Electroluminescent light sources
Electroluminescent light sources

<table>
<thead>
<tr>
<th>History</th>
<th>1936</th>
<th>Electroluminescence discovered by G. Destriau</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>First scientific research (ITO)</td>
<td></td>
</tr>
<tr>
<td>early 1960’s</td>
<td>Scientific focus on TF-EL</td>
<td></td>
</tr>
<tr>
<td>1967</td>
<td>Enhanced efficiency due to 2 insulating layers</td>
<td></td>
</tr>
<tr>
<td>1980’s</td>
<td>Application in monochromatic displays</td>
<td></td>
</tr>
<tr>
<td>Today</td>
<td>Research on EL TV technology</td>
<td></td>
</tr>
</tbody>
</table>
Electroluminescent light sources

Tunneling

Phenomenon illustrated by the „particle-in-the-box“ model

- Particle in the box does not obey Heisenberg’s Uncertainty principle
 - Simultaneously determined: position and velocity
- Particle can „leave“ the box
Electroluminescent light sources

<table>
<thead>
<tr>
<th>History</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamental Terms</td>
</tr>
<tr>
<td>Working Principle</td>
</tr>
<tr>
<td>Production</td>
</tr>
<tr>
<td>Materials</td>
</tr>
<tr>
<td>Applications</td>
</tr>
</tbody>
</table>

Luminescence

- light emission in non thermal equilibrium
- LED vs. incandescent bulb
Electroluminescent light sources

Working principle

- Phosphor particle (ZnS:Mn)
- Electrodes
Electroluminescent light sources

Working principle

ACTFEL

History

Fundamental Terms

Working Principle

Production

Materials

Applications
Electroluminescent light sources

Working principle

OLED Structure
- Cathode
- Emissive Layer (Organic Molecules or Polymers)
- Conductive Layer (Organic Molecules or Polymers)
- Anode
- Substrate
Electroluminescent light sources

Atomic layer deposition

1) Exposure of the first precursor
2) Purge or evacuation of the reaction chamber
3) Exposure of the second precursor
4) Purge or evacuation of the reaction chamber
Electroluminescent light sources

Atomic layer deposition

Reacting chamber
Atomic layer deposition

- Adjusted parameters like interaction time or temperature are element depending
- Time for one cycle round about 0.5 sec
- Layer thickness of 0.1 nm - 3.0 nm per cycle
Electroluminescent light sources

Sputtering

- releasing of atoms through electron bombardement

![Diagram showing the sputtering process with labels for Target atom, Target (Cathode), Plasma, Gas inlet, Deposited layer (Anode), and Ar.]
Electroluminescent light sources

Doctor blade coating

- Applying a paste via a template
- space resolved applying possible
- just drying after printing process
Electroluminescent light sources

Materials

Substrate

- good transmission
- high electric resistance
- stable against H₂O and O₂

→ PMMA, PC, special silicate glasses
Materials

Electrodes

- good electric conductivity
- good adhesion to the insulator
- has to be stable up to 10^8 V/m
- good transmission (vis)

⇒ ITO, Aluminium, Polymers
Electroluminescent light sources

Materials

ITO

• very good electrical conductivity, very transparent

• consists of 90% In$_2$O$_3$ and 10% SnO$_2$
Electroluminescent light sources

Materials

Insulating layers

- wide band gap
- high penetration voltage
- free of defects
- high dielectric constant

⇒ Al₂O₃, AlOₓNᵧ, BaTiO₃, SrTiO₃
Materials

Phosphors

- high luminescent density
- high quantum efficiency
- good colour saturation
- good chemical stability

⇒ ZnS:Mn, ZnS:Tb, CaS:Eu, CaS:Ce, SrS:Ce
Electroluminescent light sources

Applications

- Displays (OLEDs, LED LCD)
- Backlighting
- Decorative elements
Electroluminescent light sources

References

- A.H. Kitai: Solid State Luminescence
- Electroluminescence handout provided by Prof. Dr. Kynast
- Peter W. Atkins: Physikalische Chemie
- Engel; Reid: Physikalische Chemie
- Presentation from ORMECON EL: Nanotechnology for Advanced Applications
- www.wikipedia.com
- www.electroluminescence-inc.com