1. H₂O₂ Formation "State of the Art"

1.1. Industrial Synthesis

The standard process for the industrial production of H_2O_2 solutions is the so called "anthraquinon process", which relies on the reversible oxidation of the organic compound anthraquinon, whereby mostly alkyl derivates of anthraquinon, e.g. 2-ethyl-anthraquinon, are employed. The process is displayed in the following graph.

Fig. 1: Catalytical cycle for the formation of H_2O_2 via 2-alkyl-anthraquinon.

The process was developed by Degussa decades ago and accounts for 95 % of the annual global production of H_2O_2 . Nowadays, the worldwide production volume of H_2O_2 is about 2.200.000 tons, whereby the production volume and market demand is steadily growing, since the beginning of industrial H_2O_2 production in the 50ties [1; 2].

Fig. 2: World production volume of H_2O_2 between 1950 and 2000.

The main application areas of H_2O_2 are the synthesis of sodium perborate and sodium percarbonate for washing and dishwasher detergents and bleaching of (recycled) paper. A minor application is the treatment of drinking and waste water. For all of these application areas, aqueous solutions of H_2O_2 with a high H_2O_2 concentration are required.

1.2 Electrochemical Synthesis

Another way to synthesize H_2O_2 employs a diluted NaOH-solution which undergoes electrolysis [7]. The following equations describe the electrochemical process:

Anode:	2 OH ⁻	\longrightarrow	$H_2O + \frac{1}{2}O_2 + 2e^{-1}$
Cathode:	H ₂ O + O ₂ + 2 e ⁻	\longrightarrow	$HO_2^- + OH^-$
Overall:	NaOH + ½ O₂	\longrightarrow	Na ⁺ HO ₂ ⁻

The process is carried out in an electrochemical cell with carbon black coated graphite electrodes and oxygen under atmospheric pressure (Dow process). It delivers alkaline peroxide with a NaOH/H₂O₂-weight ratio of approx. 1.7:1. If the electrochemical cell is driven with 2.3 V and 62 mA/cm² the electricity yield sums up to 90%, by additionally applying an ion exchange membrane this value increases to 95% and the process yields in a solution of 2.1% (w/w) of HO₂⁻ in a solution of 5 % (w/w) of NaOH. The described alkali peroxide technology is appropriate to applications where it is not necessary to separate NaOH from the peroxide, like in pulp bleaching processes. Another paper reports on a recently developed electrochemical membrane cell that employs sulphuric acid as electrolyte and uses poly(4-vinylpyridinium-p-toluolsulphonate) (PVPPTS) to increase the output of the cell in terms of peroxide concentration by enhancing the current density and reducing the cell voltage [2].

The group of I. Yamanaka (Tokyo Institute of Technology, Japan) is working on the synthesis of H_2O_2 in fuel cells by the reaction of oxygen and hydrogen. An oxygen excess in this kind of electrochemical cells leads to the formation of H_2O_2 and generates even electricity. It was even possible to produce neutral aqueous H_2O_2 solutions (up to 8 wt-%) from O_2 and water by using a cell with a solid polymer

electrolyte exposed to an oxygen stream (or just even to air). The cathode was made by hot pressing of a blend of activated carbon oxidized by HNO_3 , Teflon powder, and vapor grown carbon fiber coated with Nafion to ensure the neutrality of the product [3].

1.3 Formation in Living Systems

The formation of H_2O_2 in organisms can occur at the end of the respiratory chain, since at this point of the metabolism, a side-reaction, viz. the reduction of O_2 results in the formation of the superoxide anion radical O_2^- , which is highly toxic. This radical is removed from the cell by the enzyme superoxide dismutase (SOD), which comprises one or two transition metal ions in the active site. Dependent on the species, the transition metal ions involved are Mn^{3+} , Fe^{3+} , or Cu^{2+} and Zn^{2+} .

 $2 O_2(aq) + 2 H^+(aq) \xrightarrow{Superoxid-Dismutase} H_2O_2(aq) + O_2(g)$

Since H_2O_2 is also toxic for the cell, all types of biological species take care of the rapid decomposition of H_2O_2 in the cells by the enzyme catalase, which cleaves H_2O_2 according to the following equation:

 $2 H_2O_2(aq) \rightarrow 2 H_2O(s) + O_2(aq)$

2. Novel Catalytic Processes

A rather novel way for the industrial production of H_2O_2 relies on a catalytic process in methanol solution, which was developed by Degussa and Headwaters recently [1]. This process involves the direct synthesis of hydrogen peroxide H_2O_2 (DSHP process) from H_2 and O_2 , which is feasible on a heterogeneous catalyst [4]. The essential part of the process is the so-called N_xCat^{TM} catalyst, which comprises Pd or Pt nanoscale particles activated by iodine. Due to the explosive character of hydrogen/oxygen blends, the process requires extended safety measures.

3. Photo Catalytic Formation of H₂O₂

If water is irradiated by UV radiation with a wavelength below 200 nm, the cleavage of the O-H bond is observed, which results in the formation of hydroxyl and H radicals.

 $H_2O + hv(< 200 \text{ nm}) \rightarrow OH(aq) + H(aq)$

Fig. 3: Absorption spectra of H_2O , O_2 , O_3 , and CO_2 in the UV-C and VUV range.

Fig. 4: Absorption spectrum of H_2O_2 in H_2O .

Due to the high reactivity and short lifetime of hydroxyl radicals, their recombination with H^{\cdot} radicals is a very probable process, if the two types of radicals are not separated by diffusion beforehand. Therefore, the formation of H₂O₂ is just a rather improbable side-reaction. In addition to that, the produced H₂O₂ strongly absorbs UV radiation below 280 nm, which results in the formation of an excited state that easily results in the cleavage of the O-O bond.

