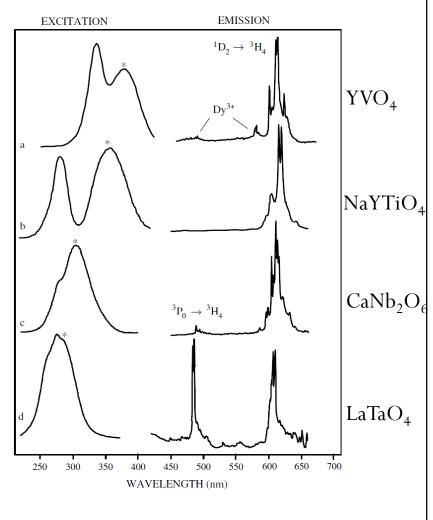

Making red emitting phosphors with Pr³⁺ Florian Baur and Nils Wagner

Basics

- Pr³⁺ activated phosphors containing closed-shell transistion metal ions show red luminescence
 - Titanates, vanadates, niobates
- UV excitation
- ³P₀ level (greenish-blue emission) quenched by intervalance charge transfer state (IVCT)
- ${}^{1}D_{2} \rightarrow {}^{3}H_{4}$: red emission

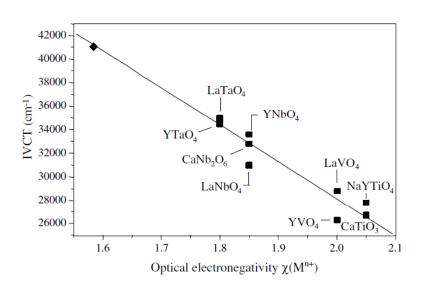
Quenching of ${}^{3}P_{0}$

- Intersystem crossing $(f \rightarrow d)$
 - 4f5d band is too high in energy (60000 cm⁻¹)
- Cross relaxation
 - Limited due to doping < 0.2 mol-%
- Multiphonon relaxation
 - Only weak contribution (Dijk-Schuurman equation)
- IVCT
 - $Pr^{3+} + M^{n+} \rightarrow [Pr^{4+} + M^{(n-1)+}]$



Experimental

- Preparation of titanates, vanadates, niobates, tantalates
 - As crystalline powders by solid state reactions
 - As single crystals using the flux growth method
- Pr³⁺ inserted in the rare earth or calcium sites
 - Only one site is available for the Pr³⁺


Excitation and emission

- Two excitation bands
 - Host absorption (higher energy)
 - IVCT absorption (lower energy)

IVCT and optical electronegativity

- Energetic position of the IVCT is roughly linear with the optical electronegativity
- IVCT = 31 450[2.89- $\chi(M^{n+})$
- ${}^{3}P_{0}: \sim 20 \ 400 \ \mathrm{cm}^{-1}$
- IVCT: Energy mismatch < 7400 cm⁻¹

Predicting ³P₀ quenching

Lattice	Avg(Pr-M) [Å]	$\hbar\omega_{\rm max} [{\rm cm}^{-1}]$	IVCT [cm ⁻¹]	Red/(red + blue)	$\chi(M^{n+})/Avg(Pr-M)$
NaYTiO ₄	3.27	890	27,800	100%	0.627
CaTiO ₃	3.31	639	26,700	100%	0.619
YVO ₄	3.64	891	26,310	100%	0.550
LaVO ₄	3.71	860	$28,800^{a}$	>90%	0.540
CaNb ₂ O ₆	3.67	904	32,800	>80%	0.504
YNbO ₄	3.73	830	33,600	>80%	0.496
YTaO ₄	3.72	825	$34,480^{a}$	>50%	0.484
LaNbO ₄	3.83	807	$31,000^{a}$	≅50%	0.476
LaTaO ₄	3.81	810	35,000	≅50%	0.472
CaZrO ₃	3.48	545	_	<20%	0.459

Structural, vibrational and optical characteristics of closed-shell transition metal lattices containing Pr³⁺

^a The value is not accurate, Avg = average.

- Average distance (Avg(Pr-M)) between Pr and metal is also important
 Smaller distance leads to higher quenching rates
- •Ratio of optical electronegativity and average distance is a simple criterion for predicting ${}^{3}P_{0}$ quenching

Conclusions

- Low-lying IVCT can be used to quench the ${}^{3}P_{0}$ level
- Criterion: High ratio $R = \chi(M^{n+}) / Avg(Pr-M)$
- Red-emitting phosphors can be obtained by using the low $\cos Pr^{3+}$ ion
 - Pr₂O₃:~ 80 €/kg
 - Eu₂O₃: ~ 1200 €/kg