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Background

Energy Transfer Rate

Eus* activated red emitting phosphors generally exhibit high LE compared to band
emitting Eu2* activated red phosphors, but they suffer from low absorption in the blue = We developed a method to calculate energy transfer rates from decay curves with a rise

spectral range. The use of sensitizers is a suitable method to overcome such time component

shortcomings as for example in the commercial phosphors BaMgAl,,0,;:Eu®*,Mn=* or = Eu* emission shows a pronounced rise time due to “slow” energy transfer (ET) from Th3*
LaPO,:Ce3* Th3*. However, Eu®* cannot be sensitized by Ce3* as a Ce3*/Eu3* metal-to- (Fig. 8 & 9)

metal charge transfer efficiently quenches the luminescence. Energy transfer from Th3* N, (t) = —C[e~*Torotalt — g=AEut]

to Eu3* is well documented in published literature, branding Th3* as a potential sensitizer
for Eu3*. All Tb3* transitions in the visible spectral range are quantum mechanically
forbidden and of low absorption intensity. At high Tb3* and Eu3* concentrations though,

= Fitting the decay curves with this function yields Aty (ota) the total decay rate of Th3* -
which Is the sum of the radiative decay rate and the ET rate

the combined absorption of both activators is high enough the allow full conversion of a = To extract the ET rate from this, the following relation can be used:
UV-LED via a ceramic phosphor disc. I'rb _ Amp
IEu }"ET
= As Eus*is solely excited via ET, the ratio of the emission intensities is equal to the ratio of
Results and Discussion the radiative decay rate and the ET rate

= From this the ET rate Ag can be calculated via:
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