4.5 Numerical schemes U-119

writeCompression Switch to specify whether files are compressed with gzip when written:
on/off (yes/no, true/false)

timeFormat Choice of format of the naming of the time directories.

e fixed: +m.dddddd where the number of ds is set by timePrecision.
e scientific: +m.dddddde= zx where the number of ds is set by timePrecision.
e general (default): Specifies scientific format if the exponent is less than -4
or greater than or equal to that specified by timePrecision.
timePrecision Integer used in conjunction with timeFormat described above, 6 by default.

graphFormat Format for graph data written by an application.

e raw (default): Raw ASCII format in columns.
e gnuplot: Data in gnuplot format.
e xmgr: Data in Grace/xmgr format.

e jplot: Data in jPlot format.

4.4.3 Other settings

adjustTimeStep Switch used by some solvers to adjust the time step during the simulation,
usually according to maxCo.

maxCo Maximum Courant number, e.g. 0.5

runTimeModifiable Switch for whether dictionaries, e.g.controlDict, are re-read during a
simulation at the beginning of each time step, allowing the user to modify parameters
during a simulation.

libs List of additional libraries (on $LD LIBRARY PATH) to be loaded at run-time,
e.g.("1libNewl.so" "libNew2.so")

functions Dictionary of functions, e.g. probes to be loaded at run-time; see examples in
$FOAM _TUTORIALS

4.5 Numerical schemes

The fvSchemes dictionary in the system directory sets the numerical schemes for terms, such
as derivatives in equations, that are calculated during a simulation. This section describes
how to specify the schemes in the fvSchemes dictionary.

The terms that must typically be assigned a numerical scheme in fvSchemes range from
derivatives, e.g. gradient V, to interpolations of values from one set of points to another. The
aim in OpenFOAM is to offer an unrestricted choice to the user, starting with the choice
of discretisation practice which is generally standard Gaussian finite volume integration.
Gaussian integration is based on summing values on cell faces, which must be interpolated
from cell centres. The user has a wide range of options for interpolation scheme, with certain
schemes being specifically designed for particular derivative terms, especially the advection
divergence V « terms.

OpenFOAM-8

U-120

OpenFOAM cases

The set of terms, for which numerical schemes must be specified, are subdivided within
the fvSchemes dictionary into the categories below.

timeScheme: first and second time derivatives, e.g. 0/0t, 0? /0%t

gradSchemes: gradient V

divSchemes: divergence V

laplacianSchemes: Laplacian V?

interpolationSchemes: cell to face interpolations of values.

snGradSchemes: component of gradient normal to a cell face.

wallDist: distance to wall calculation, where required.

Each keyword in represents the name of a sub-dictionary which contains terms of a particular
type, e.g.gradSchemes contains all the gradient derivative terms such as grad(p) (which
represents Vp). Further examples can be seen in the extract from an fvSchemes dictionary
below:

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

ddtSchemes
default

gradSchemes

default

divSchemes
default

div(phi,U)
div(phi, k)
div(phi,epsilon)
div(phi,R)
div(R)
div(phi,nuTilda)

Euler;

Gauss linear;

none;

Gauss
Gauss
Gauss
Gauss

Gauss
Gauss

linearUpwind grad(U);
upwind;
upwind;
upwind;
linear;
upwind;

div((nuEff*dev2(T(grad(U))))) Gauss linear;

}

laplacianSchemes

default

interpolationSchemes

default

snGradSchemes

default

Gauss linear corrected;

linear;

corrected;

// 3K 3K 3K 3K 3K 3K 5k 5k 3k 3k 3k 5k 5k >k 5k >k 5K >k 3k 3k 3k 3k 3k 5k 3k 5k 5k %k 5k 5K 3K >k 3k 3k 3k %k %k %k 5k %k %k 5k K %K 3K 3K 3k 3k 3k 5k 5k >k >k 5k %K %K >k >k >k 5k >k %k %k >k %k >k >k kK Kk Kk //

The example shows that the fvSchemes dictionary contains 6 ...Schemes subdictionaries
containing keyword entries for each term specified within including: a default entry;

