Examination

"Material Characterisation - Optical Spectroscopy (Prof. Dr. Jüstel)"

Date: March 10 ${ }^{\text {th }}, 2016$
Name, Given name:

Max. 25 Points
Enrolment number:

Please only use these sheets (you might also use the reverse)!

Task 1)

(4 Points)

Basics of Optical Spectroscopy

Sketch the arrangement of the basic components of a spectrometer set-up for the following purposes! Give also for each component an example for a widely applied device! (Each 2 Points)
a) Emission and Excitation Spectroscopy
b) Reflection Spectroscopy

Task 2)

Absorption and Reflection Spectroscopy

$\mathrm{Y}_{3} \mathrm{Al}_{5} \mathrm{O}_{12}$ is a widely applied host for luminescent and laser materials, whereby the optical band gap is about $7.0 \mathrm{eV}\left(56500 \mathrm{~cm}^{-1}\right)$.
a) Describe the way to determine the absorption spectrum of a YAG single crystal (2 Points)
b) Describe the way to determine the absorption spectrum of a YAG microscale powder (2 Points)
c) Clarify by means of the Kubelka-Munk function, whether completely white or black substances may exist! (2 Points)

Kubelka-Munk-Function: $F\left(R_{\infty}\right)=\frac{A}{S}=\frac{\left(1-R_{\infty}\right)^{2}}{2 \cdot R_{\infty}}$

Task 3)

Time resolved spectroscopy

a) Describe the procedure to record a decay curve of an arbitrary luminescent material! (2 Points)
b) The figure below displays the decay curve of $\mathrm{YVO}_{4}: \mathrm{Eu}^{3+}$, which is applied in highpressure Hg discharge lamps and plasma displays. Please determine the decay constants $\tau_{1 / \mathrm{e}}$ and $\tau_{1 / 10}$ from the following graph! (1 Point)

c) Please name a potential cause for the deviation of the curve from linearity for the above given log(Intensity) over time t plot! (1 Point)
d) Select a function for the fitting of the decay curve shown above and explain your choice! (1 Point)
$I(t)=A_{0}-B_{1}{ }^{*} t / \tau_{1}$
$I(t)=A_{0}+B_{1} * \exp \left(-t / \tau_{1}\right)$
$I(t)=A_{0}+B_{1}{ }^{*} \exp \left(-t / \tau_{1}\right)+B_{2}{ }^{*} \exp \left(-t / \tau_{2}\right)$

Temperature resolved spectroscopy - Thermoluminescence

a) Describe the procedure to record a glow curve of an arbitrary luminescent material! (3 Points)
b) Which information can be derived from a glow curve? (2 Points)

Task 5)

Temperature resolved spectroscopy - Thermal quenching

a) Describe the way to record a thermal quenching curve and to fit the experimental data by the so-called Struck-Fonger equation! (3 Points)
$I(T)=A_{0}+I_{0} /(1+B \cdot \exp (-\Delta E / k T)) \quad$ "Struck-Fonger-Equation"
b) Draw the shape of a typical thermal quenching curve in a respective intensitytemperature diagram and also assign the $\mathrm{T}_{1 / 2}$ value! (2 Points)

