On the VUV Luminescence and Degradation of UV-C Emitting Phosphors Mike Broxtermann* and Thomas Jüstel

mail to: <u>mike.b@fh-muenster.de</u> or <u>tj@fh-muenster.de</u>

Research Group Tailored Optical Materials Münster University of Applied Sciences Stegerwaldstraße 39, D-48565 Steinfurt Germany

Bundesministerium für Bildung und Forschung

GEFORDERT VOM

Phosphor converted Xe DBD lamps

Dielectric barrier Xenon excimer discharge lamps are known as efficient sources of vacuum ultraviolet radiation, while the main band peaks at 172 nm.¹ By the use of VUV excitable conversion materials which are applied as a coating layer onto the lamp body it is feasible to manufacture efficient UV-C, near VUV, or even UV-A/B emitting Xe excimer lamps which may perform well for the replacement of established Hg discharge lamps and respective UV radiation systems.

FH MÜNSTER

CIW

FB Chemieingenieurwesen

University of Applied Sciences

Department of Chemical Engineering

Fig. 2 Schematic illustration of the principle of operation of two

(a≈230

.70

280 300 320 340 360 380

Run-time /h Fig. 5 Left: UV-C output vs run-time for a YPO₄:Bi comprising Xe lamp. Right: Excitation, emission and reflectance spectra of untreated and aged YPO₄:Bi (after 700 hrs run-time)

Phosphor converted Xe excimer lamps comprising YPO₄:Bi (internal phosphor) exhibit a distinct and fast characteristic aging under continuous operation:

- Observable greying of the actually clear white phosphor coating
- Continuous decrease of UV radiation output over operation time (after 24 h forerun)
- A dimming of 30 % (L70) is already reached after ≈ 230 hours runtime

- The distinct aging effect is evident regardless the dopant cation and is as well observed for the undoped host material YPO₄
- As a detectable main symptom of aging, a novel broad emission band appears rising from the visual beginning at around 500 - 600 nm towards the UV region
- The uprising absorption band may be accompanied by a general overall absorption (greying) and a absorption band ascribed to a reduced activator species in case of YPO_4 :Bi (Bi³⁺ \rightarrow Bi⁺/Bi²⁺)
- Upon PL excitation into the new host absorption bands in the UV yields deep red luminescence, regardless which or any doping. This phenomenon was further followed by the temperature dependent PL spectra of aged undoped YPO₄, LaPO₄, and LuPO₄ (see B)

Solid State NMR reveals that the bulk host material remains unaltered (within the detection limits)

Fig. 11 Left: Energy level scheme for ns² luminescence; Middle: Temp. dependent excitation and emission spectra measured from aged samples of LuPO₄ supplemented by proposed electron transitions; Right: Proposed scheme for P⁵⁺ reduction due to plasma contact

The application of an Al_2O_3 coating onto YPO_4 :Bi particles

results in a reduced phosphor degradation (approximately

factor \approx 2) with respect to an uncoated material and

4. Device lifetime improvement: Application and impact of protective inert particle coatings

Fig. 13 Illustration of YPO₄:Bi a particle coated with a protective but 172 nm transmitting Al_2O_3 layer or shell.

Particle Coating:

 YPO_4 : Pr, YPO_4

Ideally, each and every single phosphor particle is coated with an homogeneous and surface covering coating of α -Al₂O₃ to prevent phosphor aging (degradation) under exposure to the Xe discharge.

Fig. 13 Illustration of UV driven particle coating process ^[4]

An optimal coating quality in terms of homogeneity and particle surface coverage were yielded with a photochemically driven precipitation process, recently described in literature.^[4]

For further information look up literature 4 or follow

This positive effect appears to act upon the reduction of the activator Bi³⁺ as well as the degradation of the host material itself, as indicated by the comparison of spectra displayed by figure 14.

under analogous aging conditions

<u>— 180 к</u> — 400

Fig. 14 Fig. Top: UV-C output vs run-time for a YPO₄:Bi and a Al₂O₃ coated YPO₄:Bi comprising Xe lamp. Bottom: Excitation, emission and reflectance spectra of the aged YPO₄:Bi and Al_2O_3 coated YPO₄:Bi (after 700 hrs run-time)

