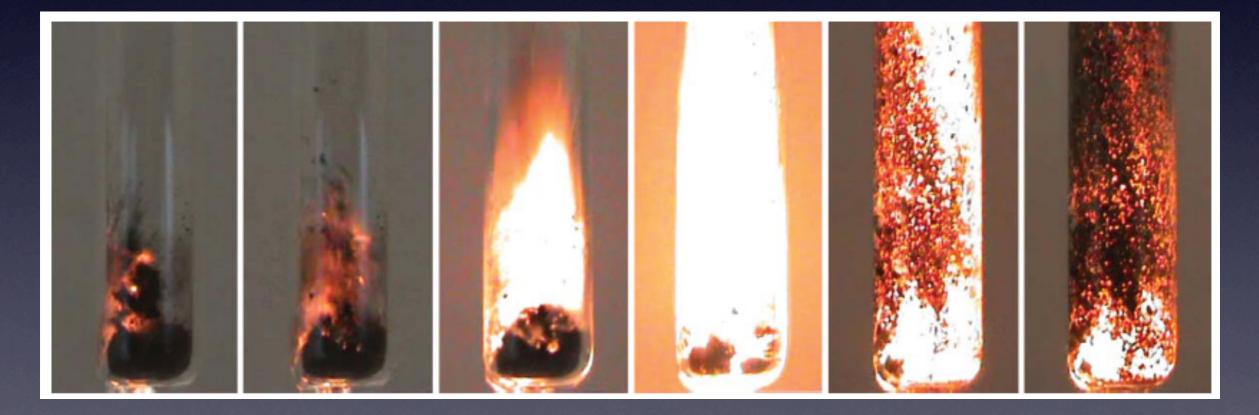
Solid state metathesis reactions as a conceptual tool in the synthesis of new materials

presented by

Tom Felbeck Ole Morisse

Content

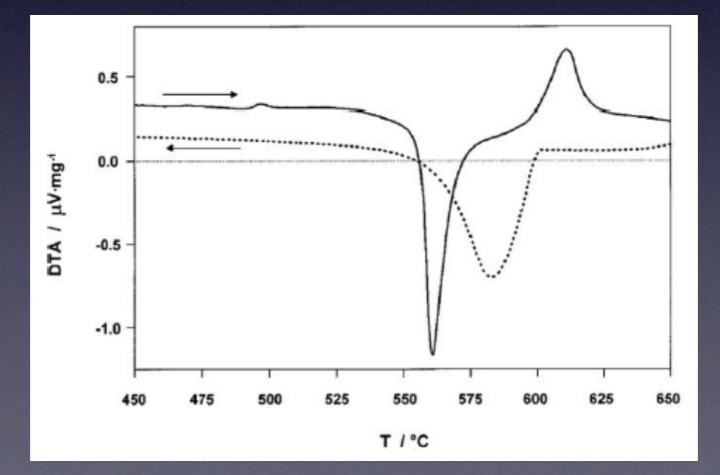

- Introduction
- Syntheses
- Rare earth carbodiimides
 - Compounds and structures
 - Luminescence properties
- Miscellaneous examples
- Conclusions

Introduction

- Solid state reactions usually involve thermodynamically controlled reactions
- Sufficiently high temperatures are necessary
- High temperature reactions lead to a strong limitation of thermal labile compounds
- Solid state metathesis (SSM) reaction takes advantage of the intrinsically energy

Introduction

- SSM reactions are initiated by ignition temperature (T_i)
- After ignition: $T_{intrinsic} \rightarrow 1000^{\circ}C$ or higher


NbCl₅ + Li₃N reaction proceed within 0.2 seconds !

