung von Nanopartikeln

Nanopartikel können als Oberflächenmaterie in makroskopischer Menge betrachtet werden Au-Cluster mit

Beispiel:

Au-Partikel mit kubisch-dichter Kugelpackung (KOOZ = 12) Kristallsystem: kubisch mit a = 4,08Å und d(Au-Au) =2,88 Å Anzahl Atome pro Schale = $10*n^2 + 2$ mit n = Schalennummer

55 Atomen

Clustergröße
-
0,58 nm
1,4 nm
2,1 nm
2,8 nm
3,5 nm
5 nm
6,5 nm
Folie 98

Optische Eigenschaften

Mit abnehmender Teilchengröße zeigt die Absorptionskante eines Festkörpers eine Blauverschiebung (ΔE_g : Oxide < Sulfide)

 $Y_2O_3 (10 \text{ nm} \rightarrow 10 \mu \text{m})$ CdS (1 nm $\rightarrow 1 \mu \text{m})$

Zunehmende Teilchengröße

15 min 30 min 45 min 60 min 50 min 95 min 150 min 200 min 550°C

- Farbe von gefällten HgS-Partikeln: Rot (frisch gefällt) bzw. schwarz (gealtert)
- Farbe von Au-Kolloiden in Gläsern (Goldrubinglas "Gold Ruby Glass")

Optische Eigenschaften

Optische Eigenschaften – InP QDots

Lumineszenzmechanismen und Energie

Strahlende Rekombination via Defektzustände: (a) Leitungsband-Akzeptorzustand Übergang (b) Donorzustand-Valenzband Übergang (c) Donor-Akzeptor Rekombination (d) "Bound Exciton" Rekombination Die Energie des Überganges hängt wesentlich von der Bandlücke des Materials ab

Chemische Materialtechnologie Prof. Dr. T. Jüstel

Optische Eigenschaften – CdSe QDots

Absorptions- und Emissionsspektren

Photolumineszenz bei UV Anregung

Chemische Materialtechnologie Prof. Dr. T. Jüstel

Optische Eigenschaften – Lumineszenz als Funktion des Materials & Partikelgröße

Ergo: Die Photolumineszenzquantenausbeute nimmt mit der Teilchengröße ab!

Chemische Materialtechnologie	Folie 104
Prof. Dr. T. Jüstel	

Optische Eigenschaften – Lumineszenz von Halbleiternanopartikeln

Problem in der Anwendung von QDots:

Oberflächenlöschung der angeregten Zustände vor allem in Halbleitern, die einen erheblichen Bohrradius aufweisen

<u>Halbleiter</u>	<u>r_B* [nm]</u>	Bandlücke [eV]
CuCl	1,3	3,4
ZnSe	8,4	2,58
CdS	5,6	2,53
CdSe	10,6	1,74
CdTe	15,0	1,50
GaAs	28,0	1,43
PbS	40,0	0,41

Exzitonen "Bohr" Radius $r_B^* = \epsilon_r (m/\mu) r_B mit r_B = 0,053 mm$

Epitaktische Beschichtung mit einem Material mit höherer Bandlücke \rightarrow Kern-Schale(-Schale)-Partikel

Chemische Materialtechnologie Prof. Dr. T. Jüstel

Elektrische Eigenschaften

Leitfähigkeit ist eine Folge der Bandstruktur von Festkörpern und der damit einhergehenden Delokalisierung von Elektronen

رفات.. And the set of the set

faktisch nichtleitend

Thermodynamische Eigenschaften

Mit abnehmender Teilchengröße nimmt der Schmelzpunkt ab, während die Löslichkeit zunimmt \Rightarrow Niedrigere Koordinationszahl der Oberflächenatome

Oberflächenchemie

Nanopartikel finden aufgrund ihrer hohen spezifischen Oberfläche eine Vielzahl von Anwendungen in der heterogenen Katalyse

⇒ z.B. als Pd-Katalysator für stereoselektive Hydrierungen oder im KFZ-Kat.

