Materialcharakterisierung

<u>Inhalt</u>

- 1. Methoden zur Materialcharakterisierung
- 2. Physikalische Grundlagen
- 3. Experimenteller Aufbau
- 4. Methoden der optischen Materialcharakterisierung
 - 4.1 Absorptionsspektroskopie
 - 4.2 Lumineszenzspektroskopie
 - 4.3 Reflexionsspektroskopie

Zu meiner Person

Dr. Florian Baur (Jahrgang 1979)

Promotion WWU Münster 2017

"Rotemittierende Leuchtstoffe mit hohem Lumenäquivalent als Konverter in warmweißen leuchtstoffkonvertierten Leuchtdioden"

Kooperation mit Merck KGaA, Darmstadt Leuchtstoffe für Full-Phosphor-Conversion LED

Kontakt: florian.baur@fh-muenster.de 02551-9 62599 Raum M5

Literaturhinweise

- B. Schröder, J. Rudolph, VCH, Physikalische Methoden in der Chemie, VCH, 1985
- M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, VCH, 1987
- H. Naumer, W. Heller, Untersuchungsmethoden in der Chemie, Georg Thieme Verlag, 1990
- E.A.V. Ebsworth, D.R.H. Ranklin, S. Cradock, Structural Methods in Inorganic Chemistry, Blackwell Scientific Publications, 1991
- W. Schmidt, Optische Spektroskopie, VCH, 1993
- J.B. Lambert, S. Gronert, H.F. Shurvell, D.A. Lightner, Spektroskopie Strukturaufklärung in der organischen Chemie, Pearson, 2012

Materialcharakterisierung Dr. F. Baur, Prof. Dr. T. Jüstel Folie 3

1. Methoden zur Materialcharakterisierung

Chemische Zusammensetzung

Elementaranalyse Röntgenfluoreszenzanalyse Atomabsorptionspektroskopie Pulverdiffraktometrie Infrarotspektroskopie Ramanspektroskopie Differentialthermoanalyse Haupt- und Nebenkomponenten Haupt- und Nebenkomponenten Spurenelemente, Dotierungen Phasenzusammensetzung Nachweis funktioneller Gruppen Nachweis funktioneller Gruppen Phasenumwandlungen, Kristallwasser

Morphologische Charakterisierung (Mikro- und Nanostruktur)

Lichtstreuung (Laserstreuung) Optische Mikroskopie Rasterelektronenmikroskopie Transmissionselektronenmikr. BET-Isotherme Teilchengrößenverteilung Teilchenmorphologie Teilchenmorphologie, Oberflächenfeinstruktur Kristallinität, Textur Spezifische Oberfläche

1. Methoden zur Materialcharakterisierung

Strukturelle Charakterisierung

Pulverdiffraktometrie Röntgenstrukturanalyse EXAFS NMR-Spektroskopie Infrarotspektroskopie

Ramanspektroskopie Resonanz-Ramanspektroskopie Phasenidentität, Kristallsystem, Raumgruppe Raumgruppe, Atomkoordinaten Chemische Umgebung von Schweratomen Molekülaufbau Molekülidentität Anordnung funktioneller Gruppen Anordnung funktioneller Gruppen Anordnung funktioneller Gruppen

Oberflächencharakterisierung

Electrosonic Amplitude (ESA) Massenspektroskopie (MS) Röntgenphotoelektronen-Spektroskopie (ESCA/XPS)

Oberflächenladung, Isoelektrischer Punkt Adsorption organischer Moleküle an Oberflächen Oberflächenzusammensetzung

1. Methoden zur Materialcharakterisierung

Bestimmung physikalischer Eigenschaften

Elektronische Eigenschaften

Absorptionsspektroskopie ESR-Spektroskopie Mößbauerspektroskopie Ultraviolettphotoelektronen-Spektroskopie (UPS)

Elektronischer Grundzustand

Oxidationszustand, elektronischer Grundzustand Oxidationszustand, Koordinationsgeometrie Bandstruktur

Optische Eigenschaften

Absorptionsspektroskopie Reflexionsspektroskopie Lumineszenzspektroskopie

<u>Magnetische Eigenschaften</u> Suszeptibilitätsmessung NMR-Spektroskopie Absorptionskoeffizient, elektron. Grundzustand Bandlücke, Farbpunkt Anregungs-, Emissionsspektrum, Farbpunkt Quantenausbeute, Lumenäquivalent

Dia-, Para-, Ferro-, Ferri-, Antiferromagnetismus Elektronischer Grundzustand

2. Physikalische Grundlagen

2.1 Klassifizierung der optischen Spektroskopie 2.2 Das elektromagnetische Spektrum 2.3 Zeitskala physikalischer Vorgänge 2.4 Wechselwirkung von Licht und Materie Arten der elektromagnetischen WW **Elektronische Zustände in Atomen** Elektronische Zustände in Festkörpern Reflexion Absorption Brechung Lumineszenz 2.5 Radiometrische Strahlungsgrößen 2.6 Photometrische Lichtgrößen

2.1 Klassifizierung der optischen Spektroskopie

2.2 Das elektromagnetische Spektrum

γ-Strahlung	Röntgenstrahlu	ıng UV-R <mark>Vis</mark>	IR-Strahlung	Radiowelle	en
10 ⁻¹⁶ 10 ⁻¹⁴ UV-R Strahlung EUV VUV VUV UV-C	10 ⁻¹² 10 ⁻¹⁰ 1 - 100 nm 100 - 200 nm 200 - 280 nm	10 ⁻⁸ 1(Wellenlänge [m]) ⁻⁶ 10 ⁻⁴ <u>IR-Strahlu</u> IR-A IR-B IR-C	10 ⁻² 10 ⁰ <u>10g</u> 780 - 14 1.4 - 3 µ 3 - 1000	10 ² 100 nm ιm μm
UV-B UV-A Sichtbares Licht	280 - 320 nm 320 - 400 nm	komplementär	<u>Radiowelle</u> Mikrowell <u>zu</u> HF-Bereic NF Poreie	en 1 - 1000 en 1 - 1000 eh 1 m - 10) mm) km
Blau Cyan Cyan-Grün Grün	430 - 480 nm 480 - 490 nm 490 - 500 nm 500 - 560 nm	Gelb Orange Rot Purpur	NF-Bereic.	n > 10 km	1
Gelb-grün Gelb Orange Rot	550 - 570 nm 570 - 590 nm 590 - 610 nm 610 - 780 nm	Violett Blau Cyan Cyan-Grün	E = h	$\cdot v = \frac{h \cdot c}{\lambda} = h$	$\cdot c \cdot \widetilde{v}$

2.2 Das elektromagnetische Spektrum

F	nergie von Pho	otonen	<u>Wellenlänge</u> λ	Frequenz v	Wellenzahl v	Energie E
E	$\mathbf{L} = \mathbf{h}\mathbf{v}$	$h = 6.626 \cdot 10^{-34} Js$	- 10 ⁻¹⁶ m	3·10 ²⁴ Hz	1·10 ¹⁴ cm ⁻¹	12.4 GeV
-			- 10 ⁻¹⁴ m	3·10 ²² Hz	$1.10^{12}cm^{-1}$	124 MeV
E	$\lambda = hc/\lambda$	$c = 2.99/9.10^{\circ} \text{ m/s}$	- 10 ⁻¹² m (1 pm)	3·10 ²⁰ Hz	1·10 ¹⁰ cm ⁻¹	1.24 MeV
E	$L = N_A hc/\lambda = 11$	9226 /λ kJmol ⁻¹				
			$-10^{-10}\mathrm{m}$	3·10 ¹⁸ Hz	$1.10^{8}{\rm cm}^{-1}$	12.4 keV
D Z)ie Energie ist s ur reziproken l	somit proportional Länge, der so-	- 10 ⁻⁸ m	3·10 ¹⁶ Hz	1·10 ⁶ cm ⁻¹	124 eV
g	enannten Well	enzahl v				
N	fit $\widetilde{\mathbf{v}} = 1/\lambda$		- 10 ⁻⁶ m (1 μm)	300 THz	1·10 ⁴ cm ⁻¹	1.24 eV
E	$\mathbf{L} = \mathbf{h} \cdot \mathbf{c} \cdot \widetilde{\mathbf{v}}$					
	$= 1.240.10^{-4.} \widetilde{v}$	[eV]	- 10 ⁻⁴ m	3 THz	100 cm ⁻¹	12.4 meV
	$= 1240/\lambda [eV]$					
b	zw. 1 eV ~ 806	5 cm ⁻¹	- 10 ⁻² m	30 GHz	1 cm ⁻¹	0.124 meV
6			100 (1)	200 NATE-	0.01	1 24
<u>6</u>	rößen proport	ional zur Energie E	$-10^{\circ} m (1 m)$	300 MHZ	0.01 cm ⁻¹	1.24 μεν
1	. Frequenz v	[Hz]	102	2 3 611	1 1 0 / 1	10.4 17
2	. Wellenzahl	v [cm ⁻¹]	-10^2 m	3 MHz	1·10 ⁻⁴ cm ⁻¹	12.4 neV
	Materialcharakterisier	ung				Folie 10
	Dr. F. Baur, Prof. Dr. T.	JUSIEI				

2.3 Zeitskala physikalischer Vorgänge

Chem. Reaktionen < Molekülrotation < Molekülschwingung < Elektronenbewegung

Franck-Condon Prinzip

Da die Kerne so viel schwerer als die Elektronen sind, wird der elektronische Übergang so schnell vollzogen, dass die Kerne keine Zeit haben, darauf zu reagieren (Born-Oppenheimer-Näherung)

Separation von Elektronenund Kernbewegung

Das Elektron geht kontinuierlich von einem stationären Zustand in den anderen über.

