Examination

Advanced Inorganic Chemistry

M.Sc. Chemical Engineering / Material Science and Engineering

February 05 ${ }^{\text {th }}, 2024$
(Part: Prof. Dr. Thomas Jüstel)

Name, Given name:

Enrolment number:

Birthday:

Duration: 180 minutes (for both parts)
Achievable score: $\quad 50$ Points (for this part)
Please use these sheets only (you might also use the reverse)! Please employ IUPAC units solely. Assign axes of graphs and parts of sketches properly!

Success!

Astrochemistry and Spectroscopy

CO is the second most molecule in the interstellar medium (ISM) due to its extraordinarily high thermodynamic stability.
a) Sketch the two possible conjugated acids, i.e. protonation products, of the base CO! (2 Points)
b) The bond energy of CO is 11.16 eV . Please calculate the absorption edge in nanometer and speculate whether CO can be detected due to this transition by ground-based telescopes! (2 Points)
c) CO is a rigid rotator whereby the energy levels are $E(J)=B J(J+1)$ with $J=0,1$, $2,3, \ldots$ and $B=h / 2 \pi l$. Calculate the frequency of the first two rotational transitions $\left(J=2 \rightarrow J=1\right.$ and $J=1 \rightarrow J=0$) for the momentum of inertia $I=9.2 \cdot 10^{-46} \mathrm{~kg} / \mathrm{m}^{2}$! Are these transitions detectable by ground-based radio telescopes? Explain your answer! (2 Points)
d) Propose reaction products for the following photochemical reactions occurring in space! (2 Points)

$$
\begin{aligned}
& \mathrm{CO}+\mathrm{NH}_{3} \rightarrow \\
& \mathrm{CO}+\mathrm{H}_{2} \rightarrow
\end{aligned}
$$

e) HCN pentamerise in space to the nucleobase adenine (see image).

Speculate about the origin of the strongest optical transitions causing the absorption band in the UV at 260 nm and in the IR at $1600 \mathrm{~cm}^{-1}$? Are these bands of adenine in space detectable from the ground (0 m), from stratosphere (20 km) or from space telescopes (> 500 km) solely? (2 Points)

Point Groups

a) Determine the corresponding point group labels (Schoenflies symbols) next to the image and symmetry operations of each molecule mentioned below. The point group flowchart is provided in the appendix. (0.5 Points for each cell)

Molecule	Image	symmetry operations	Point group
NH_{3}			
$\mathrm{CH}_{2} \mathrm{O}$			
Fluoroacetylene			
1,5-Dibrom- naphtalene			

b) Give an example for an inorganic or organic molecule with the following point groups! (1 Point each)

- $\mathrm{C}_{4 \mathrm{v}}$
- $D_{2 d}$
- $D_{4 h}$
- C_{3}

MO Theory

a) Construct the MO diagram of CO by using the 2 s and 2 p AOs upon using the UPS determined AO energies (C 2s: -19.4 eV, C 2p: -10.7 eV, O 2s: -32.4 eV, O $2 \mathrm{p}:-15.8 \mathrm{eV}$) Please also assign the optical transition resulting in the weakening of the CO molecule with a very strong bond energy of about 1072 $\mathrm{kJ} / \mathrm{mol}$! (2 Points)
b) The water molecule is bent and belong to the point group $\mathrm{C}_{2 \mathrm{v}}$. Determine the symmetry representation labels (see appendix) for the $2 \mathrm{~s}-, 2 \mathrm{p}_{z^{-}}, 2 \mathrm{p}_{\mathrm{x}}-, 2 \mathrm{p}_{\mathrm{y}}-$ orbitals of the central O-Atom! (4 Points)
c) In the framework of MO theory 3-atomic molecules can be treated by defining a central atom and outer group atoms. On this basis construct the MO-diagram for $\mathrm{H}_{3}{ }^{+}$! Why is $\mathrm{H}_{3^{+}}$more stable than H_{3}, even though the bond order is the same? (4 Points)

Marcus-Theory and inner- or outer-sphere reactions

a) The Marcus theory links reaction kinetics of electron transfer (ELT) or atom transfer (AT) reactions with the thermodynamic equilibrium constant, while in the Marcus regime the following equation for the transfer rate holds: $\mathrm{k}_{12}=\left(\mathrm{k}_{11} \mathrm{k}_{22} \mathrm{~K}_{12}\right)^{1 / 2}$. Explain the meaning of the different constants and also explain the term self-exchange reaction! (2 Points)
b) Give an example for an inner-sphere reaction and assign the precursor and the successor complex according to the Robin and Day (type I, II, III) classification! (2 Points)
c) The first step in outer-sphere reactions is the formation of a precursor complex as shown below:

S

precursor complex

Discuss the effect of the solvent S on the formation of the precursor complex and on the rate of the subsequent electron transfer reaction! (2 Points)
d) The following table give reaction rates of self-exchange reactions:

Self-exchange reaction electron configuration $\mathrm{k}_{11}\left[\mathrm{M}^{-1} \mathrm{~s}^{-1}\right]$

$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+/ 3+}$	$\mathrm{t} 2 \mathrm{~g}^{3} \mathrm{eg}^{1} / \mathrm{t}_{2 \mathrm{~g}}{ }^{3} \mathrm{eg}^{0}$	$1.0 \cdot 10^{-5}$
$\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+/ 3+}$	$\mathrm{t} 2 \mathrm{~g}^{3} \mathrm{eg}^{0} / \mathrm{t}_{2 \mathrm{~g}}{ }^{2} \mathrm{eg}^{0}$	$1.0 \cdot 10^{-2}$
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+/ 3+}$	$\mathrm{t}_{2 \mathrm{~g}}{ }^{4} \mathrm{~g}^{2} / \mathrm{t}_{2 \mathrm{~g}}{ }^{3} \mathrm{eg}^{2}$	$4.0 \cdot 10^{0}$
$\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+3+}$	$\mathrm{t}_{2 \mathrm{~g}} \mathrm{e}_{\mathrm{g}}{ }^{0} / \mathrm{t}_{2 g}{ }^{5} \mathrm{eg}^{0}{ }^{0}$	$4.0 \cdot 10^{3}$

