Übungsaufgaben zu Kapitel 4 "Atomaufbau und Periodensystem"

- 1) Was haben Elemente, die im Periodensystem untereinander angeordnet sind, gemeinsam? Beispiel angeben!
- 2) Was haben Elemente, die im Periodensystem nebeneinander angeordnet sind, gemeinsam? Beispiel angeben!
- 3) Welche Eigenschaften der Elemente können mit Hilfe der Oktettregel erklärt werden (warum ist diese Regel für die Chemie so bedeutsam)?
- 4) Der Abstand Erde-Sonne beträgt durchschnittlich 149,6 Millionen km. Man stelle sich vor, dass von der Erde bis zur Sonne ein Millimeterpapier gespannt sei und in jedes mm² Kästchen 1 Atom gelegt werde. Wie breit muss das Millimeterpapier gewählt werden, um n = 1 mol (6,022 10²³ Atome) in der angegebenen Weise darauf zu verteilen.
- 5) Das Iridiumatom (Ir) hat einen Durchmesser von 0,27 nm. Wie viele Iridiumatome würden aneinandergereiht eine Strecke der Länge 1 mm ergeben?
- 6) Wieviele Teilchen sind enthalten in
- a) 50 g Silber
- b) 50 g Platin
- c) 50 g Wasserstoff
- 7) Berechnen Sie die Masse einer Kugel Neutronen mit dem Radius
- a) 1 m
- b) 5 km

(Neutronen dicht gepackt ohne Hohlräume, m_{Neutron} = 1,6725·10⁻²⁴ g, r_{Neutron} = 1,3·10⁻¹⁵ m)!

- c) Wie nennt man ein derartiges Gebilde?
- 8) Erläutern Sie die Begriffe Ionisierungsenergie und Elektronenaffinität anhand einer einfachen Reaktionsgleichung!
- 9) Was versteht man unter Rein- und Mischelementen? Nennen Sie je ein Beispiel!
- 10) Welche Energie hat ein Lichtquant der Wellenlänge
- a) 700 nm (rot)
- b) 400 nm (blau)
- 11) Welche de-Broglie Wellenlänge (Materiewelle) besitzt ein
- a) Tennisball von 50 g Masse, der mit 30 m/s (100 km/h) fliegt?
- b) Elektron, das auf der 1. Schale des H-Atoms nach der Bohr-Theorie mit $2,19\cdot10^6$ m/s fliegt ($m_e = 0,911\cdot10^{-27}$ g)?
- 12) Der Lichtblitz eines Lasers bestehe aus 10¹⁵ Photonen der Wellenlänge 694 nm. Welche Energie hat der Lichtblitz?

Prof. Dr. T. Jüstel Allgemeine Chemie

- 13) Die Bestrahlungsstärke der Erde durch die Sonne beträgt global und jahreszeitlich gemittelt auf Meereshöhe ca. 170 W/m².
- a) Mit wie vielen Photonen der mittleren Wellenlänge 550 nm wird also jeder Quadratmeter der Erde durchschnittlich bestrahlt?
- b) Wie groß ist die Gesamtstrahlungsleistung, welche die Erde empfängt (r_{Erde} = 6378 km)?
- c) Der Weltenergieverbrauch beträgt im Mittel etwa 14 TW. Welche Fläche müsste man mit Si-Solarzellen (10% Effizienz) zupflastern, um diesen Energiebedarf photovoltaisch zu decken?
- d) Wieviel Prozent der Erdoberfläche wird dazu also benötigt?
- 14. Berechnen Sie die mittlere Atommasse von Eisen unter der Annahme, dass die Atommasse seiner vier stabilen Isotope (5,82% ⁵⁴Fe, 91,66% ⁵⁶Fe, 2,19% ⁵⁷Fe, 0,33% ⁵⁸Fe) der Ordnungszahl entspricht! Woher stammt dann die Differenz zum tabellierten Wert im Periodensystem?
- 15) In der Sonne werden gemäß der Gleichung 4 $^{1}H \rightarrow {}^{4}He + 26,72$ MeV in jeder Sekunde 600 Mio t Wasserstoff in Helium umgewandelt.
- a) Berechnen Sie für obige Gleichung den Massendefekt aus den Atomgewichten von ¹H und ⁴He
- b) Wieviel He wird gebildet?
- c) Wieviel Energie wird dabei in jeder Sekunde freigesetzt?
- 16) Skizzieren Sie das Orbitaldiagramm für die Elektronenkonfiguration von 28Ni!
- 17) Bestimmen Sie die Avogadrokonstante aus den folgenden physikalischen Eigenschaften von Cu! Dichte = 8,93 g/cm³, Elementarzelle: kubisch, Kantenlänge a = 3,62·10⁻¹⁰ m, 4 Cu-Atome pro Elementarzelle
- 18) Welche Elektronenkonfigurationen besitzen die folgenden Elemente im Grundzustand?
- a) 25Mn
- b) 32Ge
- c) 39Y
- d) 54Xe
- 19) Wie viele Elektronen können maximal in den 4p-, 4d- bzw. in den 4f-Orbitalen eingebaut werden? Begründung angeben!
- 20) Kohlenstoff aus der Mitte des Stammes eines lebenden Sequoia-Baumes hat eine Aktivität von 11 ¹⁴C-Zerfällen pro Minute pro Gramm Kohlenstoff, während es beim Kohlenstoff aus der Rinde 15 ¹⁴C-Zerfälle pro Minute und Gramm sind.

 $(t_{1/2}(^{14}C) = 5730 a$

Wie alt ist der Baum?

- 21) Skizzieren Sie die Besetzung der 3d- und 4f-Orbitale für folgende Elektronenkonfigurationen!
- a) $3d^3$
- b) 3d⁸
- c) 4f⁹
- d) 4f¹²

Prof. Dr. T. Jüstel Allgemeine Chemie