Syntheses of RE nitridoborates

• Rare earth nitridoborates:

Preparation needs reaction temperature higher 1400°C

 $3 \text{ RECl}_3 + 3 \text{ Li}_3(\text{BN}_2) \rightarrow \text{RE}_3(\text{B}_3\text{N}_6) + 9 \text{ LiCl}$

Syntheses of RE nitridoborates

- SSM reactions in the field of rare earth nitridoborates include syntheses of insulating, metallic, and superconducting compounds
- SSM reactions can be employed for syntheses of other systems like rare earth carbodiimides

Syntheses of RE carbodiimides

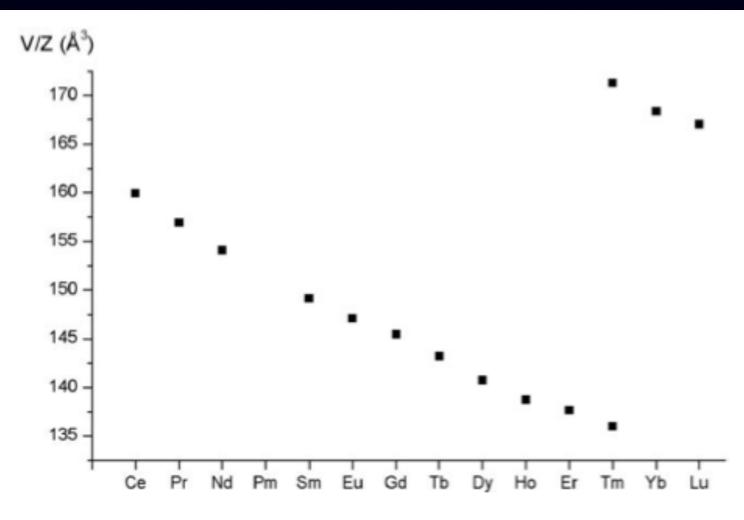
- SSM reaction of $REX_3 + Li_2(CN_2)$ (X=Cl, F)
 - High purity starting materials are loaded in silica tubes under argon (glove box)
 - Mixture is heated slowly up to ignition temperature (450 550°C), reaction takes place
 - 3. Temperature is remained for a few days before mixture is cooled down to room temperature

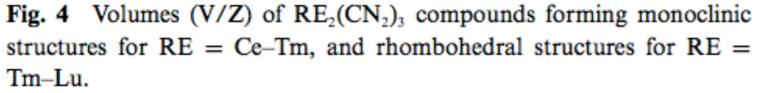
A flux (LiCI/KCI mixture) can be used to lower the reaction temperature!

Syntheses of RE carbodiimides

 Stoichiometry of starting materials predefines the composition of the product:

 $2 \operatorname{REX}_3 + 3 \operatorname{Li}_2(\operatorname{CN}_2) \rightarrow \operatorname{RE}_2(\operatorname{CN}_2)_3 + 6 \operatorname{LiX}_3$


 $REX_3 + 2 Li_2(CN_2) \rightarrow LiRE(CN_2)_2 + 3 LiX$


 $REX_3 + Li_2(CN_2) \rightarrow REX(CN_2) + 2 LiX$

 $2 \text{ REX}_3 + 2 \text{ Li}_2(\text{CN}_2) \rightarrow \text{LiRE}_2\text{X}_3(\text{CN}_2)_2 + 3 \text{ LiX}$

Compounds and structures

$RE_2(CN_2)_3$ - Rare earth carbodiimide

lon	Radii CN=6
Ce ³⁺	101 pm
Pr ³⁺	99 pm
Nd ³⁺	98 pm
Sm ³⁺	96 pm
Eu ³⁺	95 pm
Gd ³⁺	94 pm
Tb ³⁺	92 pm
Dy ³⁺	91 pm
Ho ³⁺	90 pm
Er ³⁺	89 pm
Tm ³⁺	88 pm
Yb ³⁺	87 pm
Lu ³⁺	86 pm