Arten der elektromagnetischen Wechselwirkung

<u>Strahlungsart</u>	Wechselwirkung mit	Physikalischer Prozess
γ-Strahlung	Atomkernen	Anregung von Kernzuständen
Röntgen	inneren Elektronen	Anregung/Beugung
UV/Vis	Valenzelektronen	Anregung von elektronischen Zuständen
Infrarot	Molekülen	Schwingungsanregung (Phononen)
Mikrowellen	Molekülen, Elektronen	Spinumkehr, Rotationsanregung
Radiowellen	Kernspin	Spinumkehr

Makroskopische Erscheinungen = Absorption, Brechung, Emission, Reflexion, Transmission

Energieerhaltungssatz: A + R + T = 1 bzw. E + R + T = 1

Kirchhoff'sches Gesetz: $A(\lambda) = E(\lambda)$ (**Kirchhoff 1859**)

Elektronische Zustände in Mehrelektronenatomen

Ato	<u>m Elektronenkonfigu</u>	ration Gr	undzustand 1	. angeregter Z	ustand
Na ⁰	$1s^2 2s^2 2p^6 3s^1$	² S ₁	^{'2} ²]	$P_{3/2}, {}^{2}P_{1/2}$	
(gel	be Na-Doppellinie bei 58	9.0 und 589.6 nm	\Rightarrow Test der Spe	ektrometeraufl	ösung)
Cr ³	+ $1s^2 2s^2 2p^6 3s^2 3p^6 4$	$s^2 3d^3 $ ⁴ F	4]	P	
Ce ³	+ [Xe]4f ¹	${}^{2}\mathbf{F}_{5}$	$_{/2}, {}^{2}\mathbf{F}_{7/2}$ ${}^{2}\mathbf{J}$		
Eu ³	+ [Xe]4f ⁶	⁷ F ₀	5]	$\mathbf{D}_{0} \begin{vmatrix} \mathbf{S} = \boldsymbol{\Sigma} \mathbf{S} \\ \mathbf{L} = \boldsymbol{\Sigma} \end{vmatrix}$	
Gd ³	+ [Xe]4f ⁷	⁸ S ₇	^{/2} ⁶]	$\mathbf{P}_{\mathbf{J}} \mathbf{J} = \mathbf{L} + \mathbf{S} \dots$. L-S
				Terme (En	ergieniv.)
Aus	<u>wahlregeln für elektrise</u>	he Dipolübergäng	(e	$^{23+1}L_{J}$	
1.	Spinauswahlregel	$\Delta S = 0$			
2.	Bahnmoment	$\Delta l = +/-1, \Delta l$	$m_l = 0, +/-1$		
3.	Laporte Auswahlregel	$g \rightarrow u, u \rightarrow$	g, aber nicht g	\rightarrow g, u \rightarrow u	
Mit	Russel-Saunders Kopp	lung: ΔL , $\Delta J = 0$,	+/-1, aber nicht	$\mathbf{t} \mathbf{J} = 0 \rightarrow \mathbf{J} = 0$	
Ma Dr	terialcharakterisierung F. Baur, Prof. Dr. T. Jüstel				Folie 13

Elektronische Übergänge in Mehrelektronenatomen

Тур		ε [lmol ⁻¹ cm ⁻¹]	Beispiel	Elektron von	nach
s-p Übergänge	$\Delta l = 1$	10³-10⁴	Na ⁰	3s	\rightarrow 3p
d-d Übergänge	$\Delta \mathbf{l} = 0$	< 10 ²	Cr ³⁺	3d	\rightarrow 3d
f-d Übergänge	$\Delta l = 1$	$10^4 - 10^5$	Ce ³⁺	4f	\rightarrow 5d
f-f Übergänge	$\Delta \mathbf{l} = 0$	< 10 ²	Eu ³⁺	4f	$\rightarrow 4f$
			Gd^{3+}	4f	$\rightarrow 4 f$
			Tb ³⁺	4f	$\rightarrow 4 f$

Bahndrehmomentverboten:

- s-d $\Delta l = 2$
- $\mathbf{p}\text{-}\mathbf{f} \qquad \Delta \mathbf{l} = \mathbf{2}$
- s-f $\Delta l = 3$ Paritätserlaubt
- -Übergänge stark verboten!

Als Halbleiter werden Materialien bezeichnet, deren Leitfähigkeit durch strukturelle Defekte, Erwärmung oder durch Bestrahlung erhöht wird!

Elektronische Übergänge im Festkörper und Molekülen

Тур	ε [lmol ⁻¹ cm ⁻¹]	Beispiel	Elektron von nach
Bandübergänge	$10^5 - 10^6$	TiO ₂	$O^{2-} \rightarrow Ti^{4+} (VB \rightarrow LB)$
CT Übergänge	10⁴ - 10⁶	WO ₄ ²⁻	$\mathrm{O}^{2\text{-}} ightarrow \mathrm{W}^{6+}$,,LMCT"
		Fe(CO) ₅	$Fe^0 \rightarrow CO$ "MLCT"
		KFe[Fe(CN) ₆]	$Fe^{2+} \rightarrow Fe^{3+}$ "MMCT"
		$[(cp)_2 Zr(biq)]^{2+}$	$cp^{-} \rightarrow biq$ "LLCT"
$\sigma \rightarrow \sigma^*$	> 10 ³	CH ₄	$HOMO \rightarrow LUMO$
$\pi \rightarrow \pi^*$	$10^4 - 10^6$	Butadien	$HOMO \rightarrow LUMO$
$n \rightarrow \pi^*$	$10^1 - 10^2$	(CH ₃) ₂ C=O	$HOMO \rightarrow LUMO$

<u>Außerdem</u>

- Anregung von Schwingungszuständen, d. h. Phononen im Festkörper bzw. Valenz- und Deformationsschwingungen im Molekül
- Anregung von Rotationszuständen (nur bei Molekülen)

Reflexion

- **<u>1. Reguläre (spekulare) Reflexion</u>** Reflexion an einer polierten(glatten) Fläche in eine Richtung (spiegelnde Oberfläche)
- Bsp.: Metall, Spiegel, ruhiges Wasseroberfläche

2. Nicht-reguläre (diffuse) Reflexion Reflexion an einer nicht-polierten Fläche In alle Richtungen des Halbraumes (matte Oberfläche) Bsp.: Papier, Pulver, weiße Wand

Quantitative Beschreit	ibung der Absorption	Interstellare Extinktion:
Energieerhaltung:	A + R + T = 1 (100%)	0.83 / 3260 ly (durch Rayleigh Streuung,
Transmission(sgrad)	$T = I_T / I_0 \le 1 (100\%)$	wenn Teilchen klein gegen die Wellenlänge)
Absorption(sgrad)	$A = 1 - T = 1 - I_T / I_0 \le 1 (100)$ (wenn $R = 0$)	0%)
	$(\text{weath } \mathbf{K} = 0)$	Extinktion E
Extinktion	$\mathbf{E} = -\mathbf{lg}(\mathbf{I}_{\mathrm{T}}/\mathbf{I}_{\mathrm{0}}) = \mathbf{lg}(\mathbf{I}_{\mathrm{0}}/\mathbf{I}_{\mathrm{T}})$ $\mathbf{E} = \mathbf{\varepsilon} \cdot \mathbf{c} \cdot \mathbf{d}$	2
	ε = molarer Extinktions- koeffizient (Stoffkonstante, abhängig von λ)	
		Konzentration c
Materialcharakterisierung		Folie 20