OpenFOAM-8

4.5 Numerical schemes U-121

other entries whose names correspond to a word identifier for the particular term speci-
fied, e.g.grad(p) for Vp If a default scheme is specified in a particular ...Schemes sub-
dictionary, it is assigned to all of the terms to which the sub-dictionary refers, e.g. specifying
a default in gradSchemes sets the scheme for all gradient terms in the application, e.g. Vp,
VU. When a default is specified, it is not necessary to specify each specific term itself
in that sub-dictionary, ¢.e. the entries for grad(p), grad(U) in this example. However, if
any of these terms are included, the specified scheme overrides the default scheme for that
term.

Alternatively the user can specify that no default scheme by the none entry, as in the
divSchemes in the example above. In this instance the user is obliged to specify all terms
in that sub-dictionary individually. Setting default to none may appear superfluous since
default can be overridden. However, specifying none forces the user to specify all terms
individually which can be useful to remind the user which terms are actually present in the
application.

OpenFOAM includes a vast number of discretisation schemes, from which only a few
are typically recommended for real-world, engineering applications. The user can get help
with scheme selection by interrogating the tutorial cases for example scheme settings. They
should look at the schemes used in relevant cases, e.g. for running a large-eddy simulation
(LES), look at schemes used in tutorials running LES. Additionally, foamSearch provides a
useful tool to get a quick list of schemes used in all the tutorials. For example, to print
all the default entries for ddtSchemes for cases in the $FOAM _TUTORIALS directory, the
user can type:

foamSearch $FOAM_TUTORIALS fvSchemes ddtSchemes.default

which prints:

default backward;

default CrankNicolson 0.9;
default Euler;

default localEuler;
default none;

default steadyState;

The schemes listed using foamSearch are described in the following sections.

4.5.1 Time schemes

The first time derivative (0/0t) terms are specified in the ddtSchemes sub-dictionary. The
discretisation schemes for each term can be selected from those listed below.

e steadyState: sets time derivatives to zero.
e Euler: transient, first order implicit, bounded.

e backward: transient, second order implicit, potentially unbounded.

OpenFOAM-8

U-122 OpenFOAM cases

e CrankNicolson: transient, second order implicit, bounded; requires an off-centering
coefficient 1) where:

Y =

1 corresponds to pure CrankNicolson,
0 corresponds to Euler;

generally ¥ = 0.9 is used to bound/stabilise the scheme for practical engineering
problems.

e localEuler: pseudo transient for accelerating a solution to steady-state using local-
time stepping; first order implicit.

Solvers are generally configured to simulate either transient or steady-state. Changing the
time scheme from one which is steady-state to transient, or visa versa, does not affect the
fundamental nature of the solver and so fails to achieve its purpose, yielding a nonsensical
solution.

Any second time derivative (0 /9t?) terms are specified in the d2dt2Schemes sub-dictionary.
Only the Euler scheme is available for d2dt2Schemes.

4.5.2 Gradient schemes

The gradSchemes sub-dictionary contains gradient terms. The default discretisation scheme
that is primarily used for gradient terms is:

default Gauss linear;

The Gauss entry specifies the standard finite volume discretisation of Gaussian integration
which requires the interpolation of values from cell centres to face centres. The interpo-
lation scheme is then given by the linear entry, meaning linear interpolation or central
differencing.

In some tutorials cases, particular involving poorer quality meshes, the discretisation of
specific gradient terms is overridden to improve boundedness and stability. The terms that
are overridden in those cases are the velocity gradient

grad (U) celllLimited Gauss linear 1;
and, less frequently, the gradient of turbulence fields, e.g.

grad (k) cellLimited Gauss linear 1;
grad(epsilon) cellLimited Gauss linear 1;

They use the cellLimited scheme which limits the gradient such that when cell values are

extrapolated to faces using the calculated gradient, the face values do not fall outside the

bounds of values in surrounding cells. A limiting coefficient is specified after the underlying

scheme for which 1 guarantees boundedness and 0 applies no limiting; 1 is invariably used.
Other schemes that are rarely used are as follows.

e leastSquares: a second-order, least squares distance calculation using all neighbour
cells.

e Gauss cubic: third-order scheme that appears in the dnsFoam simulation on a regular
mesh.

