Anorganische Chemie I

PRÜFUNG

B. Sc. Chemieingenieurwesen

18. September 2020

Prof. Dr. T. Jüstel

Name:	
Matrikelnummer:	
Geburtsdatum:	

Denken Sie an eine korrekte Angabe des Lösungsweges und der Endergebnisse. Versehen Sie alle Größen mit IUPAC Einheiten! Bei der Anfertigung von Grafiken sind die Achsen ordnungsgemäß zu beschriften! Richten Sie alle Reaktionsgleichungen vollständig mit ganzzahligen Koeffizienten ein! Benutzen Sie bitte nur diese Aufgabenzettel, notfalls können Sie auch die Rückseiten verwenden!

Dauer der Prüfung: 120 Minuten

Hilfsmittel: Periodensystem, Taschenrechner, mathematische Formelsammlung

Punktevertei	lung	Noter	<u>ıskala</u>
Aufgabe 1:	10 Punkte	1,0	95 – 100 Punkte
Aufgabe 2:	10 Punkte	1,3	90 – 94 Punkte
Aufgabe 3:	10 Punkte	1,7	85 - 89 Punkte
Aufgabe 4:	10 Punkte	2,0	80 - 84 Punkte
Aufgabe 5:	10 Punkte	2,3	75 – 79 Punkte
Aufgabe 6:	10 Punkte	2,7	70 - 74 Punkte
Aufgabe 7:	10 Punkte	3,0	65 – 69 Punkte
Aufgabe 8:	10 Punkte	3,3	60-64 Punkte
Aufgabe 9:	10 Punkte	3,7	55 – 59 Punkte
Aufgabe 10:	10 Punkte	4,0	50-54 Punkte
_		5,0	0-49 Punkte

Viel Erfolg!

Name:	Matrikelnummer.:
Aufgabe 1	(10 Punkte)
Interhalogene	
a) Zeichnen Sie die Strukturformeln von folgend Sie den Strukturtyp! (je 2 Punkte)	den Interhalogenverbindungen und benennen
XY_3	
XY_5	
XY_7	
b) Zeichnen Sie die Struktur von ICl ₃ , das als Dir	mer vorliegt! (2 Punkte)

c) Welche Struktur hat das BrF_4^+ Kation gemäß dem VSEPR-Modell? (2 Punkte)

Prüfung B. Sc. 18.09.20

Anorganische Chemie I

Anorganische Chemie I	Prüfung B. Sc. 18.09.20
Name:	Matrikelnummer.:
Aufgabe 2	(10 Punkte)
Halogensauerstoffsäuren	

- a) Nennen Sie die Summenformeln der vier Sauerstoffsäuren des Chlors! (4 Punkte)
- b) In welchen Oxidationsstufen liegt das Chlor jeweils vor? (2 Punkte)
- c) Warum ist das Perchloratanion kinetisch stabiler als das Chlorat-, Chlorit-, oder Hypochloritanion? Begründen Sie an Hand der Strukturformeln! (4 Punkte)

Anorganische Chemie I	Prüfung B. Sc. 18.09.20
Name:	Matrikelnummer.:
Aufgabe 3	(10 Punkte)

Chalkogene – Chemische und physikalische Eigenschaften

- a) Erklären Sie den Begriff der Allotropie am Beispiel des Sauerstoffs! (3 Punkte)
- b) Erklären Sie den Begriff der Polymorphie am Beispiel des Schwefeltrioxids! (3 Punkte)
- c) Die Sauerstoffsäuren H₂SO₄ und H₆TeO₆ besitzen sehr unterschiedliche physikalische Eigenschaften. Erläutern Sie die Unterschiede auf Basis des strukturellen Aufbaus und des Metallcharakters des Zentralatoms! (4 Punkte)

Anorganische Chemie I	Prüfung B. Sc. 18.09.20
Name:	Matrikelnummer.:
Aufgabe 4	(10 Punkte)
Oxosäuren des Schwefels	