Dr. F. Baur, Prof. Dr. T. Jüstel

Brechung

Übergang von einem optisch dünneren in ein optisch dichteres Medium

 $n_1 \cdot \sin \alpha_1 = n_2 \cdot \sin \alpha_2$ (Snellius-Gleichung)

Totalreflexion tritt beim Übergang von einem optisch dichteren in ein optisch dünneres Medium auf, wenn der Grenzwinkel α_T überschritten wird

Grenzwinkel $\alpha_2 = \arcsin(n_1/n_2)$

Vakuum/Luft $\alpha_{\rm T} = \arcsin(1/n)$

Prinzip der Lichtleitung in Glasfasern

Brechungsindizes einiger Stoffe bei 589.3 nm

	N 1 · 1	<u>Grenzwinkel für Totalreflexion</u>
Substanz	Brechungsindex	Vakuum/Luft
Vakuum	1.000	$\alpha_{\rm T}$ = arcsin(1/n _{1 uft})
Luft	1.0003	$= 88.6^{\circ}$
Wasser	1.333	(Luftflimmern, Fata Morgana)
Ethanol	1.360	
CCl ₄	1.460	Quarzglas/Luft
Benzol	1.501	$\alpha_{\rm T}$ = arcsin($n_{\rm Luft}/n_{\rm Quarzglas}$)
CS ₂	1.628	= 43.3 °
Eis	1.309	(Quarzglasfaser)
CaF ₂	1.434	
Quarzglas	1.459	Diamant/Luit
NaCl, α-Quarz	1.54	$\alpha_{\rm T} = \arcsin(n_{\rm Luft}/n_{\rm Diamant}) - 24.5^{\circ}$
ZrSiO ₄ (Zirkon)	1.923	– 27.0 (Feuer" von Diamanten da n
Diamant	2.417	von der Wellenlänge abhängt)

Brechungsindizes als Funktion der Dichte von Gläsern

2.5 Radiometrische Strahlungsgrößen

Messgrößen zur Beschreibung der Leistung (proportional zur Anzahl der ausgesendeten Photonen pro Zeiteinheit) = energetische Größen

Messgrößen (Empfäng	<u>gergröße</u>	<u>n) am Detektor (Photomultiplier</u>	<u>, Photodiode, Auge)</u>
Intensität	Ι	= Photonenzahl/Fläche*Zeit	$[N_{hv}/m^2s]$
((Radiant) intensity)			
Bestrahlungsstärke	$\mathbf{E}_{\mathbf{e}}$	= Photonenzahl/Fläche*Zeit	$[J/m^2s = W/m^2]$
(Irradiance)			
\Rightarrow Diese Größen sind	proporti	onal zur Zählrate am Detektor	[Counts/s]
\Rightarrow Messtechnisch wird	l diese G	röße mit einem PMT oder einer	Photodiode erfasst
(Integration über e	inen bes	timmten Bereich, d.h. der Fenste	rgröße des Detektors)
Bestrahlung (Dosis)		= Photonenzahl/Fläche	[J/m ²]
(Radiant exposure)			

2.5 Radiometrische Strahlungsgrößen

P	hysikalische Größe		Symbol		Definition	Einhe	it
S	trahlungsfluss (-leistung	g)	Φ_{e}		= dW/dt	[W] bz	w. [J/s]
(]	Radiant power/flux)		C				
S	oektraler Strahlungsflu	SS	$\Phi_{a}(\lambda)$		$= d\Phi_{\lambda}/d\lambda$	[W/nm	1]
(§	pectral radiant power/	lux)	C V		e	L	-
S	pezifische Ausstrahlung	bzw.	$\mathbf{E}_{\mathbf{e}}$		$= d\Phi_e/dA[W/m]$	1 ²]	
B	estrahlungsstärke		-		-		
(]	Radiant emittance, irrad	liance)					
Spektrale Strahlungsdichte		te	L		$= dD_{a}/d\lambda [W/m]$	² nm]	
(§	pectral irradiance)		e		entra	-	
Ir	radiance of the Earth:		$E_{e} = 1.368$	8*10 ³ J/n	$n^2s = 1.368 \text{ kW/m}$	n ² (= solar	constant)
Number of photons.			$E = hy - hc/\lambda$ and $hy_{} = 4*10^{-19} J$				
- 1			\Rightarrow	1 W = 1	$I/s = 2.5 \times 10^{18} \text{ Pl}$	- hotonen nr	o Sekunde
				hei der V	Vellenlänge 550	nm	
			\rightarrow	3 375*10	²¹ Photonen/m ²	11111	
	Materialcharakterisierung				i notonen/m		Folie 27

Dr. F. Baur, Prof. Dr. T. Jüstel

Messgrößen, welche die spektrale Empfindlichkeit des Beobachters berücksichtigen

Lichtstrom (Luminous flux) $\Phi_v = \Phi_e/M_0$ [lm]

Lichtstärke $I_v = d\Phi_v/d\Omega$ [lm/sr = cd]

(Luminous intensity)

M₀ = Energetisches Lichtäquivalent = 0.00146 W/lm (1/683 W/lm)

K_{max} = 683 lm/W (bei 555 nm)

$$\mathbf{K}(\boldsymbol{\lambda}) = \mathbf{K}_{\max} \mathbf{V}(\boldsymbol{\lambda})$$

$$\Phi_{\rm v} = K \max \int_{380}^{780} V(\lambda) \Phi_e(\lambda) d\lambda$$

 Ω = Raumwinkel [sr]

(Kugeloberfläche = $4\pi r^2 = 4\pi sr$)

Lichtquelle mit 1 cd (1 lm pro sr) emittiert also 4π lm isotrop in alle Raumrichtungen

Ableitung des energetischen Lichtäquivalents $M_0 = 0.00146$ W/lm

Dr. F. Baur, Prof. Dr. T. Jüstel

LichtstromGesamte von einer Lichtquelle in alle Raumrichtung abgegebene(Luminous flux)Strahlungleistung, die mit der Augenempfindlichkeit bewertet
wird [lm]. Sie wird messtechnisch mit einer Ulbricht-Kugel erfasst.

LichtstärkeLichtstrom, der in einen Raumwinkel mit der Größe 1 Steradiant(Luminous int.)abgestrahlt wird [cd]. Hierzu wird der Lichtstrom nur in einem
bestimmten Raumwinkel erfasst, typischerweise im Bereich der
maximalen Strahlintensität.780

 $-Lichtstrom\Phi_{\rm v} = _{683}\int_{380}^{\infty} V_{rel}(\lambda)\Phi_{e}(\lambda)d\lambda$

Beleuchtungsstärke (Illuminance) Verhältnis des auffallenden Lichtstroms zur beleuchteten Fläche [lux = lm/m²] Sie wird messtechnisch mit einem Luxmeter bestimmt

Leuchtdichte

(Luminance)

Wahrgenommener Helligkeitseindruck einer Lichtquelle [cd/m²]. Sie wird mit einem ortsauflösenden Detektor (CCD-Kamera) gemessen

Integrale Größen	Raumwinkel bezogene Größen
	(auf 1 sr)
Lichtstrom $\Phi_v = \Phi_e / M_0$ [lm]	Lichtstärke I = $d\Phi_v/d\Omega$ [cd]
Beleuchtungsstärke $E = d\Phi_v/dA [lux = lm/m^2]$	Leuchtdichte L = dI/dAcosy

 $[cd/m^2] = [nit] (Luminanz)$

Lichtquelle	Leuchtdichte [cd/cm ²]
Sonne	150000
Entladungsbogen	20000 - 100000
Glühlampe (klar)	200 - 2000
Glühlampe (matt)	5-50
Leuchtstofflampe	0.4 - 1.4
Kerze	0.75
Blauer Himmel	0.3 - 0.5
Vollmond	0.25
Fernseher	0.05

Farbpunkt

Quantifiziert den Farbeindruck eines Emissionsspektrum (additive Farbmischung) Es existieren verschiedene Systeme für die Darstellung des Farbpunkts, CIE1931, CIE1976, CIElab, ...

