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1. Phosphor converted Xe-excimer lamps in application

A>172 nm

Electrode

Wastewater e.g. from textile factories, chemical industry, or medical facilities are often contaminated with biologically incompatible
substances, leaving an effective physical-chemical pre-clarification essential. Alongside separation-disposal techniques, so called advanced
oxidation processes (AOP) facilitate an effective pre- or even complete clarification of contaminated wastewater. Numerous AOPs rely on
the exposure with UV radiation, which has furthermore found its way into numerous applications for air and liquid disinfection. [l Recent O
advancement of established techniques is given by the exchange of commonly used Hg low- or high-pressure lamps by Xe-excimer lamps. 6
Such lamps efficiently produce VUV radiation peaking at around 172 nm enabling the use of conversion phosphors. [2
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Main Advantages: Phosphor layer

* Instant-On Lamp, no warm up phase

 Hg-free lamp technique, ecologically beneficial, anticipation for possible upcoming prohibition of Hg-containing lamps

* Energy efficient emission of primary 172 nm emission (28-40 % 13!) by excimer discharge, lack of reabsorption caused by the activator
 Optimization of emission characteristics, e.g. for disinfection efficiency by selection of suitable phosphor
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Fig. 1 Schematic illustration of a working Xe-excimer DBD-lamp

2. Lamp Phosphors: constrains, choice and aging 10
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Main problems: Phosphor requirements: R 5'n o
 Reductive power of hot e * High band gap host matrix :_; | 8
e Solarisation by high energy radiation (172 nm and lower) e Inert host matrix, protection of dopant e oo e 3
* Reactive Xe-plasma may cause reactions on particle * Excitation band at 172 nm %‘ | ~"'.' —YPOj:Bi recovered S
surface * VUV and/or UVC emission bands, suitable for application g / :iigg: e orcl a8
* Surface defects due to ion impacts * High isoelectric point (IEP) = — YPO,Birecovered 700°C/th | 3
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Suitable UV phosphors: YPO,:Bi, YPO,:Pr or YPO,:Nd.* e
However, these phosphors do not resist the harsh conditions of the Xe plasma and the Xe-excimer discharge leading to rather 1 ) K
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fast aging. Figure 2 shows spectroscopy of YPO,:Bi recovered from a used lamp. 150 200 250 300 350 400 450 500 550 600 650
Wavelength /nm

Problem: Rapid degradation of phosphor caused by activator reduction und host material solarisation and surface bombardment Fig. 2 Excitation (left), emission (middle) and reflectance spectra (right) of
results in short overall Iamp lifetime YPO,:Bi from a prepared lamp body, recovered from a used Xe-Exc.-DBD lamp

and recovered and tempered at different temperatures.
Approach: A protective coating with an inert high bandgap, high IEP material !

2.1 Conventional Particle Coating Procedure via 2.2 Novel Particle Coating Procedure via
precipitation driven by Urea hydrolysis photochemically induced precipitation

Coating procedure / deposition reaction Coating procedure / deposition reaction
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YPO4B1 (s) + Alz(SO4)3 x 18 H20 (aq.) A1203@YPO4B1 n YPO4:Bi(S)

2. Calcination 34 S .
Al (aq) + 3 OH —_— A1203@YPO4:B1
Calcination

YPO,:Bi particles are dispensed in a homogeneous
solution of reactants and additive. The precipitation of
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A|(()H)3 is thermally controlled by Urea hydrolysis. SE_MAG: 10000x HV: 5kV WD: 10mm A UV-reactor system running a Hg-amalgam |lamp EERSrmsrivrmmmee
=5 —— AL0,@YP0,Bi EDXAL peaking at 254 nm is used to irradiate a homogenous Fig. 7 SEM image of Al,0; coated YPO,:Bi particle
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Fig. 4 EDX spot measurement of AL, coated YPO,:Bi overlapped with SEM image of respective particle * Controlled by exposure, shallow slope of pH curve Fig. 8 exemplary pH and temperature vs. time for
) . a coating procedure performed in the UV-reactor
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Fig. 9 EDX spot measurement of Al,O, coated

Spectra (right) of neat and Al,O, coated YPO,:Bi
p (right) 203 4 YPO,:Bi particle
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3. Manipulation of Particle Surface Charge by Coating T e . —Pos [ o
1501 —a— ALO, nanoparticles (.:5 A|203@YPO4: Bi %
. . 1. . \ . AI203@YPO,:Bi (fragm.) - Em: 260 nm Exc.: 160 nm - 0,6 m
Neat YPO,:Bi reveals an acidic IEP at pH 3.14, that the surface charge is -, 100 N, s AROROYPO,B (dense) = S
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strongly negative. = oo g o4 8
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Al,O, has an IEP measured at pH 8.06 E o e 55 EErew %
Coating of YPO,:Bi with Al,O, (IEP at pH 8.06) leads to a upshifting of the [IEP & -so{ . |, jeeeodie 0.2 G
. . . © | "‘\’ AL :
The more dense the coating, the higher the upshift g 1004 L \\ VoMW ——m—m— .
Manipulation of particle overall surface charge enabled 150 ] i, 150 200250 300 350 400 450 500 550 600
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Higher IEP reflects less pronounced negative or even positive surface 5 6 7 8 9 10
h desired f h h d d | diti . . pH Fig. 11 Excitation (left), emission (middle) and reflectance
charge, as desired for a phosphor used under plasma conditions Fig. 12 Zeta potential vs pH measured by ESA method Spectra (right) of neat and AlLO, coated YPO,:Bi

for neat YPOA4:Bi, Al,O, coated YPO4:Bi and pure Al,O
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