Persistent Luminescence and Energy Transfer in Sr₄Al₁₄O₂₅:Eu²⁺,Dy³⁺ Danuta Dutczak^{1,2}, Arturas Katelnikovas¹, Cees Ronda^{2,4}, Adrie J.J. Bos³, Andries Meijerink², and Thomas Jüstel¹ - ¹ Department of Chemical Engineering, Münster University of Applied Sciences, Steinfurt, Germany - ² Debye Institute for NanoMaterials Science, Utrecht University, Utrecht, The Netherlands - ³ Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands - ⁴ Philips Research Laboratories, Eindhoven, The Netherlands ### Introduction During the last decade, afterglow phosphors have attracted considerable attention due to their potential applications in various fields, including emergency lighting, road signs, special light sources or optical data storage. One of the most efficient afterglow materials is $Sr_4Al_{14}O_{25}$: Eu^{2+} , Dy^{3+} , which yields strong luminescence due to the interconfigurational [Xe]4f⁶5d¹ - [Xe]4f⁷ transition of Eu^{2+} . It shows persistent luminescence even without co-doping. The afterglow can be prolonged by co-doping additional ions like Dy^{3+} or Nd^{3+} . Although extensive studies have been performed on afterglow phosphors, the mechanisms underlying the persistent luminescence phenomenon in this phosphor still remain unclear. #### Λim This contribution deals with $\mathrm{Eu^{2+}}$ doped $\mathrm{Sr_4Al_{14}O_{25}}$ and aims at understanding the mechanism of the luminescence and persistent luminescence of this phosphor. New insights are reported on the nature of the higher energy emission band, which shows a blue-shift upon heating. The PL and TL of $\rm Sr_4Al_{14}O_{25}:Eu^{2+},Dy^{3+}$ were studied and compared with $\rm Sr_4Al_{14}O_{25}:Eu^{2+}$ in order to elucidate the role of $\rm Dy^{3+}$ in the physical process leading to afterglow. ## Results 1 Two different crystalographic strontium sites with coordination numbers 10 and 7 exist in the Sr₄Al₁₄O₂₅. 10 - coordinated 7 - coordinated Strontium site Strontium Fig.2. Emission spectra of $\rm Sr_4Al_{14}O_{25}; 0.1\%Eu^{2+}$ at different λ_{ex} at 100, 200 and 300 K Persistent luminescence of Sr₄Al₁₄O₂₅:Eu²⁺ can be amplified by co-doping with Dy³⁺ ions. The intensity of the TL glow peaks of Sr₄Al₁₄O₂₅:Eu²⁺,Dy³⁺ are much stronger than for Sr₄Al₁₄O₂₅:Eu²⁺, but the position does almost not vary . Fig. 5. Persistent luminescence decay curves of $Sr_4Al_{14}O_{25}$:Eu²⁺ and $Sr_4Al_{14}O_{25}$:Eu²⁺,Dy³⁺ Fig. 6. TL glow curves of $Sr_4Al_{14}O_{25}$: Eu^{2+} and $Sr_4Al_{14}O_{25}$: $Eu^{2+}Dy^{3+}$ stimulated for 20 s with UV radiation (350 nm) 2 Upon decreasing temperature the 425 nm emission band apparently shifts to 400 nm. | Emission band | Decay Time [μs] | | |---------------|-----------------|-------| | | 100 K | 300 K | | 400 nm | - | 0.24 | | 425 nm | 0.52 | - | | 490 nm | 0.94 | 0.83 | The decay times of emission bands at 400 and 425 nm are much shorter than characteristic decay time for the $4f^65d^1$ - $4f^7$ transition of Eu²⁺ (1 μs). Fig.1. Emission spectra of Sr₄Al₁₄O₂₅:0.1%Eu²⁺ at 4K and 300 K 4 Three emission bands: 400 nm - 5d-4f emission of Eu²⁺ in 10 - fold coordination (HT) 425 nm - Eu²⁺ Trapped Exciton Emission (LT) 490 nm - 5d-4f emission of Eu2+ in 7 - fold coordination Fig. 4. Simplified configurational coordinate diagram of Eu²⁺ luminescence in Sr₄Al₁₄O₂₅ Fig. 7. Photographs of $Sr_4Al_{14}O_{25}$: Eu^{2+} and $Sr_4Al_{14}O_{25}$: Eu^{2+} , Dy^{3+} 1 s after removal of excitation source # Conclusions We have reported, for the first time, the Eu²⁺ trapped exciton emission in Sr₄Al₁₄O₂₅:Eu²⁺. Now, the peculiar behavior of the emission of Sr₄Al₁₄O₂₅:Eu²⁺ as function of temperature can be explained by a temperature induced transition between Eu²⁺ exciton states and crystal-field states of Eu²⁺. The Eu²⁺ trapped exciton emission at 425 nm is observed only at low temperatures. At higher temperatures, the higher phonon levels are occupied and the crossing point with the Eu²⁺ parabola in the excited state is reached (Fig. 4). The Eu²⁺ trapped exciton emission is quenched and 5d-4f Eu²⁺ emission at 400 nm is observed. ✓ It was also demonstrated, that both Sr₄Al₁₄O₂₅:Eu²⁺ and Sr₄Al₁₄O₂₅:Eu²⁺Dy³⁺ show persistent luminescence. The persistent luminescence of Sr₄Al₁₄O₂₅:Eu²⁺ is rather weak and lasts for solely a few minutes, while the same material co-doped with Dy³⁺ shows long, i.e. a few hours, and strong afterglow. The results from TL measurements suggest, that Dy³⁺ causes a trapping centre with a trap depth almost the same as the depth of the trapping centre responsible for the afterglow in the not co-doped material or that the nature of the electron traps is the same with and without Dy³⁺ present. In this case, an ionised oxygen vacancy is the electron trap. As the intensity of the afterglow is much higher in case of Dy³⁺ containing samples, we assume that the Dy³⁺ ions induce oxygen vacancies.