Körperfarbe

- Der Farbeindruck, den ein Körper durch subtraktive Farbmischung hervorruft
- Er hängt sowohl von der Absorption des Stoffes als auch dem Spektrum der Lichtquelle ab
- Ein Standard ist die Messung nach D65, das dem Tageslichtspektrum entspricht
- Bei sehr effizienten Leuchtstoffen kann die Emission die Körperfarbe beeinflussen (Umwandlung von nicht sichtbarem UV in sichtbares Licht)

Foto Ho₂O₃ unter Kunst- und Tageslicht

3. Experimenteller Aufbau

- 3. Experimenteller Aufbau
 - 3.1 Aufbau eines Spektrometers
 - 3.2 Anregungsquellen
 - **3.3 Dispersive Elemente**
 - 3.4 Detektoren
 - 3.5 Probenkammer

Aufbau eines Spektrometers 3.1

Typische Lichtquellen

- Halogenlampen
- Gasentladungslampen
 - Xe-Mitteldrucklampen
 - Hg-Nieder/Mittel/Hochdrucklampen
 - H₂/D₂-Lampen
- Leuchtdioden
- Laser (nur bedingt für Anregungsspektren geeignet!)
 - Gaslaser (CO₂, N₂, Kr, Excimere: ArF*, XeF* etc.)
 - Festkörperlaser
 - Farbstofflaser
 - Laserdioden
- Röntgenröhren
- Elektronenkanone
- Synchrotrons

Spektrum einer Xe-Mitteldrucklampe

- 220 450 nm Quasi-Kontinuum
- >450 nm

Quasi-Kontinuum + Xe-Linien

Spektrum einer Hg-Hochdrucklampe

- 210 ca. 300 nm
 Quasi-Kontinuum
- Hg-Linien bei 248, 254, 265, 303, 313, 365, 405, 435, 546 und 579 nm

Spektren von Halogenlampen und LEDs

Superkontinuumlaser (Weißer Laser)

- Spektrale Verbreiterung einer Laserlinie durch nichtlineare Effekte in einer Glasfaser
- Spektrum zeigt deutlich die primäre Laserlinie (z. B. 1064 nm bei YAG:Nd) ۲
- Die optische Leistung ist meist eher gering, da eine Laserlinie auf das gesamte Spektrum verbreitert wird

NKT Photonics "SuperK FIANIUM" Optische Leistung: 1,5 W

Elektronenkanone

- Durch Anlegen einer Hochspannung U_a zwischen einer Wendel und einem Anodenblech werden Elektronen aus der Wendel in Richtung der Anode beschleunigt
- Um Elektronen austreten zu lassen, wird die Wendel mit einem Heizstrom auf 800-1000 °C erhitzt
- Je höher die Temperatur, desto mehr Elektronen treten aus, je höher die Spannung, desto größer ist die Energie der Elektronen
- Der Elektronenstrahl wird durch einen positiv geladenen Wehneltzylinder fokussiert

Wikipedia

Röntgenröhre

- Aus einer Kathode (K) beschleunigte Elektronen prallen auf ein Target (A) (z. B. Wolfram)
- Die Elektronen werden abgebremst und geben dabei Röntgenstrahlung (Bremsstrahlung) und Wärme ab
- Die Beschleunigungsspannung U_a bestimmt sowohl die Intensität als auch die Breite des Spektrums
- Der Stromfluss zwischen K und A bestimmt nur die Intensität des Spektrums

Effizienz (%) $\approx U_a \cdot Z \cdot 10^{-4}$ 60 kV, Wolfram: 60 \cdot 74 \cdot 10⁻⁴ = 0,4% (!)

α-, β-, γ-Emitter

- α: He²⁺ Kation
 - typische α-Emitter: ²⁴¹Am, ²³⁸Pu,
 ²³⁹Pu
 - Eindringtiefe: 10-15 μm (YAG, 5 MeV)
- β: Elektron, e⁻
 - typische β-Emitter: ¹³⁷Cs, ⁹⁰Sr, ³H
 - Eindringtiefe: < 1 μm (10 keV), 8-10 μm (70 keV)
- γ: Hochenergetische Photonen
 - typische γ-Emitter: ¹³⁷Cs, ⁶⁰Co
 - gleichzeitig emittierte α und β
 Strahlung muss absorbiert werden
 - Interaktion mit dem gesamten Partikel

Mit Tritium gefüllte und mit ZnSiO₄:Mn²⁺ beschichtete Röhre

Synchrotron

Erzeugt ein kontinuierliches Spektrum durch Beschleunigen von Elektronen

- Energie (Wellenlänge) hängt von der Beschleunigung ab und kann von < 1 eV (> 1 μm, NIR) bis > 1 GeV (< 1 fm) betragen
- durch spezielle konstruierte Magnete kann das Spektrum deutlich schmaler werden
- sehr teuer und nur für Experimente geeignet, bei denen sehr intensive Strahlung oder sehr kurze Pulse von Nöten sind

Beam is sent to synchrotron

(Tandem or Linac, etc.).

accelerator from the pre-accelerator

Accelerating cavity

It accelerates particles with high

frequency by applying an electric

field at the right timing of the

particles passing through.

Beam is sent to the beam utilizing course after acceleration.

3.3 Dispersive Elemente

- Viele Anregungsquellen erzeugen Licht mit einem breiten Spektrum, das dispersive Element ermöglicht die Auswahl einer bestimmten Wellenlänge/Energie
- Da die gängigen Detektoren (PMTs) nicht wellenlängenabhängig detektieren, muss auch das von der Probe emittierte Licht durch ein dispersives Element geleitet werden
- Filter sind eine simple Methode, erlauben aber keine dynamische Anpassung, stattdessen verwendet man Prismen oder Gitter

3.3 Dispersive Elemente

• Dispersions-Prismen

Winkeldispersion:

- $d\delta/d\lambda = B/H^*dn/d\lambda$
- **B** = **Prismenbasis**
- H = Strahlenbündelhöhe (Spaltbreite)
- n = Brechungsindex

• Dispersions-Gitter

Gitterkonstante (Linien/mm) bestimmt den nutzbaren Bereich \Rightarrow "Gratings" z.B. 1200 oder 2400 Linien/mm Auflösung: R = $\lambda / d\lambda$ = m* N m = Ordnung

N = Spaltenzahl

Achtung! Reflexe höherer Ordnung \Rightarrow Filter^L

n

Basis B

H

3.3 Dispersive Elemente

Die jeweilige 2. Ordnung muss durch Filter entfernt werden!

Beispiel: Anregung mit 350 nm Emission gemessen von 450 bis 800 nm Bei 700 nm lässt der Monochromator die 350 nm Photonen der Lampe durch!

Lösung: Ein 400 nm Langpass-Filter wird hinter die Probe gesetzt

Detektortypen

- Mit äußerem Photoeffekt
 - Photozellen
 - Photomultiplier
- Mit innerem Photoeffekt
 - Photowiderstände
 - Photodioden

- Photochemische Detektoren
 - für Absolutmessungen (Aktinometrie)
 - Photochemische Reaktion mit genau bekannter Quantenausbeute QA
 - $2 [Fe^{III}(C_2O_4)_3]^{3-} \rightarrow 2 Fe^{II} + 5 C_2O_4^{2-} + CO_2^{\uparrow}$
 - Umsetzung des Fe²⁺ mit Phenanthrolin + Messung der Extinktion bei 510 nm
 - Photonen/s = Zahl der gebildeten Produktmoleküle/(QA*Bestrahlungsdauer)

Aktinometer

• Ferrioxalat-Aktinometer (UV – 500 nm)

a)
$$[Fe^{III}(C_2O_4)_3]^{3-} \xrightarrow{hv} Fe^{II} + 2 C_2O_4^{2-} + C_2O_4^{-}$$

b) $[Fe^{III}(C_2O_4)_3]^{3-} + C_2O_4^{-} \xrightarrow{\Delta T} Fe^{II} + 3 C_2O_4^{2-} + 2 CO_2^{\uparrow}$

- Uranyloxalat-Aktinometer (208 426 nm) hv, UO_2^{2+} $H_2C_2O_4 \rightarrow CO_2\uparrow + CO\uparrow + H_2O$
- KI/KIO₃-Aktinometer (UV/Vis ⇔ Grätzelzelle)

8 KI + KIO₃ + 2 H₂O
$$\xrightarrow{h\nu}$$
 3 I₃⁻ + 6 OH⁻ + 9 K⁺

• Uridin-Aktinometer (200 – 290 nm)

Spektrale Empfindlichkeit

Bolometer (Mikro. und Radiowellen)

- Messung der Strahlungsintensität über Temperaturerhöhung durch Absorption
- Lange Reaktionszeiten, aber sehr empfindlich

Szintillationsdetektor (ion. Strahlung)

- Hochenergetische Strahlung wird in sichtbare Strahlung umgewandelt und diese mit einem PMT detektiert
- Meist einkristalline Materialien mit hoher Dichte (NaI:Tl, LuAG:Ce)

Geometrie

Absorptionspektroskopie

- Lineare Anordnung: Strahlquelle Mono Probe -Detektor
- Ein- oder Zweistrahlanordnung

