LFDFT Calculations of Praseodymium doped binary Fluorides compared with Experimental Results

Fachhochschule

Münster University of **Applied Sciences** SCS Fall Meeting 2014

Benjamin Herden¹, Amador García-Fuente¹, Harry Ramanantoanina¹, Thomas Jüstel², Werner Urland¹ and Claude Daul¹

FR

UNI

UNIVERSITÉ DE FRIBOURG UNIVERSITÄT FREIBURG

¹ Department of Chemistry of the University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland

² Department of Chemical Engineering, University of Applied Sciences Münster, Stegerwaldstrasse 39, 48565 Steinfurt, Germany

Background

Research efforts for new materials as luminescent pigments for lighting or solid state lasers are currently growing world-wide. An activator ion which exhibits the potential for all these applications is trivalent praseodymium (Pr^{3+}). The emission spectrum of Pr^{3+} depends strongly on the host structure and can show $[Xe]4f^15d^1 \rightarrow [Xe]4f^2$ band emission solely in the UV range, or $[Xe]4f^2 \rightarrow [Xe]4f^2$ line emission ranging from the UV to the NIR.

Fig. 1 Crystal structures represent the central Pr³⁺ ion (grey) surrounded by eight F⁻ (green) and the second coordination sphere containing Ca²⁺, Sr²⁺ and Ba²⁺ in orange red and purple, respectively

host	CaF ₂	SrF ₂	BaF ₂
symmetry	O_h	O_h	O_h
F ₂ (ff)	322.8	322.9	322.9
F ₄ (ff)	41.7	41.7	41.7
F ₆ (ff)	4.4	4.4	4.4
$G_1(\mathbf{fd})$	358.9	356.9	351.2
F ₂ (fd)	226.7	225.3	222.7
$G_3(fd)$	30.7	30.5	30.1
F ₄ (fd)	17.4	17.3	17.1
$G_5(fd)$	4.8	4.7	4.7
ζ_{4f}	710	710	710
ζ_{5d}	945	945	945
e _o (f)	599	538	491
$\mathbf{e}_{\pi}(\mathbf{f})$	257	232	213
$e_{\sigma}(d)$	14114	13009	12154
$e_{\pi}(d)$	4705	4336	4051
$\Delta_{AOM}(\mathbf{fd})$	15183	17918	20030

Table 1 Electrostatic parameters, spin-orbit coupling

constants and AOM parameters (in cm⁻¹)²

- Structure obtained from a periodical calculation using Theory Density Functional (DFT) with the VASP code
- Electrostatic and Ligand Field parameters obtained from a cluster calculation of Pr³⁺ and surroundings with the its Amsterdam Density Functional

In this study, we consider the system $M^{\parallel}F_2$: Pr^{3+} ($M^{\parallel} = Ca$, Sr, Ba) which exhibit the cubic CaF₂ structure type (Fm-3m) and having O_h symmetry for the cation positions.

The energy multiplet levels were calculated using a model based on Ligand Field Theory, respectively Angular Overlap Model (AOM), and Density Functional Theory (DFT), named LFDFT¹.

Sample preparation was performed by a precipitation route followed by a calcination step. Single phase luminescent materials were characterised by luminescence spectroscopy from the UV to the NIR part of the spectral range.

(ADF 2013) code

- spin-orbit The coupling constants for the 4f and 5d orbitals obtained using the relativistic ZORA approach
- LFDFT method to obtain the [Xe]4f² and [Xe]4f¹5d¹ multiplet energies

 BaF_2

known for O_h symmetry. The highest energy level ¹S₀ of the ground [Xe]4f² configuration is located at 47000 cm⁻¹. Therefore, the lowest energy level of the [Xe]4f¹5d¹ configuration is in all cases overlapping with the highest energy level ${}^{1}S_{0}$. The emission spectra are dominated by broad band emission from the lowest energy level of the [Xe]4f¹5d¹ configuration in the UV part of the spectral range.

Conclusions

We predict and measure the optical behaviour of Pr³⁺ in the alkaline earth fluorides, CaF₂, SrF₂ and BaF₂. We use a validated model based on Ligand Field and Density Functional Theory (LFDFT) to calculate the multiplet energy levels arising from the ground [Xe]4f² and excited [Xe]4f¹5d¹ configurations of Pr^{3+} in their chemical environment. Moreover, we characterize the considered materials by luminescence spectroscopy. In overall the theoretical determination corroborates to the experimental findings.

Literature

¹ Ramanantoanina, H., Urland, W., García-Fuente, A., Cimpoesu, F. and Daul, C. Ligand field density functional theory for the prediction of future domestic lighting. Phys. Chem. Chem. Phys. 16, 14625–14634 (2014) ² Herden, B., García-Fuente, A., Ramanantoanina, H., Jüstel, T., Urland, W., and Daul, C. Photon Cascade Emission in Pr³⁺ doped fluorides with CaF₂-Structure: Application of a Model for its prediction. to be submitted

Benjamin Herden, benjamin.herden@unifr.ch

http://www.chem.unifr.ch/cd/welcome/index.html