CH₃-C≡C-CH₂-CH₂-CH₂-CH₃ + H₂ \rightarrow cis-2-Hexen + trans-2-Hexen (2-Hexin)

 $\frac{\text{KFZ-Katalysator}}{\text{Pd/Pt auf einem Keramiksubstrat}}$ $2 \text{ CO} + \text{O}_2 \rightarrow 2 \text{ CO}_2$ $C_x \text{H}_y + (x + y/4) \text{ O}_2 \rightarrow x \text{ CO}_2 + y/2 \text{ H}_2\text{O}$ $2 \text{ NO} + 2 \text{ CO} \rightarrow \text{N}_2 + 2 \text{ CO}_2$ $C_x \text{H}_y + (2x + y/2) \text{ NO} \rightarrow$ $x \text{ CO}_2 + (x + y/4) \text{ N}_2 + y/2 \text{ H}_2\text{O}$
2.4.2 Physikalische und chemische Eigenschaften

Oberflächenchemie

Nanopartikel können aufgrund ihrer hohen spezifischen Oberfläche sehr leicht Elektronen aufnehmen oder abgeben

⇒ Anwendung in Solarzellen und in Kathoden (als Emitter: (Ca,Sr,Ba)O auf W)

Triebkraft für das Teilchenwachstum

Energieminimierung eines Teilchens durch Minimierung des Verhältnisses von Oberfläche zu Volumen: Oberflächenenergie steigt quadratisch an: $G_{surface} \sim 4\pi\sigma r^2$ Volumenenergie steigt kubisch an: $G_{volume} \sim 4/3\pi\gamma r^3$

Überkompensation der Oberflächenenergie

Sehr kleine Teilchen (~r_c) sind sehr reaktiv, da sie ein höheres chemisches Potential

als große Teilchen besitzen

Möglichkeiten der Stabilisierung

- **Elektrostatisch:** Adsorption von Ionen an der Oberfläche
- Sterisch/entropisch: langkettige Verbindungen an der Oberfläche
- **Thermodynamisch:** Ligandmoleküle fest an der Oberfläche gebunden 3. **Energie-Bilanz bei der Verdopplung des Teilchenradius:**

 $8 (AX)_n L_k \rightarrow (AX)_{8n} L_{4k} + 4k L (freie Liganden) \Rightarrow Abspaltung von Liganden$ d.h. bei starker Metall-Ligandbindung sind kleine Cluster energetisch günstiger

Wachstumsstop: Einstellung der Teilchengröße

Zu 3: Thermodynamische Stabilisierung

Das Teilchenwachstum wird durch Komplexierung der Oberflächenatome mittels Liganden gestoppt

Materialklasse	Beispiel	geeignete Liganden	
Sulfide	CdS	Cystein, Glutathion,	Thioglycerol
Oxide	Y ₃ Al ₅ O ₁₂	Citrat, EDTA, Oleat	Schollen on one of the
Phosphide, Arsenide	InP, GaAs	Trioctylphosphinoxic (TOPO)	OH-CH-CH-CH-S- OH OH-CH-CH-S- OH OH-CH-CH-S- OH OH-CH-CH-S- OH OH-CH-CH-S- OH OH-CH-CH-S- OH OH-CH-CH-S- OH OH-CH-CH-CH-S- OH-CH-CH-CH-S- OH-CH-CH-CH-S- OH-CH-CH-CH-S- OH-CH-CH-CH-S- OH-CH-CH-CH-S- OH-CH-CH-CH-S- OH-CH-CH-CH-S- OH-CH-CH-S- OH-CH-CH-CH-S- OH-CH-CH-CH-S- OH-CH-CH-CH-S- OH-CH-CH-CH-S- OH-CH-CH-S- OH-CH-CH-CH-S- OH-CH-CH-CH-S- OH-CH-CH-CH-S- OH-CH-CH-CH-S- OH-CH-CH-CH-S- OH-CH-CH-CH-S- OH-CH-CH-CH-S- OH-CH-CH-CH-S- OH-CH-CH-CH-S- OH-CH-CH-CH-S- OH-CH-CH-CH-CH-S- OH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH
Chemische Materialtechnologie Prof. Dr. T. Jüstel			Folie 112

