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During the last decade, afterglow phosphors have attracted considerable attention due to their This contribution deals with Eu?* doped Sr,Al,,0,; and aims

potential applications in various fields, including emergency lighting, road signs, special light sources or
optical data storage. One of the most efficient afterglow materials is Sr,Al,,0,5:Eu?*,Dy3*, which yields
strong luminescence due to the interconfigurational [Xe]4f55d! - [Xe]4f’ transition of Eu?*. It shows
persistent luminescence even without co-doping. The afterglow can be prolonged by co-doping
additional ions like Dy3* or Nd3*. Although extensive studies have been performed on afterglow
phosphors, the mechanisms underlying the persistent luminescence phenomenon in this phosphor still

at understanding the mechanism of the luminescence and
persistent luminescence of this phosphor. New insights are
reported on the nature of the higher energy emission band, which
shows a blue-shift upon heating.

The PL and TL of Sr,Al,0,;:Eu*,Dy** were studied and
compared with Sr,Al ,0,::Eu?* in order to elucidate the role of

remain unclear.

Dy3* in the physical process leading to afterglow.

@ Two different crystalographic strontium sites with coordination numbers 10 and 7
exist in the Sr,Al;,0,;.

Upon decreasing temperature the 425 nm emission band apparently
shifts to 400 nm.
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The decay times of emission bands at
400 and 425 nm are much shorter than
characteristic decay time for the 4f5d!-

. . ‘o . .
A close inspection of emission spectra of Sr,Al;,0,5:Eu* reveals the existence of three 4F transition of Eu?* (1 ps ).

emission bands peaking at 400, 425, and 490 nm.
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Conclusions

\/ We have reported, for the first time, the Eu?* trapped exciton
emission in Sr,Al ,0,5:Eu?*. Now, the peculiar behavior of the
emission of Sr,Al,,0,.:Eu** as function of temperature can be
explained by a temperature induced transition between Eu?* exciton
states and crystal-field states of Eu?*. The Eu?* trapped exciton
emission at 425 nm is observed only at low temperatures. At higher
temperatures, the higher phonon levels are occupied and the
crossing point with the Eu?* parabola in the excited state is reached
(Fig. 4). The Eu?* trapped exciton emission is quenched and 5d-4f
Eu?* emission at 400 nm is observed.

\/ It was also demonstrated, that both Sr,Al,,0,.:Eu?* and Sr,Al,,0,.:Eu?*Dy3* show persistent
luminescence. The persistent luminescence of Sr,Al,,0,::Eu?* is rather weak and lasts for solely a
few minutes, while the same material co-doped with Dy3* shows long, i.e. a few hours, and
strong afterglow.

The results from TL measurements suggest, that Dy3* causes a trapping centre with a trap
depth almost the same as the depth of the trapping centre responsible for the afterglow in the
not co-doped material or that the nature of the electron traps is the same with and without Dy3*
present. In this case, an ionised oxygen vacancy is the electron trap. As the intensity of the
afterglow is much higher in case of Dy?* containing samples, we assume that the Dy3* ions induce
oxygen vacancies.




