Fachhochschule Münster University of Applied Science

Fachbereich
Energie • Gebäude • Umwelt

9. Sanitärtechnisches Symposium

Bemessung von Trinkwasserinstallationen auf Grundlage von EN 806-3

- Ein kritischer Vergleich mit DIN 1988-3 -

Dipl.-Ing. Ludger Kuper

Prof. Dipl.-Ing. Bernd Rickmann

Steinfurt, 25. Januar 2007

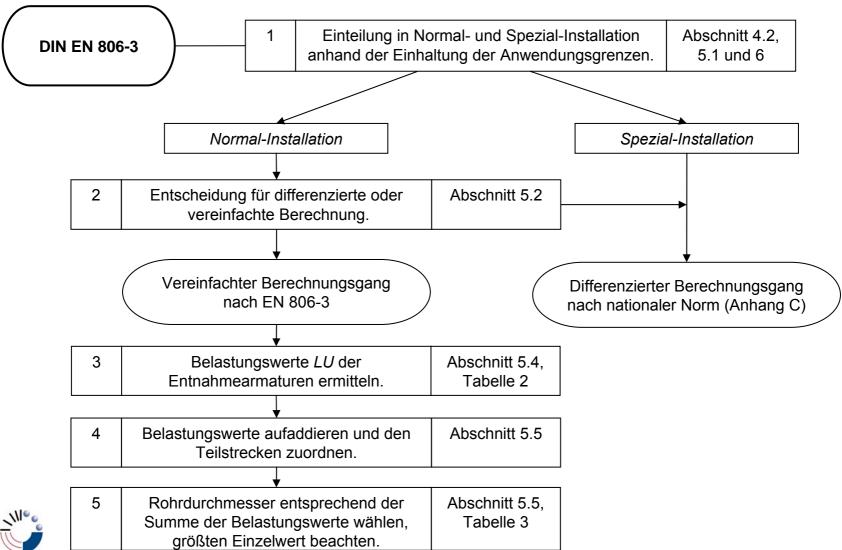
Einführung

- Verabschiedung der EN 806 für Trinkwasserinstallationen.
- Bisherige DIN 1988 wird abgelöst.
- ◆ EN 806-3 zur Berechnung der Rohrinnendurchmesser, deutsche Ausgabe erschienen im Juli 2006.
 - Einführung neuer Formelzeichen.
 - Einführung eines neuen vereinfachten Berechnungsgangs.
 - Verweis auf nationale Regelungen für differenzierte Berechnung (für Deutschland: DIN 1988-3).
- Diplomarbeit mit Analyse des Teil 3 der neuen Norm und Untersuchungen.

Kurzporträt EN 806-3

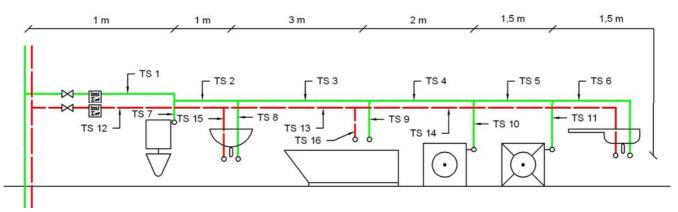
» Vereinfachter Berechnungsgang

Anwendungsvoraussetzungen:


- Normal-Installation
 - Berechnungsdurchfluss
 - Gleichzeitigkeit der Nutzung
 - keine Dauerverbraucher
- "nicht überdurchschnittliche Ausmaße"
- ⇒ Keine Vorgaben/Aussagen zu:
 - Versorgungsdruck
 - geodätischer Höhe
 - Apparatewiderständen
 - Einzelwiderstandsverlusten bzw. -anteil
 - max. Leitungslänge
- ⇒ Rohrreibungsdruckgefälle hat keinerlei Einfluss!

