UV - LED based on AlGaN

by Johannes Neyer Incoherent Lightsources 2013

Content

- History of Light Emitting Diodes (LEDs)
- Working principle
- Types of LEDs
- UV-LEDs
- AlGaN LED

- Comparison to Hg low vapour pressure lamp
- Applications

History of Light Emitting Diodes

- 1907 The British experimenter J.H. Round of Marconi Labs discovered, that some inorganic materials start to glow if a current is applied. Today known as electroluminescence.
- 1927 The Russian physicist Oleg Vladimirovich Losev rediscovered Rounds phenomenon and did further research until 1942. He reported on the first LED, but no practical use was made of it.
- 1955 Rubin Braunstein observed infrared light emission generated by simple semiconductor structures using GaAs, GaSb, InP and SiGe.
- 1961 Robert Biard and Gary Pittman of Texas Instruments found out that GaAs emitts infrared light if a electrical current is applied. They received a patent for the infrared LED.

History of Light Emitting Diodes

- 1962 Nick Holonyak, Jr., while working at General Electric Company developed the first red LED as is seen as the "father of the light-emitting diode".
- 1972 M. George Craford invented the first yellow LED and improved the brightness of red and red-orange LEDs by a factor of ten.
- 1994 The first high-brightness blue LED was demonstrated by Shuji Nakamura of Nichia Corporation and was based on InGaN.
- 1995 First white LED is presented, which emits white light by light conversation from UV to broadband spectra using phosphorus.

Working principle

- basic material: doped semiconductor with a p-n junction
- The applied current flows, like in other diodes, easily from p-side to n-side
- In the junction area the charge carriers, electrons and holes, combine and drop down to a lower energy level by emitting a photon
- The wavelength of the photons corresponds to the energy of the band gap

Types of LEDs

schematic setting:

real setting:

Types of LEDs

Various types of LED shapes:

Types of LEDs

Color	Wavelength [nm]	Voltage drop [ΔV]	Semiconductor material
Infrared	λ > 760	ΔV < 1.63	Gallium arsenide (GaAs) Aluminium gallium arsenide (AlGaAs)
Red	610 < \lambda < 760	1.63 < ΔV < 2.03	Aluminium gallium arsenide (AlGaAs) Gallium arsenide phosphide (GaAsP) Aluminium gallium indium phosphide (AlGaInP) Gallium(III) phosphide (GaP)
Orange	590 < λ < 610	2.03 < ΔV < 2.10	Gallium arsenide phosphide (GaAsP) Aluminium gallium indium phosphide (AlGaInP) Gallium(III) phosphide (GaP)
Yellow	570 < λ < 590	2.10 < ΔV < 2.18	Gallium arsenide phosphide (GaAsP) Aluminium gallium indium phosphide (AlGaInP) Gallium(III) phosphide (GaP)
Green	500 < λ < 570	1.9 < ΔV < 4.0	Traditional green: Gallium(III) phosphide (GaP) Aluminium gallium indium phosphide (AlGaInP) Aluminium gallium phosphide (AlGaP) Pure green: Indium gallium nitride (InGaN) / Gallium(III) nitride (GaN)
Blue	450 < λ < 500	2.48 < ΔV < 3.7	Zinc selenide (ZnSe) Indium gallium nitride (InGaN) Silicon carbide (SiC) as substrate Silicon (Si) as substrate—under development
Violet	400 < λ < 450	2.76 < ΔV < 4.0	Indium gallium nitride (InGaN)
Purple	multiple types	2.48 < ΔV < 3.7	Dual blue/red LEDs, blue with red phosphor, or white with purple plastic
Ultraviolet	λ < 400	3.1<ΔV<4.4	Diamond (235 nm) Boron nitride (215 nm) Aluminium nitride (AIN) (210 nm) Aluminium gallium nitride (AIGaN) Aluminium gallium indium nitride (AIGalnN)—down to 210 nm
Pink	multiple types	ΔV~3.3	Blue with one or two phosphor layers: yellow with red, orange or pink phosphor added afterwards, or white with pink pigment or dye.
White	Broad spectrum	ΔV = 3.5	Blue/UV diode with yellow phosphor

UV-LEDs

Ultraviolet light:

- Wavelength: λ < 400 nm
- Band gap energy: 3,1 4,4 eV
- Materials:
 - Diamond (235 nm)
 - Boron nitride (215 nm)
 - Aluminium nitride (AlN) (210 nm)
 - Aluminium gallium nitride (AlGaN) (340 nm)
 - Aluminium gallium indium nitride (AlGaInN)—down to 210 nm

Spectrum for an AlGaN-based UV LED

AIGaN-LED

Schematic structure order

Wavelength dependency on material composition

Comparison to low pressure Hg-Lamp

AlGaN UV-LED: Hg low pressure Lamp*:

Efficiency: 5-15% Efficiency: 40%

Lifetime: > 15.000 h Lifetime: 16.000 h

Output Power: 30 mW (100 mA) Output Power: 4 W (100 mA)

- no risks of environmental pollution by UV-LEDs
- LEDs have no time delay by warming up,
 - -> good for applications with fast on/off switches
- LEDs have no wide spectral power distribution
- LEDs have no dropping in UV output over lifetime

* standart quartz lamp

Applications

- Adhesive/lacquers hardening
- Quality control
- Sterilisation / Disinfection (liquids, air)
- Medicine (light therapy)
- Microscopy (Fluorescence)
- Light conversion (UV on various types of phosphorus)

Thank you for your attention!

Sources:

- Wikipedia: Light-emitting Diode (english)
 http://en.wikipedia.org/wiki/Led#Ultraviolet and blue LEDs
- UV LEDs ramp up the quiet side of the LED market http://ledsmagazine.com/features/9/2/5
- AlGaN deep ultraviolet LEDs on bulk AlN substrates
 (Zaiyuan Ren1, Q. Sun1, S.-Y. Kwon1, J. Han*,1, K. Davitt2, Y. K. Song2, A. V. Nurmikko2,W. Liu3, J. Smart 3, and L. Schowalter 3)
- Efficiency Increase For Deep UV LEDs
 http://www.compoundsemiconductor.net/csc/features-details/19735467/Efficiency-increase-for-deep-UV-LED.html
- HG low pressure lamps data http://www.light-sources.com/