The Tribute of Pentavalent Molybdenum in LiEuMo₂O₈

Sebastian Schwung^a, Daniel Rytz^b, Andreas Gross^b, Ute Ch. Rodewald^c, Birgit Gerke^c, Birgit Heying^c, Christian Schwickert^c, Rainer Pöttgen^c and Thomas Jüstel^a,

> ^a Muenster University of Applied Sciences, Stegerwaldstrasse 39, D-48565 Steinfurt, Germany

^b Forschungsinstitut für Edelsteine und Edelmetalle (FEE) GmbH, Struthstrasse 2, D-55743 Idar-Oberstein, Germany

^c WWU Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 30 D-48149 Münster, Germany

Fachhochschule Münster University of Applied Sciences

Background

Bulk single crystals of

The Tribute of Mo⁵⁺

The first hint to molybdenum as origin for

LiEuMo₂O₈ have been growth by top-seeded solution growth method. Surprisingly, the resulting crystals show variation in the color shade from a dark violet to a bright shining red (Fig.1).

Fig. 1 . LEM crystal fragments of violet LEM (left) and shiny LEM (right) at ambient light (top) and upon excitation at 365 nm (bottom).

the dark violet LiEuMo₂O₈ was given by temperature dependent magnetic susceptibility data (Fig. 4) which indicate an another component in addition to the weak van Vleck type paramagnetism of trivalent europium ([Xe]4f⁶) in the violet sample.

Pure trivalent Europium

In contrast to the different absorption behavior in the visible, both crystal shades show exactly the same

emission spectra for the ${}^{5}D_{0} - {}^{7}F_{I}$ (J = 04) to emission of Eu3+, which indicate the same chemical surrounding the of trivalent europium ions (Fig. 2). Furthermore the ¹⁵¹Eu Mössbauer spectra of the bright and also of the dark violet LiEuMo₂ O_8 samples show the presence trivalent europium solely (Fig. 3). Therefrom is the that apparent differences in the crystals

Fig. 3 Temperature dependence of the magnetic susceptibility of a bright and a dark violet sample of LiEuMo₂O₈ measured at 10 kOe.

Electron spin resonance measurements were able to prove the hypothesis of defects in the oxygen substructure accompanied by partial reduction of Mo⁶⁺ (d^0) to Mo⁵⁺ (d^1) (Fig.5) detectable at g = 2.2

http://www.fh-muenster.de

donotoccurbytheactivator ion.

velocity [mm·s⁻¹]

Fig. 3 Experimental and simulated (red lines) 151Eu Mössbauer spectra of bright and violet LiEu Mo_2O_8 sample at room temperature

Conclusion

The concentration of pentavalent molybdenum is too low to be monitored by x-ray analysis but large enough to have a significant influence on the physical properties of the material. This can be explained by the incorporation of molybdenum(V) ions ($[Kr]4d^1$) as a result of the reduction of the molybdate units, which implies the formation of oxygen vacancies for charge compensation as well.