Explain the reaction rate differences by the aid of the electron configuration and the Jahn-Teller effect! (4 Points)

Spectroscopy and Catalysis: "The Copper Case"

a) Cu^{2+} complexes show mostly either tetrahedral, octahedral or square-planar coordination. Determine the Russell-Saunders ground state term of Cu^{2+} and sketch the splitting of this term in these three crystal fields. Also assign by the aid of the tables in the appendix the terms to crystal-field labels! (4 Points)
b) Explain the color of the Cu^{2+} pigments Egyptian and Han blue on the basis of the optical transitions expected for Cu^{2+} in square-planar symmetry! (2 Points)
c) The redox-couple $\mathrm{Cu}^{2+} / \mathrm{Cu}^{+}$is widely applied in electron transfer reactions, e.g. in the respiratory chain and in the electron transport chain of PSII. Sketch a selfexchange reactions for this redox couple with arbitrary ligands L. Please also speculate about the advantage of square-planar Cu^{2+} complexes for the catalysis of redox reactions! (4 Points)

Appendix

Decision tree for the determination of point groups

Number of irreducible representations

| \# of irreducible
 representations
 of a given type |
| :---: |\(=\frac{1}{order} \sum_{R}\left(\begin{array}{c}\begin{array}{c}\# of

operations

in the class\end{array}\end{array} $$
\begin{array}{c}\text { character of } \\
\text { reducible } \\
\text { representation }\end{array}
$$ \times $$
\begin{array}{c}\text { character of } \\
\text { irreducible } \\
\text { representation }\end{array}
$$\right)\)

Character table C2v

Point Group Label		Symmetry Operations - The Order is the total number of operations			
\downarrow			${ }^{+}$		In $\mathrm{C}_{2 \mathrm{v}}$ the order is 4:
$\mathrm{C}_{2 \mathrm{~V}}$	E	C_{2}	$\sigma_{v}(x z)$	$\sigma_{v}^{\prime}(y z)$	$1 \mathrm{E}, 1 \mathrm{C}_{2}, 1 \sigma_{\mathrm{v}}$ and $1 \sigma^{\prime}{ }_{\mathrm{v}}$
A_{1}	1	1	1	1	
A_{2}	1	1	-1	-1	Character
B_{1}	1	-1	1	-1	
B_{2}	1	-1	-1	1	Representation of B_{2}

Nomenclature of symmetry representation labels

Crystal-field term	degeneracy
A	1
B	1
E	2
T	3

by symmetry:	Principal rotation axis $\left(\mathrm{C}_{n}\right)$	Center of inversion (i)	plane II to princip. axis $\left(\sigma_{v}\right)$	plane \perp to princip. axis $\left(\sigma_{h}\right)$
symmetric	A	g	1	,
antisymmetric	B	u	2	$"$

Splitting of the wavefunctions (orbitals) in selected crystal field geometries

$\psi_{\mathrm{i}} \quad \mathrm{G}$	R_{3}	O_{h}	T_{d}	$\mathrm{D}_{4 \mathrm{~h}}$	$\mathrm{C}_{4 \mathrm{v}}$	$\mathrm{C}_{2 \mathrm{v}}$	$\mathrm{D}_{3 \mathrm{v}}$
s	s_{g}	$A_{1 g}$	A_{1}	$A_{1 \mathrm{~g}}$	A_{1}	A_{1}	$A_{1 g}$
$p_{\text {x }}$	p_{u}	$T_{1 \mathrm{u}}$	T_{1}	E_{u}	E	B_{1}	E_{u}
p_{y}						B_{2}	
p_{z}				$A_{2 u}$	A_{1}	A_{1}	$A_{2 u}$
$\mathrm{d}_{\mathrm{z} 2}$	d_{g}	E_{g}	E	$A_{1 \mathrm{~g}}$	A_{1}	A_{1}	E_{g}
$d_{x 2-y 2}$				$B_{1 \mathrm{~g}}$	B_{1}	A_{1}	
$d_{x y}$		$T_{2 g}$	T_{2}	$B_{2 g}$	B_{2}	A_{2}	$A_{1 \mathrm{~g}}$
$d_{x z}$				E_{g}	E	B_{1}	E_{g}
$d_{y z}$						B_{2}	

Periodic Table of the Elements (PTOE)

* Lanthanide series	$\begin{gathered} \text { lanthanum } \\ 57 \\ \text { La } \end{gathered}$	ce	Pr	Nd	Pm	Sm	${ }^{63} \mathrm{E}$	Gd	T^{65}	Dy	Ho	${ }_{\text {Er }}^{68}$	Tm	Yb
	138.91	140.12	140.91	144.2	1145	${ }_{150}$	151.96	,	158.9		164.93	167.26	168.93	173.04
**Actinide series							mom	${ }_{96}^{\text {curum }}$				100	101	${ }^{102}$
	Ac	Th	Pa	U	Np	Pu	Am	Cm	BK	Cf	Es	Fm	Md	No
	${ }^{1227}$	232.0	331.0	238.0	[237]	[24]	[243]	[247]	[247]	[251]	[252]	[257]		[259]