Kurzporträt EN 806-3

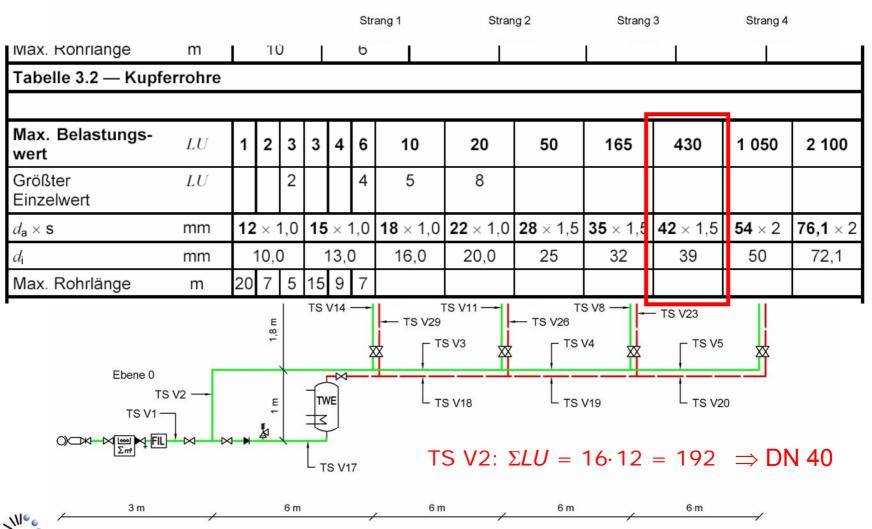
» Anwendung der neuen Norm



Vereinfachter Berechnungsgang

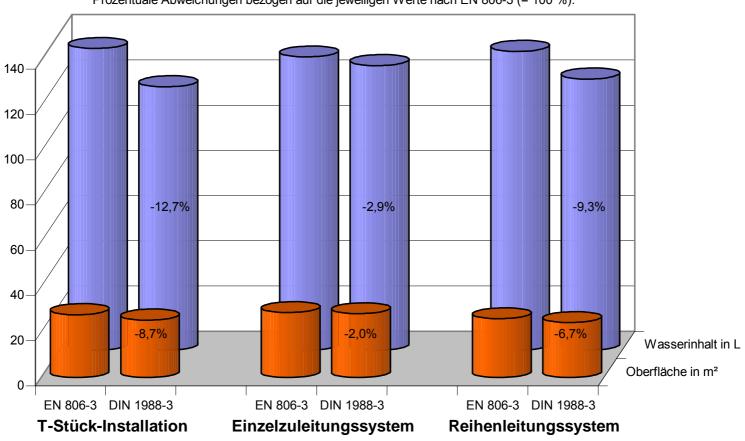
» Anwendungsbeispiel

TWK: $\Sigma LU_{TS 1} = 1 + 1 + 4 + 2 + 2 + 2 = 12$


Max. Ronriange	m		7(J			6							
Tabelle 3.2 — Kupferrohre														
										1				
Max. Belastungs- wert	LU	1	2	3	3	4	6	10	20	50	165	430	1 050	2 100
Größter Einzelwert	LU			2			4	5	8					
$d_{a} \times S$	mm	12	2 × '	1,0	15	5 × '	1,0	18 × 1,0	22 × 1,0	28 × 1,5	35 × 1,5	42 × 1,5	54 × 2	76,1 × 2
d_{i}	mm		10,0	0		13,0	0	16,0	20,0	25	32	39	50	72,1
Max. Rohrlänge	m	20	7	5	15	9	7							
										_				

Vereinfachter Berechnungsgang

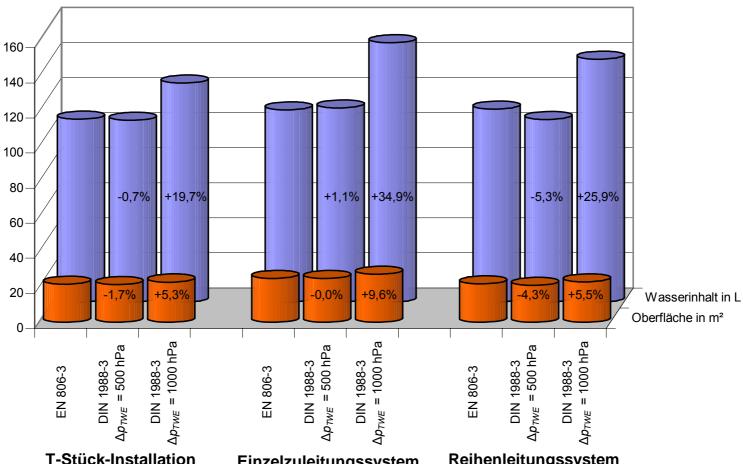
» Anwendungsbeispiel



Auswirkungen auf Hygienefaktoren

Wasserinhalt und innere Oberfläche des Rohrnetzes bei zentraler Trinkwassererwärmung

Prozentuale Abweichungen bezogen auf die jeweiligen Werte nach EN 806-3 (= 100 %).



Auswirkungen auf Hygienefaktoren

Wasserinhalt und innere Oberfläche des Rohrnetzes bei Gruppentrinkwassererwärmung

Prozentuale Abweichungen bezogen auf die jeweiligen Werte nach EN 806-3 (= 100 %).

Evaluation der Druckverhältnisse

- Druckverlustberechnung bei T-Stück-Installation und Gruppentrinkwassererwärmung im Stockwerk.
- Mindestdruck angenommen laut prEN 806-3:2003 mit $p_{min,V'} = 3000 \text{ hPa}.$
- Erstellung einer Druckbilanz:

$$p_{verf,FL} = p_{min,V'} - [\Delta p_{geo} + \Delta p_{WZ,ST} + \Sigma \Delta p_{Ap} + \Sigma (I \cdot R + Z)]$$

•	Ergebnisse:	Entnahmestelle: Küchenspüle TWW in							
		Strang 4,	Ebene 4	Strang 2, Ebene3					
	\dot{V}_{R} nach:	DIN 1988-3	EN 806-3	DIN 1988-3	EN 806-3				
	<i>Σ(I·R+Z) /</i> hPa	464	1367	370	1206				
	p _{verf,FL} /hPa	486	-417	860	24				

Fazit

- Keine Veränderung bei der differenzierten Berechnung.
- ◆ Zahlreiche, zu große Interpretationsspielräume in der EN 806-3.
- Vereinfachter Berechnungsgang:
 - Kein überhöhtes Hygienerisiko für Normal-Installationen nachweisbar.
 - Untragbare Defizite bei den Druckbedingungen. Zusätzliche Druckbilanz bei Anwendung unbedingt erforderlich!
 - Kaum sinnvolle Anwendungsmöglichkeiten in der heutigen Zeit.
- ◆ EN 806-3:2006 ist ein Kompromiss und kann nur ein erster Schritt auf dem Weg zur europaweit einheitlichen Trinkwasserauslegung sein.

Fachhochschule
Münster University of
Applied Science