Fluoreszenzspektroskopie

- Rechtwinklige Anordnung: Strahlquelle Mono1 Probe Mono2 Detektor
- Probe liegend (Pulverprobenhalter) oder stehend (Quarzküvetten nur für Lösungen)

Atmosphäre

Atmosphäre

spring based

thermo

couple

Je nach Anwendungsfall wird die Probe gekühlt oder geheizt

Foto eines beheizbaren Probenhalters

sample chamber flange

 $z-\phi$ sample adjustment

ceramic base plate

sample holder Schematischer Aufbau eines kühlbaren Probenhalters

He-Kryostat

- Für Temperaturen von 2-4 K
- Durchflusskryostaten haben einen hohen He-Verbrauch (Preis ca. 7 € / l)
- Pulsröhrenkühler verbrauchen kein Helium, sondern arbeiten ähnlich wie ein Kühlschrank – kaum Betriebskosten, aber hohe Anschaffungskosten (50.000 €)

4. Methoden der optischen Materialcharakterisierung

- 4.1 Absorptionsspektroskopie
 - 4.1.1 Bouguer-Lambert-Beer-Gesetz
 - 4.1.2 Gültigkeit des Lambert-Beer-Gesetz
 - 4.1.3 Abweichung vom Lambert-Beer-Gesetz
 - 4.1.4 Extinktion biologisch relevanter Moleküle
 - 4.1.5 Atomabsorptionsspektroskopie

4.1.1 Bouguer-Lambert-Beer-Gesetz

Herleitung

Die Schwächung der Intensität ist proportional zur Intensität und der Schichtdicke (Bouguer-Lambert):

dI ~ I·dx bzw. dI = $-\alpha(\lambda)$ ·I·dx

Der Proportionalitätsfaktor $\alpha(\lambda)$ ist proportional zur Konzentration c (Beer 1852): $dI = -\alpha(\lambda)\cdot c \cdot I \cdot dx \implies dI/I = -\alpha(\lambda)\cdot c \cdot dx$

Integration ergibt

 $\ln(\mathbf{I}_0/\mathbf{I}_T) = \alpha(\lambda) \cdot \mathbf{c} \cdot \mathbf{x}$

bzw. $\log(I_0/I_T) = \alpha(\lambda) \cdot c \cdot x/\ln 10$

Zusammenfassen ergibt $\log(I_0/I_T) = \epsilon(\lambda) \cdot c \cdot x = A$ mit $\epsilon(\lambda) = \alpha(\lambda)/\ln 10$

 $\ln x = \log x \cdot \ln 10$ bzw. $\log x = \ln x / \ln 10$

= molarer Extinktionskoeffizient [l·mol⁻¹cm⁻¹]

4.1.2 Gültigkeit des Lambert-Beer-Gesetz

Die Formulierung und die Gültigkeit hängt von einigen Randbedingungen ab!

Bedingungen

- 1. Das eingestrahlte Licht muss monochromatisch und kollimiert sein
- 2. Die absorbierenden Moleküle müssen so stark verdünnt vorliegen, dass eine gegenseitige Beeinflussung der chromophoren Gruppen verschiedener Moleküle nicht auftritt
- 3. Das reine Lösungsmittel absorbiert Strahlung der Messwellenlänge nicht
- 4. Strahlungsverluste durch Reflexion an den planparallelen Wänden der Küvette sowie durch Streuung an Partikeln tritt nicht auf

4.1.3 Abweichung vom Lambert-Beer-Gesetz

Scheinbare und echte Abweichungen

Scheinbare: Messtechnische Unzulänglichkeiten

- Siebeffekte: Streuzentren in der Lösung
- **Dissoziations- oder Assoziationsgleichgewichte:** $Cr_2O_7^{2-} + H_2O \implies 2 CrO_4^{2-} + 2 H^+$
- Fehlende Monochromasie der Messstrahlung (Falschlicht I_s) führt zu einem Untergrundsignal, dass die Dynamik reduziert Maximale Absorptionsdynamik A = 1.04 für 10% Falschlicht Maximale Absorptionsdynamik A = 4.00 für 0.01% Falschlicht (typisch für **Einfachmonochromatoren**)

Echte: Intermolekulare Wechselwirkung

- Zu hohe Konzentration > 10⁻³ mol/l
 - \Rightarrow gegenseitige Beeinflussung der Chromophore in der Messlösung

4.1.4 Extinktion biologisch relevanter Moleküle

Analyse von Biomolekülen

Spezies	λ_{max} [nm]	ε [lmol ⁻¹ cm ⁻¹]	Übergang	
Cytochrom c Fe ²⁺	420	120000	ππ*	
Cytochrom c Fe ³⁺	410	110000	π-π*	tion tion
Hämoglobin	560	12000	π-π*	Abenin
Oxyhämoglobin	550, 574	13000, 14000	π-π*	miarta
Adenin	260	13400	n-π*, π-π*	N N
Guanin	275	8100	$n-\pi^*, \pi-\pi^*$	
Cytosin	267	6100	n-π*, π-π*	
Thymin	264	7900	$n-\pi^*, \pi-\pi^*$	
AMP	260	15500	n-π*, π-π*	
ss-poly-AMP	260	10600	$n-\pi^*, \pi-\pi^*$	
ds-poly-ATMP	258	9600	$n-\pi^*, \pi-\pi^*$	

0 220 240 260 280 300 320 Wellenlänge [nm]

Anwendungen

0.0

- Schmelzen von DNA
- Oxidationszustand von Hamöglobin und Cytochrom c

4.1.5 Atomabsorptionsspektroskopie

Prinzip und Anwendung der AAS

Kirchoff'sches Gesetz: Jeder Stoff kann die Strahlung, die er selbst emittiert, auch Absorbieren (Jedes Element hat ein charakteristisches Linienspektrum)

Prinzipieller Aufbau einer AAS Apparatur:

Hohlkathodenlampen Brenner (Luft/Acetylen: 2300 °C) Monochromator oder Filter Detektor

Die Schwächung der Emission (Absorption) wird mit einer Eichreiche bestimmt

Einige Anwendungsgebiete der AAS

- Metallanalyse
- Blei in Treibstoffen
- Schadstoffe in der Umwelt
- Mg in Pflanzen

4. Methoden der optischen Materialcharakterisierung

- 4.2 Lumineszenzspektroskopie
 - 4.2.1 Definition und Anwendungen
 - 4.2.2 Aufbau eines Fluoreszenzspektrometers
 - 4.2.3 Emissionsspektroskopie
 - 4.2.4 Anregungsspektroskopie
 - 4.2.5 Quantenausbeute
 - 4.2.6 Lichtausbeute
 - 4.2.7 Temperaturaufgelöste Spektroskopie
 - 4.2.8 Zeitaufgelöste Spektroskopie
 - 4.2.9 Flicker
 - 4.2.10 Röntgen- und Kathodolumineszenz

4.2.1 Definition und Anwendungen

Definition

Lumineszenz ist die Lichtemission einer Substanz (Festkörper, Molekül) im nichtthermischen Gleichgewicht (also keine thermische Strahlung)

Anwendungen

- Charakterisierung der spektralen Energieverteilung der Emission von flüssigen oder festen Proben (Glas, Keramik, Lösung oder Pulver)
 - \Rightarrow Emissionsspektren (emission spectra)
- Als Funktion der Anregungsenergie
 - ⇒ Anregungsspektren (excitation spectra)
- Als Funktion der Temperatur
 - ⇒ Thermische Löschung (thermal quenching)
 - ⇒ Glühkurven und Thermolumineszenz (glow curves and thermoluminescence)
- Als Funktion der Zeit nach dem Anregungspuls
 - ⇒ Abklingkurven und Zerfallskonstanten (decay curves and constants)

4.2.2 Aufbau eines Fluoreszenzspektrometers

Dr. F. Baur, Prof. Dr. T. Jüstel

 $I(\lambda)$ muss für die Schwankungen der Lichtquelle kompensiert werden , z.B. durch einen Quantenzähler.

Die Anregungsenergie bzw. -wellenlänge bestimmt die Eindringtiefe der Strahlung bzw. der Elektronen in die Probe, wodurch das Emissionsspektrum beeinflusst werden kann.

Aus dem Emissionsspektrum lassen sich Emissionsmaxima bestimmen und die Schwerpunktwellenlänge berechnen

Dabei handelt es sich um die Wellenlänge λ_c , bei der das Integral eines Emissionsspektrums in zwei gleich große Anteile unterteilt wird. Sie entspricht damit der mittleren Photonenenergie der entsprechenden Spektrums.