Compounds and structures

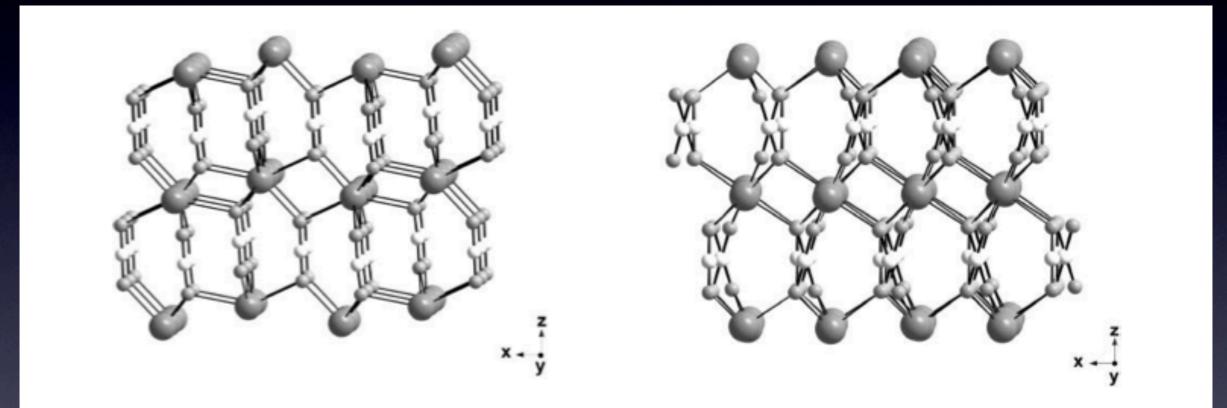
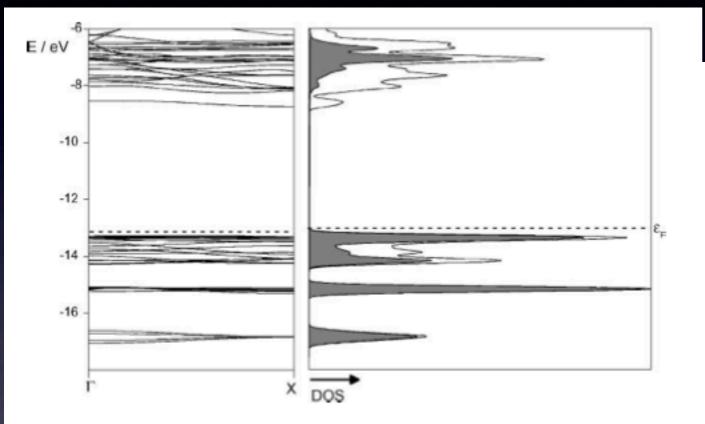



Fig. 5 Sections from layered structures of monoclinic $RE_2(CN_2)_3$ -I (left) and rhombohedral $RE_2(CN_2)_3$ -II (right).

Monoclinic $Tm_2(CN_2)_3$ -I \rightarrow Rhombohedral $Tm_2(CN_2)_3$ -II Volume increase of 20%

Luminescence properties

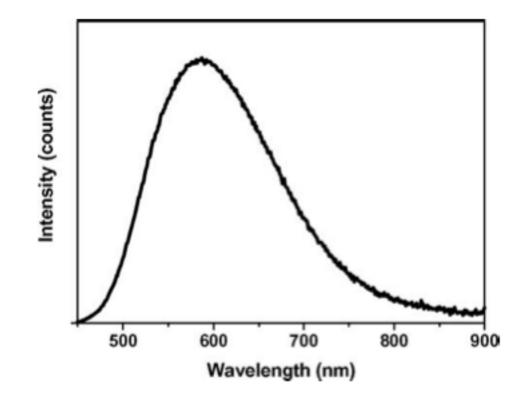


Fig. 8 A section of the band structure (along the chain direction) and the DOS of $La_2Cl(CN_2)N$. Orbital contributions of the $[NCN]^{2-}$ ion to the total DOS are projected in gray. The fermi energy (ε_f) is shown as a dashed line.

Fig. 9 Emission spectrum of $Gd_2(CN_2)_3$:Ce on excitation at 415 nm.

 $Gd_2(CN_2)_3$:Ce slightly red shifted (by 15 nm) compared to Y₃Al₅O₁₂:Ce

Miscellaneous examples

- Transition metal carbodiimides M(CN₂) with M=Mn,Fe,Co,Ni,Cu
- Tetracyanoborates and tetracyanamidosilicates e.g.
 Li[B(CN)₄] and KTb[Si(CN₂)₄]
- Non metallic carbon nitrides like C₃N₄
- Dicarbides e.g. LaC₂

• And many more ways to employ SSM reactions...

Conclusion

- SSM reaction is a synthesis tool for new anions, mixed anions and complex anions
- Due to the limited thermal stability of these exotic compounds no solid state reaction applicable
- Controlled by the choice of the starting materials
- A flux can be used to lower the ignition temperature
- Method still require thermodynamical information and further calculations