Bildung nanoskaliger Partikel über die Polymerisation von Metallkomplexen (Pechini-Methode)

Voraussetzung

- Chelatliganden, die polymerisierbar bzw. polykondensierbar sind, z.B. als Polyester
- Carboxylate: Citrat, Tartrat, Malonat, Oxidationsprodukte des PVA

Reaktionsprinzip am Beispiel der Bildung von TiO₂ Nanopartikeln

- 1. $Ti(OPr^{i})_{4} + Propanol + H_{2}O + Zitronensäure \rightarrow Ti_{8}O_{10}(C_{6}H_{5}O_{7})_{4}(H_{2}O)_{12}\cdot 14H_{2}O\cdot 3HOPr^{i}$
- 2. Polykondensation der Metallkomplexe durch Erwärmen bzw. durch Oxidation der Alkoholate (Oxidationsmittel: NO₃⁻ oder CrO₄²⁻)
- 3. Zersetzung des Polykondensats durch starkes Erhitzen führt zum TiO₂ Nanopulver

Modifikationen der Pechini-Methode

Di- und Polyole

Ethandiol \rightarrow Propandiol \rightarrow Butandiol \rightarrow PVA

Säurestärke der Chelatbildner (pKs-Werte)

Zitronensäure $C_6H_8O_7$ H_3Cit $\stackrel{(3,3)}{\Rightarrow}H_2Cit$ $\stackrel{(4,76)}{\Rightarrow}HCit^2$ $\stackrel{(6,4)}{\Rightarrow}Cit^3$ Weinsäure $C_4H_6O_6$ H_2Tar $\stackrel{(3,03)}{\Rightarrow}HTar$ $\stackrel{(4,37)}{\Rightarrow}Tar^2$ Malonsäure $C_3H_4O_4$ H_2Mal $\stackrel{(2,85)}{\Rightarrow}HMal$ $\stackrel{(5,7)}{\Rightarrow}Mal^2$ Oxalsäure $C_2H_2O_4$ H_2Ox $\stackrel{(1,25)}{\Rightarrow}HOx^2$ $\stackrel{(3,81)}{\Rightarrow}Ox^2$

Übersicht der bisher mit der Pechini-Methode dargestellten Nanomaterialien

Verbindung	Strukturtyp	Zersetzung [°C]	Kristallisation [°C]
BaTiO ₃	Perovskit	600	600
Al_2O_3	Korund	800	1150
SiO ₂	ß-Cristobalit	800	1100
Al ₆ Si ₂ O ₁₃	Mullit	800	1300
ZrSiO ₄	Zirkon	800	1100
CaSiO ₃	Wollastonit	650	900
₿-Ca ₂ SiO ₄	Belit	700	800
Y ₃ Al ₅ O ₁₂	Granat	600	900
Y ₃ Fe ₅ O ₁₂	Granat	600	900
Mg ₂ Al ₄ Si ₅ O ₁₈	Cordierit	800	1200
BaAl ₂ Si ₅ O ₁₈	Hexacelsian	800	1100
YPO ₄	Xenotim	500	830
Y ₂ O ₃	Bixbyit	650	650

Polyolmethode

Polyolmethode

Precursor: Acetate Co(CH₃COO)₂ AlOH(CH₃COO)₂ Fe(CH₃COO)₃ La(CH₃COO)₃ Zn(CH₃COO)₂

Fällungsmittel

$H_2O \rightarrow OH^-$	$\rightarrow 0^{2}$
NH ₄ H ₂ PO ₄	$\rightarrow PO_4$
Thioharnstoff	$\rightarrow S^{2-}$

3-

Lösungsmittel Diethylenglykol Ethylenglykol Glycerol Glycerin

> **Chemische Materialtechnologie** Prof. Dr. T. Jüstel

Typische Teilchengröße:

20 - 200 nm

SEM Foto von LaPO₄-Nanopartikeln

Sol-Gel chemische Synthese

Sol-Gel chemische Synthese

Partikelgröße als Funktion der Temperatur

Temperatur $\uparrow \Rightarrow$ Reaktionsgeschwindigkeit $\uparrow \Rightarrow$ Nukleationszeit $\downarrow \Rightarrow$ Partikelgröße \downarrow

Chemische Materialtechnologie Prof. Dr. T. Jüstel


```
Reduktion von Metallsalzen
```

Synthese von unedleren Metallnanopartikeln erfordert stärkere Reduktionsmittel

Reduktion mit NaBH₄:

```
a) In Wasser
4 Co<sup>2+</sup> + 8 BH<sub>4</sub><sup>-</sup> + 18 H<sub>2</sub>O \rightarrow Co<sub>2</sub>B + 25 H<sub>2</sub> + 6 H<sub>3</sub>BO<sub>3</sub>
```

```
b) In Diglyme

Co^{2+} + 2 BH_4^- \rightarrow Co(s) + H_2(g) + B_2H_6(g)
```

Reduktion mit Alkalimetallen in Xylol (Rieke Methode)

AlCl₃ + 3 K → Al + 3 KCl (Aktivierung des Kaliums durch Zugabe von Naphthalin oder Anthracen)

Abscheidung aus der Gasphase

- 1. Oxide (siehe Kapitel 2.2.3. Aerosolprozesse)
- 2. Metalle (Cluster-Beam Generator)

Exkurs: Nanoröhren (Nanotubes)

Nanotubes können von Substanzen mit Schichtstruktur gebildet werden:

- Carbon Nano Tubes (CNTs) Single-walled
- $B_x C_y N_z$, z.B. BN, BC₃, BC₂N
- SiO_2
- Metalloxide
- Metallsulfide, z.B. WS₂, MoS₂

Multi-walled

SW-CNT

Synthese

CNTs: Abscheidung von C aus der Gasphase oder Plasma VO_x-NTs: VO(OR)₃ + H₂N-(CH₂)_n-NH₂ \rightarrow Hydrolyse, Alterung,

Hydrothermale Kristallisation

Anwendungsgebiete

Gassensoren, Feldemitter in Feldemissionsdisplays (FEDs), Molekulare Transistoren, Nanocontainer, Wasserstoffspeicher

Chemische Materialtechnologie Prof. Dr. T. Jüstel Folie 125

2.4.4 Anwendungen von Nanopartikeln

Nanopartikel finden in vielen Technologiefeldern Anwendungen, z.B.

Technologie	Beispiele
- Energiegewinnung	Solarzellen
- Energiespeicherung	Lithiumbatterien, Ni-Metallhydridbatterien
- Informationsverarbei	tung Feldemissionstransistoren mit Nanotubes
- Photonik	Photonische Bandmaterialien
- Sensorik	Bio- und Gassensoren
- Materialien	Selbstreinigende Oberflächen
- Katalyse	Organische Synthese mit Metallnanopartikeln
- Optische Markierung	en Marker für DNS und DNS-Chips
- Pharmazie	Medikamente mit def. Löslichkeit (Drug Delivery Radikalfänger, Neutralisationsmittel
- Diagnostik	Magnetische Nanopartikel zur Kontrasterhöhung bei Magnetresonanzuntersuchungen (MRT)

2.4.4 Anwendungen von Nanopartikeln

Nanopartikel in der Licht- und Bildschirmtechnologie

Als funktionale Schichten (z.B. für die Lichtmodulation)

- Farbfilter in Bildschirmen, wie CRTs, PDPs, LCDs, ...
- Interferenzschichten
- Streuschichten für frequenzselektive Reflektoren
- Als lumineszierende Materialien, allerdings begrenzt die niedrigere Quantenausbeute die Einsatzmöglichkeiten
- Als elektrisch leitende Schichten, wie Graphen

