Granate und YAG:Ce

Prof. Dr. T. Jüstel tj@fh-muenster.de

Prof. Dr. T. Jüstel FH Münster, FB 01

Gliederung

- 1. Zusammensetzung der Granate
- 2. Struktur des YAGs
- 3. Physikalische Eigenschaften des YAG:Ce
- 4. Leuchtstoffkonvertierte LEDs
- 5. LED Leuchtstoffe
- 6. Synthese von YAG:Ce

Prof. Dr. T. Jüstel FH Münster, FB 01

1. Zusammensetzung der Granate

Mineralogie

Silikate $C_{3}^{\parallel}A_{2}^{\parallel}(Si^{\vee}O_{4})_{3} \Rightarrow$ Inselsilikate (Nesosilikate) mit $[SiO_{4}]^{4-}$ bzw. $[DO_{4}]^{4-}$ -Gruppen

- C = Mg²⁺, Ca²⁺, Mn²⁺, Fe²⁺ A = Al³⁺, Cr³⁺, Fe³⁺ D = Si⁴⁺, Ge⁴⁺
- Dodekaederplatz Oktaederplatz Tetraederplatz

Natürlich vorkommende Granat-Mineralien (Auswahl)

Pyrop	$Mg_3Al_2Si_3O_{12}$
Grossular	Ca ₃ Al ₂ Si ₃ O ₁₂
Almandin	Fe ₃ Al ₂ Si ₃ O ₁₂
Spessartin	$Mn_3Al_2Si_3O_{12}$
Knorringit	$Mg_3Cr_2Si_3O_{12}$
Uwarowit	Ca ₃ Cr ₂ Si ₃ O ₁₂
Andradit	$Mg_{3}Fe_{2}Si_{3}O_{12}$

Prof. Dr. T. Jüstel FH Münster, FB 01

Granate und YAG:Ce Folie 3

1. Zusammensetzung der Granate

Granat-Varianten

Technische bedeutsame Granate

- Yttrium-Eisen-Granat YIG $[Y_3]_d[Fe_2]_o[Fe_3]_tO_{12}$ • Yttrium-Aluminium-Granat YAG $[Y_3]_d[Al_2]_o[Al_3]_tO_{12}$
- Gadolinium-Gallium-Granat $GGG [Gd_3]_d[Ga_2]_o[Ga_3]_tO_{12}$

Prof. Dr. T. Jüstel	
FH Münster, FB 01	

2. Struktur des YAGs

2. Struktur des YAGs

Dotierung von YAG: Vegard'sche Regel beachten! ∆r < ~15%

Y³⁺ Dodekaederplatz (r = 115 pm)

Bi	³⁺ 13	81 pm	Y ₃ Al ₅ O ₁₂ :Bi	UV-B Emitter		
С	e ³⁺ 12	28 pm	Y ₃ Al ₅ O ₁₂ :Ce	Aktivator in LED Leuchtstoffen		
Pr	⁻³⁺ 12	27 pm	Y ₃ Al ₅ O ₁₂ :Pr	Co-Aktivator in L	ED Leuchtstoffen	
Ν	d ³⁺ 12	25 pm	Y ₃ Al ₅ O ₁₂ :Nd	Aktivator in LASE	R-Kristallen	
Sr	n ³⁺ 12	22 pm	Y₃AI₅O₁₂:Sm	Roter Linienleuch	ntstoff	
Ει	ս ³⁺ 12	21 pm	Y ₃ Al ₅ O ₁₂ :Eu	Roter Linienleuchtstoff		
G	d ³⁺ 11	l9 pm	Y ₃ Al₅O ₁₂ :Gd	Rotverschiebung der Ce ³⁺ Emission		
Tk	o ³⁺ 11	l8 pm	Y ₃ Al ₅ O ₁₂ :Tb	Grüner PTV-Leuchtstoff		
				Rotverschiebung der Ce ³⁺ Emission		
Dy	y ³⁺ 11	l7 pm	Y ₃ Al ₅ O ₁₂ :Dy	Rotverschiebung der Ce ³⁺ Emission		
Tr	n ³⁺ 11	l3 pm	Y₃Al₅O₁₂:Tm	Blauer Linienleuchtstoff		
Y	o ³⁺ 11	l2 pm	Y ₃ Al ₅ O ₁₂ :Yb	IR-A Emitter		
Lι	1 ³⁺ 11	l2 pm	Y ₃ Al ₅ O ₁₂ :Lu	Blauverschiebung der Ce ³⁺ Emission		
	Prof. Dr. T. Jü FH Münster, I	üstel FB 01			Granate und YAG:Ce Folie 6	

2. Struktur des YAGs

Dotierung von YAG: Vegard'sche Regel beachten! ∆r < ~15%

Al ³⁺	Oktaederplatz ((r = 68 pm) bzw.	Tetraederplatz (r = 53 pm)	

	rzo	NZ4		
Ga ³⁺	76 pm	61 pm	Y₃Al₅O ₁₂ :Ga	Blauverschiebung der Ce ³⁺ Emission
ln ³⁺	94 pm	76 pm	Y ₃ Al ₅ O ₁₂ :In	?
Cr ³⁺	76 pm	-		Roter Linienleuchtstoff
Fe ³⁺	69 pm	63 pm	Y ₃ Al ₅ O ₁₂ :Fe	IR-A Emitter

O²⁻ Tetraederplatz (r = 124 pm)

471

V76

F	117 pm	Y ₃ Al _{5-x} Mg _x O _{12-x} F _x ?

