Pr³⁺ - The Multitasking Ion

A. Katelnikovas^{a,b,*}, H. Bettentrup^a, A. Kareiva^b and <u>T. Jüstel^{a,*}</u>

Fachhochschule

Münster University of Applied Sciences ^aDepartment of Chemical Engineering, Münster University of Applied Sciences, Stegerwaldstr. 39, D-48565 Steinfurt, Germany ^bDepartment of General and Inorganic Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania

*Corresponding authors: tj@fh-muenster.de, arturas.katelnikovas@fh-muenster.de

Phosphor Global Summit 2011, March 22-24, San Antonio, TX, USA

Introduction

Garnet is the common name of a group of cubic minerals belonging to the orthosilicates, which contain solely isolated tetrahedral [SiO₄]⁴⁻ units. The general formula of garnets is C₃A₂D₃O₁₂, which, in case of natural garnets, can be written as $C_{3}A_{2}(SiO_{4})_{3}$, where C = Fe²⁺, Mg²⁺, Ca²⁺ and A = Al³⁺, Fe³⁺, Cr³⁺ and V³⁺. In the general formula, O denotes oxygen and C, A, D symbolize cations occupying the dodecahedral, octahedral and tetrahedral sites, respectively. Artificial garnets according to the formula $(Y_{1-x}Lu_x)_3(AI_{1-y}Ga_y)_5O_{12}$ are applied as hosts for laser gain media, scintillators, and LED phosphors.

In the present study, the luminescent properties of Pr³⁺ doped garnet type host lattices, namely $Lu_3(AI_{1-v}Ga_v)_5O_{12}$, $(Y_{1-x}Lu_x)_3Al_3MgSiO_{12}$ and $(Y_{1-x}Lu_x)_3AIMg_2Si_2O_{12}$ are discussed as a function of their composition.

 $^{1}G_{1}$

 $Lu_3Al_5O_{12}$

10

Material	Band gap	
	nm	cm ⁻¹
$Lu_3Al_5O_{12}$	177	56497
Lu ₃ Al ₄ GaO ₁₂	184	54348
Lu ₃ Al ₃ Ga ₂ O ₁₂	192	52083
Lu ₃ Al ₂ Ga ₃ O ₁₂	197	50761
Lu ₃ AlGa ₄ O ₁₂	207	48309
Lu ₃ Ga ₅ O ₁₂	215	46511
Y ₃ Al ₃ MgSiO ₁₂	201	49751
Y ₂ LuAl ₃ MgSiO ₁₂	198	50505
YLu ₂ Al ₃ MgSiO ₁₂	195	51282
Lu ₃ Al ₃ MgSiO ₁₂	190	52632
Y ₃ AlMg ₂ Si ₂ O ₁₂	210	47619
YaLuAlMgaSiaO.a	206	48544

 $Lu_3Al_2Ga_3O_{12}$ $Lu_3Ga_5O_{12}$

Fig. 4. Simplified Dieke

diagram for Pr³⁺.

Conclusions

In this work, we demonstrated that a modification of the LuAG host by Ga, Y, or Si and Mg results in strong changes with respect to the optical spectra of Pr³⁺ located onto the dodecahedral garnet site. Pr³⁺ in LuAG:Pr emits at around 310 nm. Replacement of AI by Ga resulted in emission maximum shift to higher energy. 5d-4f band emission of Pr³⁺ was completely quenched if more than 60% of Al³⁺ was substituted by Ga³⁺. The replacement of Al³⁺ by Ga³⁺ results in a band gap shift from 177 to 215 nm. Samples with incorporated Mg²⁺-Si⁴⁺ pairs generated stronger crystal fields, which strength increased with higher content of Mg²⁺-Si⁴⁺ and Y³⁺. Moreover, the strong energy transfer from 5d to 4f states was observed. It was also figured out that this energy transfer depends strongly on the crystal field strength and temperature. This can be explained by the configurational coordinate diagram. The stronger crystal field shifts 5d orbitals to lower energies, therefore electron can easier reach crossing point of [Xe]4f¹5d¹ and ${}^{3}P_{2}$ level by gaining thermal energy. Then it relaxes from ${}^{3}P_{1}$ to ${}^{1}D_{2}$ level, from which radiative transition occurs.