Aus dem Emissionsspektrum lassen sich auch physiologische Lichtgrößen berechnen

Lumenäquivalent LE [lm/W]

Diese Größen charakterisieren u.a. das Emissionsspektrum von Lichtquellen und Leuchtstoffen Farbort x, y (CIE 1931) bzw. Farbort u',v' (CIE 1976)

Х

VUV Spektroskopie

Die VUV-Spektroskopie erfordert besondere Geräte, da VUV-Strahlung in Luft durch O_2 und H_2O absorbiert wird. CO_2 wird in C und O_2 gespalten (Verunreinigung von Spiegeln)

- Lampe (Deuterium), Monochromator und Detektor stehen unter Hochvakuum (10⁻⁶ mbar)
- die Probenkammer kann zur Vereinfachung des Probenwechsels mit N₂ gespült werden, die Kammer wird über LiF oder MgF₂ Fenster mit dem Restsystem verbunden

MgF₂:
$$E_g = 10,8 \text{ eV}$$
; 155 nm
LiF: $E_g = 13-14 \text{ eV}$; 89-95 nm

Ermittlung der Lagesymmetrie

Einige Eu³⁺ Emissionsübergänge (z. B. bei ca. 615 nm) sind umso unwahrscheinlich, je näher die lokale Symmetrie einer Inversionssymmetrie kommt.

Aus dem Intensitätsverhältnis I₆₁₀/I₅₉₀ lässt sich das sogenannte Asymmetrieverhältnis berechnen – je größer die Zahl desto 7F,) Asymmetry Ratio (⁵D₀ ⁷F₂ / ⁵D₀ unsymmetrischer ist die Kristalllage.

Das Verhältnis kann sich abhängig von der Temperatur oder anderen Parametern ändern.

4.2.4 Anregungsspektroskopie

Korrektur des Anregungsspektrums für die Spektrometertransferfunktion (Set) durch Verwendung von Rhodamin B (konstante Quantenausbeute unterhalb von etwa 500 nm)

$$I(\lambda_{exc}) = I^{Probe} \left(\lambda_{exc}\right) / I^{set} \left(\lambda_{exc}\right)$$

Definitionen

• Die Photolumineszenz-Quantenausbeute (QA bzw. Φ oder QY) lautet:

QA = Anzahl emittierter Photonen

 $A = \frac{1}{Anzahlabsorbierter Photonen}$

- In der Praxis wird QA meist durch Vergleichsmessungen mit einer Referenzsubstanz, von der die QA bei der Anregungswellenlänge der Messung genau bekannt ist, bestimmt
- Im Idealfall zeigt die Referenzprobe folgende Eigenschaften:
 - Ähnliche Absorptionsstärke A wie die zu untersuchenden Proben bei der untersuchten Anregungswellenlänge
 - Ähnlichkeit der Anregungs- und Emissionsspekren der Proben mit der Referenzprobe, ansonsten muss die Transferfunktion des Spektrometers berücksichtigt werden
 - Ähnlichkeit des Lösungsmittels bzw. der Matrix, weil die Intensität der emittierten Strahlung vom Brechungsindex abhängt, ansonsten muss eine Korrektur angewendet werden

 Ähnliche Fluoreszenzintensität I, um sicherzustellen, dass beide Messungen innerhalb des linearen Bereichs der Instrumentenfunktion liegt.

Relativmethode zur Bestimmung der Quantenausbeute (Rel. zu einer Referenz)

Typische Referenzmaterialien, z.B. für 254 nm Anregung sind FL-Leuchtstoffe		
Spektralbereich	Material	Quantenausbeute bei 254 nm
UV-B	LaPO ₄ :Ce	90%
UV-A	BaSi ₂ O ₅ :Pb	88%
Blau	BaMgAl ₁₀ O ₁₇ :Eu	89%
Grün	Zn ₂ SiO ₄ :Mn	80%
Rot	Y ₂ O ₂ :Eu	84%

 $Y_2O_3:Eu$

Zur Bestimmung der Quantenausbeute wird das Integral I des Emissionspektrums, welches proportional zur Zahl der emittierten Photonen ist, und der Reflexionsgrad der Probe sowie der Referenz bei der Anregungswellenlänge λ_{exc} bestimmt

$$\Phi_{\text{Probe, }\lambda\text{exc}} = \Phi_{\text{Referenz, }\lambda\text{exc}} \cdot \frac{\int I_{\text{Probe}} d\lambda - \int I_{\text{Schwarzstandard}} d\lambda}{\int I_{\text{Referenz}} d\lambda - \int I_{\text{Schwarzstandard}} d\lambda} \cdot \frac{1 - R_{\text{Referenz, }\lambda\text{exc}}}{1 - R_{\text{Probe, }\lambda\text{exc}}}$$

Absolutmethode über die Lebensdauer des angeregten Zustandes

- Die Quantenausbeute QA kann kinetisch definiert werden, wobei k_r die Geschwindigkeitskonstante f
 ür den strahlenden
 Übergang und Σk_i die Summe der Geschwindigkeitskonstanten aller Prozesse ist, welche den angeregten Zustand entleeren
- Die Abklingzeit des strahlenden Übergangs τ_r ist umgekehrt proportional zu k_r
- Die beobachtete Lebensdauer τ ist umgekehrt proportional zu Σk_i
- Die beobachtete Lebensdauer τ, ist die durchschnittliche Zeit, in welcher sich das Molekül bzw. der Aktivator im angeregten Zustand befindet
- \Rightarrow Die Lebensdauer τ ist proportional zur Quantenausbeute QA
- ⇒ Diese kann als interne Quantenausbeute IQA des Aktivators aufgefasst werden

Anregung mit VUV- oder EUV-Strahlung

Anregungsenergie ~ ΔE des Sensibilisators oder E_G der Wirtsmatrix / Lösungsmittel

Verluste (Löschung der Lumineszenz) können durch den Aktivator (IQA↓) und/oder der Wirtsmatrix verursacht werden (EQA↓)

Vergleich: Interne Quantenausbeute (IQA) vs. Externe Quantenausbeute (EQA)

Interne Quantenausbeute (-effizienz) Effizienz eines Lumineszenzzentrums

Mikroskopische Sicht

Bestimmung der Abklingzeit

Fluoreszenzspektrometer

Unabhängig von der Probengeometrie

Materialcharakterisierung Dr. F. Baur, Prof. Dr. T. Jüstel Externe Quantenausbeute (-effizienz) Effizienz einer leuchtenden Substanz / Lösung

Makroskopische Sicht

Aufnahme des Emissionsspektrums

Ulbricht- bzw. integrierende Kugel

Abhängig von der Probengeometrie durch Reabsorptionsphänomene

 $EQA = \frac{Anzahl emittierter Photonen}{Anzahl absorbierter Photonen}$

4.2.6 Lichtausbeute

Aufheiz- und Abkühlverhalten des Probenhalters

<u>Heizen der Probe</u> N₂-Spülung kühlt die Probe ab ⇒ eigentliche Probentemperatur ist 5-10 °C unter dem gemessenen Wert Kühlen der Probe < 0 °C: H₂O Resublimation < -78 °C: CO₂ Resublimation ⇒ Zusatzabsorption im VUV-Bereich

Thermische Löschung der Lumineszenz ("Thermal quenching")

- Stokes ShiftEnergieabstand zwischenAbsorptions- und Emissionsband $S = S_e h \omega_e + S_g h \omega_g$
- Halbwertsbreite der Emissionsbande FWHM ~ √S
- Thermisches Quenching nimmt mit steigendem $\Delta R = r_e r_g$ ab
- △R hängt von der Aktivator-Wirtsgitter
 Wechselwirkung ab

- Schrittweises Aufheizen zur Temperatur T
- Messung der Emissionsspektrum bei der Anregungswellenlänge λ_{exc}
- Auftragung der Integrale und/oder der Peakintensität als Funktion der Temperatur
- Anpassung der Löschkurve mit Hilfe der folgenden Gleichung

 $I(T) = A_0 + I_0/(1 + Bexp(-\Delta E/kT))$ "Struck-Fonger-Modell"

Am Beispiel von SrGa₂S₄:Eu

- T_{1/2} = Temperatur, bei der die Quantenausbeute eines Leuchtstoffs auf 50% des Tieftemperaturwerts abgesunken ist (bei SrGa₂S₄:Eu ~ 170 °C)
- Bei vielen technisch bedeutsamen Leuchtstoffen nimmt die Quantenausbeute erst ab 100 - 150°C merklich ab

Vergleich zwischen einem Linien- und einem Bandenemitter

SrGa₂S₄:Eu (460 nm Anregung)

LaPO₄:Ce,Tb (254 nm Anregung)