OpenFOAM-8

4.5 Numerical schemes U-123

4.5.3 Divergence schemes

The divSchemes sub-dictionary contains divergence terms, i.e. terms of the form V «...,
excluding Laplacian terms (of the form V «(I'V...)). This includes both advection terms,
e.g. V « (Uk), where velocity U provides the advective flux, and other terms, that are often
diffusive in nature, e.g. V « v(VU)™.

The fact that terms that are fundamentally different reside in one sub-dictionary means
that the default scheme in generally set to none in divSchemes. The non-advective terms
then generally use the Gauss integration with 1inear interpolation, e.g.

div(U) Gauss linear;

The treatment of advective terms is one of the major challenges in CFD numerics and so
the options are more extensive. The keyword identifier for the advective terms are usually
of the form div(phi,...), where phi generally denotes the (volumetric) flux of velocity
on the cell faces for constant-density flows and the mass flux for compressible flows, e.g.
div(phi,U) for the advection of velocity, div(phi,e) for the advection of internal energy,
div(phi,k) for turbulent kinetic energy, etc. For advection of velocity, the user can run the
foamSearch script to extract the div(phi,U) keyword from all tutorials.

foamSearch $FOAM_TUTORIALS fvSchemes "divSchemes.div(phi,U)"

The schemes are all based on Gauss integration, using the flux phi and the advected field be-
ing interpolated to the cell faces by one of a selection of schemes, e.g. linear, linearUpwind,
etc. There is a bounded variant of the discretisation, discussed later.

Ignoring ‘V’-schemes (with keywords ending “V”), and rarely-used schemes such as Gauss
cubic and vanLeerV, the interpolation schemes used in the tutorials are as follows.

e linear: second order, unbounded.

e linearUpwind: second order, upwind-biased, unbounded (but much less so than
linear), that requires discretisation of the velocity gradient to be specified.

e LUST: blended 75% linear/ 25%1linearUpwind scheme, that requires discretisation of
the velocity gradient to be specified.

e limitedLinear: linear scheme that limits towards upwind in regions of rapidly
changing gradient; requires a coefficient, where 1 is strongest limiting, tending towards
linear as the coefficient tends to 0.

e upwind: first-order bounded, generally too inaccurate to be recommended.

Example syntax for these schemes is as follows.

div(phi,U) Gauss linear;

div(phi,U) Gauss linearUpwind grad(U);
div(phi,U) Gauss LUST grad(U);
div(phi,U) Gauss LUST unlimitedGrad(U);
div(phi,U) Gauss limitedLinear 1;
div(phi,U) Gauss upwind;

OpenFOAM-8

U-124 OpenFOAM cases

‘V’-schemes are specialised versions of schemes designed for vector fields. They differ
from conventional schemes by calculating a single limiter which is applied to all components
of the vectors, rather than calculating separate limiters for each component of the vector.
The “V’-schemes’ single limiter is calculated based on the direction of most rapidly changing
gradient, resulting in the strongest limiter being calculated which is most stable but arguably
less accurate. Example syntax is as follows.

div(phi,U) Gauss limitedLinearV 1;
div(phi,U) Gauss linearUpwindV grad(U);

The bounded variants of schemes relate to the treatment of the material time derivative
which can be expressed in terms of a spatial time derivative and convection, e.g. for field e
in incompressible flow

D

FjI%%—U-Ve:%%—V-(Ue)—(V-U)e (4.1)
For numerical solution of incompressible flows, V « U = 0 at convergence, at which point
the third term on the right hand side is zero. Before convergence is reached, however,
V « U # 0 and in some circumstances, particularly steady-state simulations, it is better to
include the third term within a numerical solution because it helps maintain boundedness of
the solution variable and promotes better convergence. The bounded variant of the Gauss
scheme provides this, automatically including the discretisation of the third-term with the
advection term. Example syntax is as follows, as seen in fvSchemes files for steady-state
cases, e.g. for the simpleFoam tutorials

div(phi,U) bounded Gauss limitedLinearV 1;
div(phi,U) bounded Gauss linearUpwindV grad(U);

