Examination

Material Characterization – Optical Spectroscopy (Dr. Baur & Prof. Dr. Jüstel)

Date: January 31st, 2019

Name, given name:

Enrolment number:

Please only use these sheets (you may also use the back of the sheets)!

Task 1)

10 points

Max. 50 points

Luminescence Spectroscopy

- a) Sketch the construction of a typical fluorescence spectrometer, name all relevant parts and give a short(!) explanation of each part (4 points)
- b) Which excitation source would you use for each of the following cases: (3 points)
 - Decay measurement of Eu^{2+} (decay time of ~ 1 µs)
 - Decay measurement of Eu³⁺ (decay time of ~ 1 ms)
 - Excitation spectrum measurement in the range from 250 to 500 nm
- c) Why is it necessary to correct emission spectra? Please also describe how the correction data is obtained. (3 points)

Task 2)

Time-resolved spectroscopy

- a) Describe how a decay curve measurement is generally conducted. (3 points)
- b) The figure below displays the decay curve of Na₃RbMg₇(PO₄)₆:Eu²⁺, which is a novel blue-emitting phosphor. Please estimate the decay constants $\tau_{1/e}$ and $\tau_{1/10}$ from the following graph! Give an example of what knowledge of the decay constant can be used for (2 points)

- c) The above curve has a linear part when the logarithmic intensity is plotted over time. Name two potential causes why a decay curve could deviate from linearity. (2 points)
- d) Which of the following functions can be used for a physically meaningful fit of the above decay curve. Please explain for each function why it can or cannot be used: (3 points)

-
$$I(t) = A_0 + B * e^{-\frac{t}{\tau}}$$

- $I(t) = A_0 - B * e^{-\frac{t}{\tau}}$
- $I(t) = A_0 - B_1 * e^{-\frac{t}{\tau_1}} - B_2 * e^{-\frac{t}{\tau_2}}$

Task 3)

Temperature-resolved measurements

- a) Please describe how a thermal quenching measurement is generally performed. (3 points)
- b) Sketch a typical thermal quenching curve and mark the $T_{1/2}$ point. Please explain the meaning of the $T_{1/2}$ value and why it is an important property of a phosphor. (2 points)
- c) Please sketch a potential thermal quenching process (e.g. intersystem crossing or photo-ionization) and explain it. Is thermal quenching a reversible or an irreversible process? (4 points)
- d) Name a useful application of the thermal quenching behavior of a phosphor. (1 point)

Task 4)

Reflection spectroscopy

- a) Sketch a typical reflection spectrometer and describe a reflection measurement in broad terms (4 points)
- b) Sketch the reflection spectrum (250 to 800 nm) of a
 - white powder
 - yellow powder
 - blue powder

(2 points)

- c) Why is an integration sphere required for reflection measurements? (2 points)
- d) Name two possible reflection standards that could be used for a reflection measurement in the range of 250 to 800 nm and explain which material you would choose and why. (2 points)

Task 5)

Quantum efficiency

- a) Please explain the difference between external and internal quantum efficiency. One of the two is always larger than the other, which is it and why? (3 points)
- b) How can you determine the internal quantum efficiency of an activator? (2 points)
- c) Please describe how the external quantum efficiency can be measured directly, i.e. <u>without</u> a reference phosphor with a known quantum efficiency. (3 points)
- d) Explain the term "light yield". (2 points)