Also temperaturaufgelöste Spektren zur Untersuchung von

- thermischer Löschung der Lumineszenz
- Energietransfer, z.B. in LaPO₄:Ce,Tb

 $Ce^{3+} \rightarrow Tb^{3+}$

Thermische Löschung von Eu²⁺ Leuchtstoffen

Lichtausbeute als Funktion der Temperatur

Spektrale Breite der Emissionsbande von BaMgAl₁₀O₁₇:Eu als Funktion von T

Stokes Shift: $BaMgAl_{10}O_{17}:Eu < (Ba,Sr)_2SiO_4:Eu < (Sr,Ca)_2SiO_4:Eu$ Thermische Löschung: $BaMgAl_{10}O_{17}:Eu < (Ba,Sr)_2SiO_4:Eu < (Sr,Ca)_2SiO_4:Eu$

Thermische Löschung von Ce³⁺ Leuchtstoffen

Spezialfälle

- Gleichzeitige Anregung über die Bandlücke und direkte Anregung des Aktivators kann zu einem bisigmoidalen Verlauf führen
- Gleichzeitige Emission von zwei Aktivatoren im gleichen Wellenlängenbereich kann ebenfalls zu einem bisigmoidalen Verlauf führen
- Die Kurve kann durch gewichtete Addition zweier Fittingfunktionen angepasst werden. Es werden zwei $T_{1/2}$ Werte erhalten

$$\mathbf{I}_{\text{total}}(\mathbf{T}) = \mathbf{A} \cdot \mathbf{I}_1(\mathbf{T}) + (\mathbf{1} \cdot \mathbf{A}) \cdot \mathbf{I}_2(\mathbf{T})$$

Null-Phononen-Linie

Je höher die Temperatur, desto mehr beeinflussen Gitterschwingungen (Phononen) die Lumineszenz eines Materials – statt einer Linie tritt eine Bande auf

Null-Phononen-Linie

Die Stokes-Übergänge liegen bei der Emission bei niedrigerer Energie (Phononen werden erzeugt / Erwärmung), die Anti-Stokes-Übergänge bei höherer Energie (Phononen werden ausgelöscht / Abkühlung) 1.0 -

- Aus der Intensität und Anzahl der NPL lassen sich Rückschlüsse auf die Symmetrie ziehen
- Aus der relativen Lage der Vibrationslinien kann die Phononenenergie ermittelt werden

Roter PDP Leuchtstoff (Y,Gd) $BO_3:Eu^{3+} - {}^5D_0 \rightarrow {}^7F_1$ Übergang als Temp.-Sensor Reversible Abnahme der Emissionspeakintensität

Thermolumineszenzmessungen

Technik

- Probe wird z.B. auf -196 °C (77 K) gekühlt
- Bestrahlung mit UV-, VUV-, Röntgen-Strahlung oder Elektronen
- Die Intensität der ausgesendeten Strahlung wird während des Aufheizens mit einer konstanten Heizrate zeitabhängig gemessen

Bandmodell eines Festkörpers

Thermolumineszenz (TL) (Glühkurven)

- Integral der Banden: Defektdichte
- Lage der Banden: Energetische Lage der Defekte
- Anzahl der Banden: Anzahl der Defekttypen

Analyse von Thermolumineszenzmessungen

Arrhenius-Gleichung

 $\mathbf{A} = \mathbf{s}^* \mathbf{exp}(\mathbf{-E/kT})$

Aktivierung, d.h. Entleerung der Elektronen in den Traps führt zu Strahlungsemission

Kinetik 1. Ordnung, d.h. kein Retrapping:

 $dn_t/dt = -n_t s^* exp(-E/kT)$

"Glow curve" = Lumineszenzintensität als Funktion der Zeit bzw. der Temperatur

Materialcharakterisierung Dr. F. Baur, Prof. Dr. T. Jüstel Folie 101

"Randall-Wilkins first-order glow peak"

Intensität bei einer gegebenen Temperatur $I(t) = -dn_t/dt = -n_t s^* exp(-E/kT)$

<u>Temperaturprofil in TL Experimenten</u> $T(t) = T_0 + \beta \cdot T$

T₀ = Starttemperatur β = Aufheizrate

"First-order glow peak" – Variation in n₀ (Anzahl der Fallen)

$$\int_{0}^{\infty} I(t) dt = -\int_{0}^{\infty} \frac{dn}{dt} dt = -\int_{n_0}^{n_{\infty}} dn = n_0$$

Befunde für n_o

- ~ Peakfläche
- ~ Peakhöhe
- Unabhängig von der Lage des Peakmaximums

a) Thermolumineszenzanalyse von BaMgAl₁₀O₁₇:Eu (BAM)

BAM ist bei T > 300 °C oxidations empfindlich $Eu^{2+} \rightarrow Eu^{3+}$

"Hochtemperatur" TL-Traps werden durch die Oxidation erzeugt (direkter Beweis für die Bildung von Eu³⁺)

b) Lumineszenzspektren von Sr₄Al₁₄O₂₅:Eu

4.2.7 Temperaturaufgelöste Spektroskopie

b) Thermolumineszenzanalyse von Sr₄Al₁₄O₂₅:Eu

Co-Dotierung mit Dy³⁺ ergibt "Afterglow" bei Raumtemperatur

Weitere Dotierung mit Tm³⁺ ergibt "Afterglow" auch bei hoher Temperatur (→ Speicherleuchtstoffe)

Sobald Dy³⁺ eingebaut ist, spielt Tm³⁺ kaum noch eine Rolle beim Einfang von Ladungsträgern

4.2.7 Temperaturaufgelöste Spektroskopie

b) Thermolumineszenzanalyse von Sr₄Al₁₄O₂₅:Eu

•Dy^{2+/3+}ist energetisch näher am Leitungsband als Tm^{2+/3+}

• Energieabstand zwischen Dy und Tm ist etwa 0.4 eV (siehe auch bei Pieter Dorenbos et al.)

Anforderung: gepulste, intensive Lichtquelle

- µs-Blitzlampen
- ns-Blitzlampen
- FK-Laser: Al₂O₃:Cr, YAG:Nd, ...
- Gaslaser: N₂, Excimer, CO₂,
- LEDs : (Al,In,Ga)N, (Al,In,Ga)P, Ga(As,P)
- Laserdioden: (Al,In,Ga)N, (Al,In,Ga)P, Ga(As,P)

Vorgehen

- Puls- oder Dauerstrichanregung der Probe
- Messung der Lumineszenzintensität als Funktion der Zeit
- Fit der Abklingkurve mit einer oder mehrerer Exp-Funktionen:

 $I(t) = A_0 + B_1 * exp(-t/\tau_1) + B_2 * exp(-t/\tau_2) + \dots$

Lebensdauer des angeregten Zustandes

<u>Kinetik 1. Ordnung: $N_e \rightarrow N_g$ </u>

 $dN_e/dt = -N_e^*P_{eg}$

 $\Rightarrow dN_e/N_e = -P_{eg}^* dt$:Integration

$$\Rightarrow \ln(N_e(t)/N_e(0)) = -P_{eg}^*t$$

 \Rightarrow N_e(t) = N_e(0)*exp(-t/\tau) mit $\tau = 1/P_{eg}$

Erlaubte Übergänge Verbotene Übergänge

$$10^{-6}$$
 bis 10^{-9} s (4f - 5d, 6s - 6p) Eu^{2+} ~ 10^{-3} s (4f - 4f, 5d - 5d) Eu^{3+}

Mono- und bi-exponentielles Abklingen

monoexpontielles Verhalten, z.B. Eu³⁺, Gd³⁺, Tb³⁺ biexponentielles Verhalten, z.B. Mn²⁺

Mono- und bi-exponentielles Abklingen (Bsp.: PDP-Leuchtstoffe)

Einzelpulsanregung von Zn₂SiO₄:Mn²⁺ und (Y,Gd)BO₃:Tb³⁺

Abklingkurve von Zn₂SiO₄:Mn²⁺ (Einzelpuls- und Dauerstrichanregung)

Austauschwechselwirkung in Mn²⁺ Leuchtstoffen

Hohe Mn^{2+} Konzentration \Rightarrow Austauschwechselwirkung zwischen Mn^{2+} -Ionen Die Abklingzeit wird durch die Aufhebung der Spinauswahlregel reduziert

Niedrige Anregungsdichte \Rightarrow Anregung von Mn²⁺ Paaren \Rightarrow kurze Abklingzeit Hohe Anregungsdichte \Rightarrow Anregung isolierter Mn²⁺ Ionen \Rightarrow lange Abklingzeit

Abklingen der Gd³⁺ Emission (Intrakonfigurationsübergang ⁶P_{7/2} – ⁸S) bei 311 nm

- A: $La_{0.4}Gd_{0.6}MgB_5O_{10}$
- B: La_{0.4}Gd_{0.6}MgB₅O₁₀:0.01% Fe
- C: La_{0.4}Gd_{0.6}MgB₅O₁₀:0.1% Fe
- D: $La_{0.4}Gd_{0.6}MgB_5O_{10}$:1% Fe \Rightarrow Energietransfer zu Fe²⁺ reduziert Abklingzeit

Time-Resolved Spectroscopy

Die Emission kann sich zeitabhängig ändern, wenn z. B.