The schemes used for advection of scalar fields are similar to those for advection of
velocity, although in general there is greater emphasis placed on boundedness than accuracy
when selecting the schemes. For example, a search for schemes for advection of internal
energy (e) reveals the following.

foamSearch $FOAM_TUTORIALS fvSchemes "divSchemes.div(phi,e)"

div(phi,e) bounded Gauss upwind;
div(phi,e) Gauss limitedLinear 1;
div(phi,e) Gauss LUST grad(e);
div(phi,e) Gauss upwind;
div(phi,e) Gauss vanLeer;

In comparison with advection of velocity, there are no cases set up to use linear or
linearUpwind. Instead the limitedLinear and upwind schemes are commonly used, with
the additional appearance of vanLeer, another limited scheme, with less strong limiting
than limitedLinear.

There are specialised versions of the limited schemes for scalar fields that are commonly
bounded between 0 and 1, e.g. the laminar flame speed regress variable b. A search for the
discretisation used for advection in the laminar flame transport equation yields:

OpenFOAM-8

4.5 Numerical schemes U-125

div(phiSt,b) Gauss limitedLinear01 1;

The underlying scheme is limitedLinear, specialised for stronger bounding between 0 and
1 by adding 01 to the name of the scheme.

The multivariateSelection mechanism also exists for grouping multiple equation
terms together, and applying the same limiters on all terms, using the strongest limiter
calculated for all terms. A good example of this is in a set of mass transport equations for
fluid species, where it is good practice to apply the same discretisation to all equations for
consistency. The example below comes from the smallPoolFire3D tutorial in $FOAM TUT-
ORIALS/combustion /fireFoam/les, in which the equation for enthalpy A is included with the
specie mass transport equations in the calculation of a single limiter.

div(phi,Yi_h) Gauss multivariateSelection
{

02 limitedLinearO1 1;

CH4 limitedLinear0O1 1;

N2 limitedLinearO1 1;

H20 limitedLinearO1 1;

C02 limitedLinearO1 1;

h limitedLinear 1 ;

4.5.4 Surface normal gradient schemes

It is worth explaining the snGradSchemes sub-dictionary that contains surface normal gra-
dient terms, before discussion of laplacianSchemes, because they are required to evaluate a
Laplacian term using Gaussian integration. A surface normal gradient is evaluated at a cell
face; it is the component, normal to the face, of the gradient of values at the centres of the
2 cells that the face connects.

A search for the default scheme for snGradSchemes reveals the following entries.

default corrected;

default limited corrected 0.33;
default limited corrected 0.5;
default orthogonal;

default uncorrected;

The basis of the gradient calculation at a face is to subtract the value at the cell centre
on one side of the face from the value in the centre on the other side and divide by the
distance. The calculation is second-order accurate for the gradient normal to the face if
the vector connecting the cell centres is orthogonal to the face, i.e. they are at right-angles.
This is the orthogonal scheme.

Orthogonality requires a regular mesh, typically aligned with the Cartesian co-ordinate
system, which does not normally occur in meshes for real world, engineering geometries.
Therefore, to maintain second-order accuracy, an explicit non-orthogonal correction can
be added to the orthogonal component, known as the corrected scheme. The correction

OpenFOAM-8

U-126 OpenFOAM cases

increases in size as the non-orthogonality, the angle a between the cell-cell vector and face
normal vector, increases.

As «a tends towards 90°, e.g. beyond 70°, the explicit correction can be so large to cause
a solution to go unstable. The solution can be stabilised by applying the limited scheme
to the correction which requires a coefficient ¥,0 < ¢) < 1 where

0 corresponds to uncorrected,

= 0.333 non-orthogonal correction < 0.5 x orthogonal part, (4.2)
0.5 non-orthogonal correction < orthogonal part,
1 corresponds to corrected.

Typically, psi is chosen to be 0.33 or 0.5, where 0.33 offers greater stability and 0.5 greater
accuracy.