Für die Materialoptimierung- bzw. synthese

- Schutzbeschichtung µ-skaliger Leuchtstoffe
- Funktionsbeschichtungen µ-skaliger Leuchtstoffe
- Vorstufen für µ-skalige Leuchtstoffe
- Vorstufen für transparente Keramiken, z.B. als LASER Keramiken
- Beeinflussung elektrochemischer Eigenschaften

Chemische Materialtechnologie Prof. Dr. T. Jüstel

Folie 127

2.4.4 Anwendungen von Nanopartikeln

Nanopartikel für die Synthese photonischer Bandmaterialien (Photonik)

Beispiel: Inverse Opale (Materialien mit einer photonischen Bandlücke)

Vorgehensweise

- 1. Synthese von monodispersen kolloidalen Partikeln, z.B. bestehend aus PMMA
- 2. "Kistallisation" der kolloidalen Partikel, d.h. Ausbildung einer 3D Struktur ⇒ Templatkristall
- 3. Imprägnierung mit einem "Precursor"
- 4. Umsetzung des Precursors zum Festkörper und Entfernung des Templates
- ⇒ Kristall mit einer photonischen Bandlücke

Natürlicher Opal

Inverser Si-Opal

2. Synthesetechniken der Materialtechnologie

2.5. Einkristallzuchtverfahren

- 2.5.1 Czochralski Methode
- 2.5.2 Zonenschmelzen
- 2.5.3 Bridgman-Stockbarger Methode
- 2.5.4 Traveling Solvent Floating Zone Methode
- 2.5.5 Gasphasenabscheidung
- 2.5.6 Einkristallzucht aus der Lösung
- 2.5.7 Anwendung von Einkristallen

2.5.1 Czochralski Methode

Ziehen von Kristallen aus einer Schmelze

<u>Ablauf</u>

- Einschmelzen der Startmaterialien
- Einbringen eines Impfkristalls
- Schulterbildung
- Wachsen durch Herausziehen unter Rotation

Beispiele für erfolgreiche Zucht von Einkristallen

Elemente: Si, Ge, Sn, Bi, Au

Verbindungen: AlSb, InSb, GaSb, CsJ, KBr, CaF₂, BaF₂, ...

Probleme bei dotierten Kristallen (Halbleitern)

- Einschleppen von Verunreinigungen
- Segregation von Dotierungen, da $C_{fest}/C_{flüssig} < 1$ und für jede Komponente unterschiedlich ist \Rightarrow Anreicherung in der Hussigen Phase
- Konzentrationsgradient der Dotierung im Kristall

2.5.1 Czochralski Methode

Einkristallzucht von Silicium

Ausgangsmaterial: Polykristallines Silicium

Vorgehen

- Schmelze des polykristallinem Si in Quarztiegel $(T_m(Si) = 1412 \ ^\circ C)$
- Eintauchen eines kleinen Impfkristalls
- Langsames Herausziehen des Impfkristalls (Dauer ~ 3 Tage)
- Erhaltener Einkristall:
 - ~ 50 kg, max. Durchmesser ~ 300 mm (12")

Schneiden in Scheiben liefert 12" Wafer ⇒ Halbleiterproduktion

2.5.1 Czochralski Methode

Zucht des NLO Materials Li2B4O7 bei 980 °C (FEE Idar-Oberstein)

Tetragonales Kristallsystem

2.5.2 Zonenschmelzen

Beispiel: Reinigung und Zucht von Siliciumeinkristallen

Zonenschmelzen in einem Hochfrequenzofen (Pfann 1952)

- Siliziumstab wird an einem Ende induktiv aufgeschmolzen
- Die Spule wird entlang des Stabes bewegt
- Die Verunreinigung sammeln sich in der flüssigen Phase und damit am Ende des Einkristalls, da sie sich besser in der flüssigen Phase lösen
- Segregationskoeffizient: $k_0 = \frac{C_{fest}}{C_{fluestant}} < 1$
- n Iterationen: k₁

$$\mathbf{k}_{\mathbf{n}} = (\mathbf{k}_{\mathbf{0}})^{\mathbf{n}} = \mathbf{0} \text{ für } \mathbf{n} \rightarrow \infty$$