The excitation of H_2O_2 by UV radiation thus results in the photodecomposition of H_2O_2 according to the following reaction scheme [5]:

Initiation: $H_2O_2 + hv(< 280 \text{ nm}) \rightarrow 2 \text{ OH}^{-1}$

Propagation: $H_2O_2 + OH^{\cdot} \rightarrow H_2O + HO_2^{\cdot}$ $HO_2^{\cdot} + H_2O_2 \rightarrow H_2O + O_2 + OH^{\cdot}$

Net reaction: 2 H₂O₂ + hv(< 280 nm) \rightarrow 2 H₂O + O₂

As a consequence, an efficient production of H_2O_2 by the photochemical cleavage of H_2O is not feasible.

The application of a photocatalyst, such as TiO_2 (anatase), completely changes the situation. It was proven that the formation of H_2O_2 is caused by the subsequent reduction of oxygen dissolved in water [6].

Fig. 5: Reaction scheme displaying the photochemical reactions of H_2O and O_2 at an *irradiated* TiO₂ particle surface.

The first step in the reaction sequence is the formation of an electron-hole pair due the absorption of a UV photon (< 380 nm).

 $TiO_2 + hv(< 380 \text{ nm}) \rightarrow h^+(VB) + e^-(CB)$

Subsequently, oxygen at the surface is reduced by the electron from the conduction band and the evolved peroxyradical is then protonated:

 $O_2 + e^{-}(CB) \rightarrow O_2^{-}$

 $O_2^- + H^+ \rightarrow HOO^-$

The produced hydroperoxyradical disproportionate according to

 $2 \text{ HOO}^{\cdot} \rightarrow \text{ H}_2\text{O}_2 + \text{O}_2,$

which thus results in the formation of H_2O_2 and oxygen. However, a competitive reaction is the re-oxidation of the hydroperoxyradical at the TiO₂ surface by reacting with a hole from the valence band:

HOO[.] + $h^+(VB) \rightarrow O_2 + H^+$

To accelerate the conversion of hydroperoxyradicals into H_2O_2 , the application of Cu^+ was found to be an effective measure. The H_2O_2 yield could be enhanced by a factor of 20 [4].

 $HOO^{\cdot} + Cu^{+} + H^{+} \rightarrow H_2O_2 + Cu^{2+}$

Afterwards, the Cu^{2+} is reduced at the surface of the TiO₂ photocatalyst by taking up an electron from the conduction band.

 $Cu^{2+} + e^{-}(CB) \rightarrow Cu^{+}$

To the author's opinion it is likely that not only Cu^{2+} can act as a redox catalyst to enhance the H_2O_2 formation, but also other transition metal ions, from which coordination compounds with a similar oxidation/reduction potential as that of the $Cu^{+/2+}$ couple in aqueous solution exist. Transition metal ions of interest are thus $V^{3+/4+}$, $Mn^{2+/3+}$, $Fe^{2+/3+}$, $Co^{2+/3+}$, $Ni^{2+/3+}$, and $Ru^{2+/3+}$.

4. Qualitative Detection of H₂O₂

A highly specific reaction is the oxidation of luminol in the presence of a catalyst, e.g. K_3 [Fe(CN)₆] or other Fe^{2+/3+}-containing species.

Fig. 6: Reaction scheme for the qualitative determination of H_2O_2 by luminol.

This reaction yielding in blue chemoluminescence is extremely sensitive and even applied for the forensic trace analysis of blood, which catalyses the decomposition of H_2O_2 by Fe²⁺ present as the oxygen transport carrier in the hem ring.

 $Fe^{2+}(aq) + H_2O_2(aq) \rightarrow Fe^{3+}(aq) + OH^{-}(aq) + OH^{-}(aq)$

This reaction is also known as the Fenton reaction.

5. Quantitative Determination of H₂O₂

The standard process for the quantitative determination of the H_2O_2 concentration of an aqueous H_2O_2 solution relies on a redox reaction according to the following equation:

$$\begin{array}{rl} 2 \ \text{MnO}_4(aq) + 5 \ \text{H}_2\text{O}_2(aq) + 6 \ \text{H}_3\text{O}^+(aq) & \rightarrow & 2 \ \text{Mn}^{2+}(aq) + 5 \ \text{O}_2(g) \uparrow + 14 \ \text{H}_2\text{O} \\ \text{(violet)} & & \text{(light rose)} \end{array}$$

The strong color change can be exploited for the volumetric determination of the concentration of H_2O_2 solutions, e.g. by a titration with a 1 M KMnO₄ solution, which is drop wisely added until the color of the H_2O_2 solution remains violet. This point indicates the complete consumption of H_2O_2 due to the reduction of MnO_4^- to Mn^{2+} . From the consumed volume of KMnO₄ solution and its concentration, one can easily calculate the concentration of the H_2O_2 solution.

References

- [1] Degussa leaflet "Direktsynthese von H₂O₂"
- [2] J.M. Campos, G. Blanco-Brieva, J.L.G. Fierro, Angew. Chem. **118** (2006) 7116
- [3] a) I. Yamanaka, T. Murayama, Angew. Chem. Int. Ed. 47 (2008) 1900
 b) I. Yamanaka, Catal. Surv. Asia 12 (2008) 78
- [4] European Patent EP1127839, Degussa AG (2000)
- [5] T. Oppenländer, "Photochemical Purification of Water and Air", 'Wiley-VCH (2003)
- [6] R. Cai, Y. Kubota, A. Fujishima, Journal of Catalysis **219** (2003) 214
- [7] World Patent WO2002/027071, Degussa AG (2002)