- die Emission aus verschiedenen Komponenten mit unterschiedlichen Abklingzeiten besteht
- Sättigung auftritt
- Energietransfer auftritt

Um die Effekte zu beobachten, darf das System nicht im Gleichgewicht sein (Gepulste Anregung)!

Time-Resolved Spectroscopy

Messung mittels ICCD (intensified CCD)

- CCD mit Lichtverstärker
- Alle Wellenlängen werden simultan gemessen
- bis zu 200 ps Zeitauflösung
- Wellenlängenauflösung ca. 0,5-1 nm
- kurze Messdauer

Messung über Abklingkurven

- Für jede Emissionswellenlänge wird eine Abklingkurve aufgenommen
- Aus den Abklingkurven wird ein zeitaufgelöstes Spektrum konstruiert
- bis wenige ps Zeitauflösung
- Wellenlängenauflösung bis unter 0,05 nm
- (sehr) lange Messdauer

- Flicker ist eine schnelle, periodische Änderung der Intensität von Lichtquellen
- Inhärentes Problem elektrischer Leuchtmittel aller Art
- Wechselstrom (50 Hz) im Stromnetz verursacht Flicker

$Sr_5(PO_4)_3Cl:Eu^{2+}Mn^{2+}$

- Anregung 280 425 nm
- Emission 579 nm
 - Sr1 451 nm (KZ = 9)
 - Sr2 579 nm (KZ = 7)

- Decay

Fit

τ₄= 4 ms (9 %)

60

80

100

= 1.091

 $\tau_0 = 13.4 \text{ ms} (91 \%)$

 $\lambda_{ev} = 420 \text{ nm}, \lambda_{em} = 582 \text{ nm}$

• Abklingzeit 12,5 ms

10000

1000

100

10

1 -

0

Intensity / counts

Materialcharakterisierung Dr. F. Baur, Prof. Dr. T. Jüstel

20

40

Time / ms

$Sr_5(PO_4)_3Cl{:}Eu^{2+}Mn^{2+}$

- Percent Flicker 33%
- Flicker Index 0,08
- Farbpunktverschiebung von weiß nach gelb
- Farbpunkt (gemittelt) :
 - $x = 0,453; y = 0,430; LE = 378 lm/W_{opt}$
- CCT = 2916 K

0.0

0.0

0.2

0.4

х

0.6

0.8

4.2.10 Röntgen- und Kathodolumineszenz

Anregung mit hochenergetischer Strahlung

- **Unspezifische Anregung aller lumineszenten** Spezien (Defekte, Bandübergänge, **Aktivatoren**)
- Auch Verunreinigungen im ppm Bereich lassen sich qualitativ nachweisen (z. B. Gd³⁺
- ISSUR 2-In Y₂O₃) Die Probe kann μm-genau angeregt werden me figelöste Spektren zu erhalten ۲
- **VUV oder UV-C Emission kann beobachtet** werden, z. B. Nd³⁺ bei 190 nm

RGB image revealing the distribution of the API (green) and the lactose (brown) using CL spectroscopic imaging DOI: 10.1016/j.ejps.2011.10.017

4.3. Reflexionsspektroskopie

4.3 Reflexionsspektroskopie

- **4.3.1 Messung in Reflexion**
- 4.3.2 Schematischer Aufbau
- 4.3.3 Die Ulbricht-Kugel
- 4.3.4 VUV-Reflexion
- 4.3.5 Bandlückenbestimmung
- 4.3.6 Die Kubelka-Munk Funktion
- 4.3.7 Anwendungsbeispiele

4.3.1 Messung in Reflexion

Messung in Reflexion

Gemessen wird immer relativ zu einem Weißstandard, z.B. BaSO₄, CaCO₃ oder Teflonpulver

4.3.2 Schematischer Aufbau

Anregungs- und Emissionsmonochromator werden auf die gleiche Wellenlänge eingestellt und synchron durchgestimmt ⇒ sogenannter synchroscan

4.3.4 VUV-Reflexion

Probleme gegenüber UV/VIS-Reflexion:

- PMTs können VUV nicht detektieren
- Teflon und BaSO₄ absorbieren VUV

 \rightarrow Szintillationsdetektor + LiF oder MgF₂ Beschichtung (hygroskopisch!)

Alternative: Beschichtung der U-Kugel mit einem Leuchtstoff zur Konversion von VUV in sichtbare Strahlung

Nachteile: Die Beschichtung ist anfälliger als Teflon, die Probe darf nicht im gleichen Spektralbereich emittieren wie der Konverter

Motivation

- Die optische Bandlücke ist f
 ür die Beurteilung der Anwendbarkeit von Materialien von großer Bedeutung
- Sie beschreibt den Abstand zwischen der Oberkante des mit Elektronen gefüllten Valenzbandes und der Unterkante des leeren Leitungsbandes

Materialklasse	E_{σ} [eV]
Metalle	0
Halbleiter	0.0 - ~3.0
Isolatoren	>~3.0

Dr. F. Baur, Prof. Dr. T. Jüstel

Wendepunktmethode

Dr. F. Baur, Prof. Dr. T. Jüstel

Tauc Plot Methode

Tauc-Gleichung

$$(\alpha h\nu)^{1/n} = A(h\nu - E_g)$$

Für erlaubte direkte Übergänge.....n = 1/2

Für verbotene direkte Übergängen = 3/2

Für erlaubte indirekte Übergängen = 2

Für verbotene indirekte Übergängen = 3

J. Tauc (F. Abeles ed.), Optical Properties of Solids, North-Holland (1972)

4.3.6 Die Kubelka-Munk Funktion

Die diffuse Reflexion einer Probe hängt vom Verhältnis Absorption zu Streuung ab

Unter bestimmten Annahmen, d.h.

- diffuse Strahlung
- Unterdrückung der regulären Reflexion
- annähernd kugelförmige Teilchen mit d >> als die Wellenlänge des eingestrahlten Lichts
- schwache Absorptionsbanden in einer nicht absorbierenden Matrix
- keine Überlagerung von Absorptionsbanden
- unendliche Schichtdicke

ergibt sich ein mathematischer Zusammenhang zwischen Absorption, Streuung und Reflexion

 \Rightarrow Kubelka-Munk-Funktion:

$$F(R_{\infty}) = \frac{A}{S} = \frac{(1 - R_{\infty})^2}{2 \cdot R_{\infty}}$$

S = Streukoeffizient R_{∞} = diffuse Streuung A = Absorption = $\varepsilon \cdot c$

Eine ideale schwarze Oberfläche $R_{\infty} = 0$ ist demnach nur schwer zu realisieren, denn für $R_{\infty} = 0$ gilt A/S = ∞ , d.h. extrem hohe Absorption bzw. faktisch keine Streuung Der Streukoeffizient S kann aus der Teilchengröße des Pulvers abgeschätzt werden: S ~ 1/Korngröße ~ 1/d₅₀ [cm⁻¹]

4.3.7 Anwendungsbeispiele

Bestimmung der Absorptionsspektren von Pulverproben

Randbedingung: T = 0 "halb unendlich dicke Schicht" \Rightarrow R + A = 1

Beispiel: Leuchtstoff Y_2O_3 : Eu³⁺(5%) mit $d_{50} = 5 \ \mu m \implies S \sim 0.2 \ \mu m^{-1} = 2000 \ cm^{-1}$

4.3.7 Anwendungsbeispiele

4.3.7 Anwendungsbeispiele

Abgeschwächte Totalreflexion (ATR)

ATR-Einheit für FTIR-Spektroskopie

Vorteile

- kaum Probenpräparation nötig für Pulver oder dünne Kristalle sowie Flüssigkeiten

Nachteile

- guter Kontakt zwischen Material und Kristall notwendig
- Kristall darf weder chemisch noch mechanisch beschädigt werden
- nur Raumtemperatur
- Einsatzbereich durch das Kristallmaterial limitiert, z.B. 17000 - 650 cm⁻¹ für ZnSe