 N^{3-} 132 pm $Y_{3}AI_{5-x}Si_{x}O_{12-x}N_{x}$ Rotverschiebung der Ce³⁺ Emission

3. Physikalische Eigenschaften des YAGs

3. Physikalische Eigenschaften des YAGs

Dotiertes YAG – Anregungs- und Emissionsspektren

4. Leuchtstoffkonvertierte LEDs

Allgemeine Anforderungen

- starke Absorption bei der Emissionswellenlänge des Halbleiter-LED → spin- and paritätserlaubter Übergang, z.B. 4fⁿ – 4fⁿ⁻¹5d¹
- Quantenausbeute > 90%
- Stabilität gegenüber O₂, CO₂ und H₂O
- Stabilität unter hoher Anregungsdichte (100 200 W/cm²)
- Kompatibilität mit dem LED-Herstellungsprozess

```
Dichromatische LEDs (Blau + Gelb)
```

• breite Emissionsbande zwischen 560 - 580 nm

 \rightarrow Ce³⁺-Leuchtstoffe (Aufspaltung des Grundzustandes ${}^{2}F_{5/2}$ + ${}^{2}F_{7/2}$)

Trichromatische LEDs (Blau + Grün/Gelb + Rot)

- grüner/gelber Leuchtstoff \rightarrow Eu²⁺ oder Ce³⁺ 520 560 nm
- roter Leuchtstoff \rightarrow Eu²⁺ oder Mn²⁺ 590 630 nm

Prof. Dr. T. Jüstel FH Münster, FB 01

Ce³⁺ Leuchtstoffe: Absorptions- und Emissionsmaxima

Wirtsgitter	λ _{abs} [nm]	λ _{em} [nm]	ε _{cfs} [cm ⁻¹] ε _c [cm ⁻¹]
SrAl ₁₂ O ₁₉	224, 235, 244, 252, 261	290, 315	6300 10000
LaPO ₄	203, 225, 238, 250, 323	320, 335	11900 8700
LaMgAl ₁₁ O ₁₉	220, 232, 243, 255, 270	345	8400 10000
YPO₄	203, 225, 238, 250, 323	335, 355	18000 9600
LaMgB₅O ₁₀	202, 225, 239, 257, 272	385, 410	9000 12700
YBO ₃	219, 245, 338, 357	390, 415	17600 13300
Lu ₂ SiO ₅	205, 215, 267, 296, 356	405, 420	20700 12300
YAIO ₃	219, 237, 275, 291, 303	370	12700 12900
Y ₃ Al ₅ O ₁₂	205, 225, 261, 340, 458	545, 555	27000 14700

Ce³⁺ in YAG-Wirtsgittern

- Große centroide Verschiebung
- Außergewöhnlich große Kristallfeldaufspaltung

Prof.	Dr.	т. Ј	üst	el
FH M	üns	ter,	FΒ	01

Energieniveaus und Anregungsspektrum von Ce³⁺ in Y₃Al₅O₁₂

- Substitution von Y durch Gd, Tb, Dy oder Erhöhung der Ce-Konzentration
 - \Rightarrow Rotverschiebung
- Substitution von Y durch Lu oder von Al durch Ga oder Sc
 - \Rightarrow Blauverschiebung

Prof. Dr. T. Jüstel FH Münster, FB 01

Blauer InGaN Chip + (Y,Gd)AG:Ce

Die ersten kommerziell erhältlichen LEDs folgten diesem Konzept

- Farbwiedergabe CRI = 70 85
- Kaltes weißes Licht
- Lichtausbeute 50 150 lm/W
- Nachteil: Niedrige Farbwiedergabe für rote Farben, insbesondere bei niedrigen Farbtemperaturen

Prof. Dr. T. Jüstel FH Münster, FB 01

6. Synthese von YAG:Ce

Keramische und Precursor-Methode

- 1. Festkörpersynthese (keramische Methode)
 - Mischung von Ln_2O_3 , CeO_2 und Al_2O_3
 - Zugabe eines Flussmittels, z.B. BaF₂, YF₃ oder AIF₃
 - 1. Heizschritt 1300°C in CO-Atmosphäre
 - 2. Heizschritt 1500 1700°C in CO-Atmosphäre
 - \Rightarrow Typische Partikelgröße 5 20 µm
- 2. Co-Präzipitation (Precursor Methode)
 - Lösung der Me(NO₃)₃-Salze in dest. H₂O
 - Fällung durch Zugabe von NH_4HCO_3 3 Ln³⁺ + 5 Al³⁺ + 12 OH⁻ + H₂O + 3 CO₃²⁻ \rightarrow [3 LnOHCO₃/5 AlOOH]_{Gel} + 3 H₂O
 - Sintern bei 1300°C in CO-Atmosphäre [3 LnOHCO₃ / 5 AlOOH]_{Gel} \rightarrow Ln₃Al₅O₁₂ + 3 CO₂ + 4 H₂O
 - \Rightarrow Typische Partikelgröße 1 2 µm

YAG Precursor

Prof. Dr. T. Jüstel FH Münster, FB 01