The corrected scheme applies under-relaxation in which the implicit orthogonal calcu-
lation is increased by cos™'a, with an equivalent boost within the non-orthogonal correc-
tion. The uncorrected scheme is equivalent to the corrected scheme, without the non-
orthogonal correction, so includes is like orthogonal but with the cos !« under-relaxation.

Generally the uncorrected and orthogonal schemes are only recommended for meshes
with very low non-orthogonality (e.g. maximum 5°). The corrected scheme is generally
recommended, but for maximum non-orthogonality above 70°, 1limited may be required.
At non-orthogonality above 80°, convergence is generally hard to achieve.

4.5.5 Laplacian schemes

The laplacianSchemes sub-dictionary contains Laplacian terms. A typical Laplacian term
is V «(vVU), the diffusion term in the momentum equations, which corresponds to the
keyword laplacian(nu,U) in laplacianSchemes. The Gauss scheme is the only choice of
discretisation and requires a selection of both an interpolation scheme for the diffusion
coefficient, i.e. v in our example, and a surface normal gradient scheme, i.e. VU. To
summarise, the entries required are:

Gauss <interpolationScheme> <snGradScheme>

The user can search for the default scheme for laplacianSchemes in all the cases in the
$FOAM _TUTORIALS directory.

foamSearch $FOAM_TUTORIALS fvSchemes laplacianSchemes.default

It reveals the following entries.

default Gauss linear corrected;

default Gauss linear limited corrected 0.33;
default Gauss linear limited corrected 0.5;
default Gauss linear orthogonal;

default Gauss linear uncorrected;

In all cases, the linear interpolation scheme is used for interpolation of the diffusivity.
The cases uses the same array of snGradSchemes based on level on non-orthogonality, as
described in section 4.5.4.

OpenFOAM-8

4.6 Solution and algorithm control U-127

4.5.6 Interpolation schemes

The interpolationSchemes sub-dictionary contains terms that are interpolations of values
typically from cell centres to face centres, primarily used in the interpolation of velocity
to face centres for the calculation of flux phi. There are numerous interpolation schemes
in OpenFOAM, but a search for the default scheme in all the tutorial cases reveals that
linear interpolation is used in almost every case, except for 2-3 unusual cases, e.g. DNS on
a regular mesh, stress analysis, where cubic interpolation is used.

4.6 Solution and algorithm control

The equation solvers, tolerances and algorithms are controlled from the fvSolution dictionary
in the system directory. Below is an example set of entries from the fvSolution dictionary
required for the icoFoam solver.

18 solvers

20 P

21 {

22 solver PCG;

23 preconditioner DIC;

24 tolerance 1e-06;
25 relTol 0.05;
26 }

27

28 pFinal

29 {

30 $p;

31 relTol 0;

32

33

34 U

35 {

36 solver smoothSolver;
37 smoother symGaussSeidel;
38 tolerance 1le-05;
39 relTol 0;

40 }

41}

42

43 PISO

12 A

45 nCorrectors 2;

46 nNonOrthogonalCorrectors 0;
47 pRefCell 0;

48 pRefValue 0;

19 }

52 // >k >k >k 5k >k >k ok ok 5k 5k 5k >k k >k >k >k >k >k ok 5k ok ok ok 5k 5k >k >k >k >k >k >k >k 5k 5k 5k 5k 5k >k >k >k >k %k >k %k >k >k >k >k >k 5k >k >k >k >k >k >k %k >k >k >k >k >k >k >k %k >k %k >k %k >k *k *k *k //

fvSolution contains a set of subdictionaries, described in the remainder of this section that
includes: solvers; relaxationFactors, and, PISO, SIMPLE or PIMPLE.

4.6.1 Linear solver control

The first sub-dictionary in our example is solvers. It specifies each linear-solver that is used
for each discretised equation; here, the term linear-solver refers to the method of number-
crunching to solve a matrix equation, as opposed to an application solver, such as simpleFoam
which describes the entire set of equations and algorithms to solve a particular problem.
The term ‘linear-solver’ is abbreviated to ‘solver’ in much of what follows; hopefully the
context of the term avoids any ambiguity.

OpenFOAM-8