Vervollständigen Sie die folgende Tabelle! (je 1 Punkt)

Molekül	Name	Strukturformel
H ₂ SO ₃		
H ₂ SO ₄		
H ₂ SO ₅		
H ₂ S ₂ O ₇		
** 0 0		
H ₂ S ₂ O ₈		

Anorganische Chemie I	Prüfung B. Sc. 18.09.20
Name:	Matrikelnummer.:
Aufgabe 5	(10 Punkte)
Reaktionen der Stickstoffverbindu	ingen
Formulieren Sie die Gleichungen f (je 2 Punkte)	ür die thermische Zersetzung der folgenden Verbindungen!
a) NH ₄ NO ₃	
b) NH ₄ NO ₂	
c) NaN ₃	
d) N_2H_2	

e) N₂H₄

Anorganische Chemie I	Prüfung B. Sc. 18.09.20
Name:	Matrikelnummer.:
Aufgabe 6	(10 Punkte)
Verbindungen des Phosphors	

Vervollständigen Sie die folgende Tabelle! (je 1 Punkt)

Molekül	Struktureller Aufbau	Oxidationsstufe des Phosphors
P4O ₁₀		
II DO		
H ₃ PO ₄		
PH ₃		
PF ₃		
PF ₅		
115		

Anorganische Chemie I	Prüfung B. Sc. 18.09.20
Name:	Matrikelnummer.:
Aufgabe 7	(10 Punkte)

Kohlenstoff und Kohlenstoffverbindungen

- a) Nennen Sie drei allotrope Modifikationen des elementaren Kohlenstoffs und nennen Sie jeweils eine typische Eigenschaft! (6 Punkte)
- b) Erläutern Sie mit Hilfe eines MO-Diagramms die Bindungsverhältnisse im Acetylidanion $C_2^{2-}!$ (4 Punkte)

Name:	Matrikelnummer.:
Aufgabe 8	(10 Punkte)

Prüfung B. Sc. 18.09.20

Siliziumchemie

Anorganische Chemie I

- a) Erläutern Sie die Begriffe Inselsilikat, Pyrosilikat und Ringsilikat an Hand der Strukturformeln! (6 Punkte)
- b) Vergleichen Sie Struktur, Bindungsverhältnisse und Eigenschaften der Dioxide des Siliciums mit denen des Kohlenstoffs! (4 Punkte)

Name:	Matrikelnummer.:	
Aufgabe 9		(10 Punkte)
Borgruppe		

Prüfung B. Sc. 18.09.20

Anorganische Chemie I

- a) Erläutern Sie, warum BH_3 zur Dimerisierung neigt, während AlH_3 polymerisiert! (4 Punkte)
- b) Machen Sie einen begründeten Strukturvorschlag für das für das Peroxoboratanion $B_2(O_2)_2(OH)_4^{2-}!$ Welche Oxidationsstufen besitzen die verbrückenden Sauerstoffatome? (6 Punkte)

Anorganische Chemie	Anorga	nische	Chemie	I
----------------------------	--------	--------	--------	---

Prüfung B. Sc. 18.09.20

Name:	Matrikelnummer.:
Aufgabe 10	(10 Punkte)

Alkali- und Erdalkalimetalle

a) Formulieren Sie die Reaktionsgleichungen für die Reaktionen von Lithium mit den folgenden Reaktionspartnern! (je 1 Punkt)

$$Li + N_2 \rightarrow$$

$$Li + O_2 \rightarrow$$

$$Li + H_2O \rightarrow$$

 $Li + F_2 \rightarrow$

$$Li + NH_3 \rightarrow$$

$$Li + CH_3CH_2OH \rightarrow$$

b) Beschreiben Sie die Hydrolysereaktionen der Alkali- und Erdalkalimetalloxide und auch die Folgereaktion der Hydrolyseprodukte mit CO_2 ! (4 Punkte)