Element	k ₀
Li	0,01
B	0,8
Al	0,002
P	0,35
As	0,3

2.5.3 Bridgman-Stockbarger Methode

Bei diesen Methoden wird ein räumlicher oder zeitlicher Temperaturgradient zur Einkristallzucht ausgenutzt

<u>Ablauf</u>

- Einbringen der Startmaterialien in einer (Quarz)ampulle und Abschmelzen der Ampulle
- Aufheizen bis zur Schmelze
- Durchführen der Ampulle durch einen T-Gradientenofen

<u>Beispiele</u>

Binäre Halogenide: Ternäre Halogenide: LiI, LaCl₃, PrCl₃, RbI + 4 AgI \rightarrow RbAg₄I₅

2.5.4 Travelling Solvent Floating Zone Methode

Kristallisation durch lokales Aufschmelzen eines Grünkörpers (green body)

<u>Ablauf</u>

- Mischen und Kalzinieren der Startmaterialien
- Isostatisches Pressen und Sintern
- Vorsintern des Grünkörpers
- Bildung einer Schmelzzone durch IR-Heizung (Halogenlampen in ellipsoiden Spiegeln)
- Kristallwachstum durch Bewegung des Fokus der Spiegel

Beispiele für erfolgreiche Zucht von Einkristallen

 $Bi_{2}Sr_{2}CaCuO_{8+\delta}, Ln_{2}CuO_{4} (Ln = La, Nd)$ LaMnO₃, LnBa₂Cu₃O_{7- δ} (Ln = Y, Pr, Nd)

2.5.5 Gasphasenabscheidung

2.5.6 Einkristallzucht aus der Lösung

Zucht von Einkristallen ausgehend von löslichen Substanzen, wobei Kristallisation durch Überschreiten des Löslichkeitsproduktes erzielt wird

Fällungsbedingung für ein AB Salz

 $c_{AB} > (K_L)^{1/2}$ $K_L = c_A \cdot c_B = c_{AB}^2 [mol^2l^{-2}] = f(T, p, Ionenstärke, Lösungsmittel, etc.)$

Beispiel

Löslichkeitsprodukt von HgS: Grenzkonzentration:
$$\begin{split} &K_L = 1 \cdot 10^{-54} \text{ mol}^{2}\text{l}^{-2} \\ &c_{Hg}^{2+} = 10^{-27} \text{ moll}^{-1} \\ \Rightarrow 1 \text{ Hg}^{2+}\text{-Ion pro m}^3 \text{ Wasser} \\ \Rightarrow 0.5 \text{ mg HgS im Weltozean (1.4 \cdot 10^{18} \text{ t H}_2\text{O})} \\ \Rightarrow \text{Kristallzucht von HgS aus Lösung unmöglich!} \end{split}$$

Überschreiten der Grenzkonzentration

Schnell \Rightarrow Fällung (Mikro- bzw. Nanokristallite)

Langsam \Rightarrow Kristallisation (Einkristalle: mm ... cm)

2.5.6 Einkristallzucht aus der Lösung

Methoden zur Überschreitung der Grenzkonzentration

1. Temperaturerniedrigung

Prinzip: Die Löslichkeit nimmt mit fallender Temperatur ab Löslichkeit von KClO₄ in H₂O: 1.3 moll⁻¹ bei 100 °C 0.14 moll⁻¹ bei 20 °C

2. Verdampfen des Lösungsmittels

Prinzip: Langsame Konzentrationserhöhung der gelösten Komponenten Verwendung eines Impfkristalls → Abscheidung auf dem Impfkristall

```
3. Einkondensieren von sekundären Lösungsmitteln
Prinzip: Erniedrigung der Polarität des LM-Gemisches
Diethylether \rightarrow CH<sub>3</sub>CN
Tetrahydrofuran (THF) \rightarrow H<sub>2</sub>O
```

