4.6 Solution and algorithm control U-127

4.5.6 Interpolation schemes

The interpolationSchemes sub-dictionary contains terms that are interpolations of values
typically from cell centres to face centres, primarily used in the interpolation of velocity
to face centres for the calculation of flux phi. There are numerous interpolation schemes
in OpenFOAM, but a search for the default scheme in all the tutorial cases reveals that
linear interpolation is used in almost every case, except for 2-3 unusual cases, e.g. DNS on
a regular mesh, stress analysis, where cubic interpolation is used.

4.6 Solution and algorithm control

The equation solvers, tolerances and algorithms are controlled from the fvSolution dictionary
in the system directory. Below is an example set of entries from the fvSolution dictionary
required for the icoFoam solver.

18 solvers

20 P

21 {

22 solver PCG;

23 preconditioner DIC;

24 tolerance 1e-06;
25 relTol 0.05;
26 }

27

28 pFinal

29 {

30 $p;

31 relTol 0;

32

33

34 U

35 {

36 solver smoothSolver;
37 smoother symGaussSeidel;
38 tolerance 1le-05;
39 relTol 0;

40 }

41}

42

43 PISO

12 A

45 nCorrectors 2;

46 nNonOrthogonalCorrectors 0;
47 pRefCell 0;

48 pRefValue 0;

19 }

52 // >k >k >k 5k >k >k ok ok 5k 5k 5k >k k >k >k >k >k >k ok 5k ok ok ok 5k 5k >k >k >k >k >k >k >k 5k 5k 5k 5k 5k >k >k >k >k %k >k %k >k >k >k >k >k 5k >k >k >k >k >k >k %k >k >k >k >k >k >k >k %k >k %k >k %k >k *k *k *k //

fvSolution contains a set of subdictionaries, described in the remainder of this section that
includes: solvers; relaxationFactors, and, PISO, SIMPLE or PIMPLE.

4.6.1 Linear solver control

The first sub-dictionary in our example is solvers. It specifies each linear-solver that is used
for each discretised equation; here, the term linear-solver refers to the method of number-
crunching to solve a matrix equation, as opposed to an application solver, such as simpleFoam
which describes the entire set of equations and algorithms to solve a particular problem.
The term ‘linear-solver’ is abbreviated to ‘solver’ in much of what follows; hopefully the
context of the term avoids any ambiguity.

OpenFOAM-8

U-128 OpenFOAM cases

The syntax for each entry within solvers starts with a keyword that is of the variable
being solved in the particular equation. For example, icoFoam solves equations for velocity
U and pressure p, hence the entries for U and p. The keyword relates to a sub-dictionary
containing the type of solver and the parameters that the solver uses. The solver is selected
through the solver keyword from the options listed below. The parameters, including
tolerance, relTol, preconditioner, etc. are described in following sections.

e PCG/PBiCGStab: Stabilised preconditioned (bi-)conjugate gradient, for both symmet-
ric and asymmetric matrices.

PCG/PBiCG: preconditioned (bi-)conjugate gradient, with PCG for symmetric matrices,
PBiCG for asymmetric matrices.

smoothSolver: solver that uses a smoother.

GAMG: generalised geometric-algebraic multi-grid.
e diagonal: diagonal solver for explicit systems.

The solvers distinguish between symmetric matrices and asymmetric matrices. The symme-
try of the matrix depends on the terms of the equation being solved, e.g. time derivatives and
Laplacian terms form coefficients of a symmetric matrix, whereas an advective derivative
introduces asymmetry. If the user specifies a symmetric solver for an asymmetric matrix,
or vice versa, an error message will be written to advise the user accordingly, e.g.

--> FOAM FATAL IO ERROR : Unknown asymmetric matrix solver PCG
Valid asymmetric matrix solvers are :

3

(

PBiCG

smoothSolver

GAMG

)

4.6.1.1 Solution tolerances

The matrices are sparse, meaning they predominately include coefficients of 0, in segregated,
decoupled, finite volume numerics. Consequently, the solvers are generally iterative, i.e.
they are based on reducing the equation residual over successive solutions. The residual is
ostensibly a measure of the error in the solution so that the smaller it is, the more accurate
the solution. More precisely, the residual is evaluated by substituting the current solution
into the equation and taking the magnitude of the difference between the left and right
hand sides; it is also normalised to make it independent of the scale of the problem being
analysed.

Before solving an equation for a particular field, the initial residual is evaluated based
on the current values of the field. After each solver iteration the residual is re-evaluated.
The solver stops if any one of the following conditions are reached:

e the residual falls below the solver tolerance, tolerance;

OpenFOAM-8

4.6 Solution and algorithm control U-129

e the ratio of current to initial residuals falls below the solver relative tolerance, relTol;
e the number of iterations exceeds a mazimum number of iterations, maxIter;

The solver tolerance should represent the level at which the residual is small enough that
the solution can be deemed sufficiently accurate. The solver relative tolerance limits the
relative improvement from initial to final solution. In transient simulations, it is usual to set
the solver relative tolerance to 0 to force the solution to converge to the solver tolerance in
each time step. The tolerances, tolerance and relTol must be specified in the dictionaries
for all solvers; maxIter is optional and defaults to a value of 1000.

Equations are very often solved multiple times within one solution step, or time step.
For example, when using the PISO algorithm, a pressure equation is solved according to
the number specified by nCorrectors, as described in section 4.6.3. Where this occurs, the
solver is very often set up to use different settings when solving the particular equation for
the final time, specified by a keyword that adds Final to the field name. For example, in
the cavity tutorial in section 2.1, the solver settings for pressure are as follows.

p

{
solver PCG;
preconditioner DIC;
tolerance 1e-06;
relTol 0.05;

}

pFinal

{
$p;
relTol 0;

}

If the case is specified to solve pressure 4 times within one time step, then the first 3
solutions would use the settings for p with relTol of 0.05, so that the cost of solving each
equation is relatively low. Only when the equation is solved the final (4th) time, it solves
to a residual level specified by tolerance (since relTol is 0, effectively deactivating it) for
greater accuracy, but at greater cost.

4.6.1.2 Preconditioned conjugate gradient solvers

There are a range of options for preconditioning of matrices in the conjugate gradient solvers,
represented by the preconditioner keyword in the solver dictionary, listed below. Note
that the DIC/DILU preconditioners are exclusively specified in the tutorials in OpenFOAM.

e DIC/DILU: diagonal incomplete-Cholesky (symmetric) and incomplete-LU (asymmet-
ric)

e FDIC: faster diagonal incomplete-Cholesky (DIC with caching, symmetric)

e diagonal: diagonal preconditioning.

OpenFOAM-8

U-130 OpenFOAM cases

e GAMG: geometric-algebraic multi-grid.

e none: no preconditioning.

4.6.1.3 Smooth solvers

The solvers that use a smoother require the choice of smoother to be specified. The smoother
options are listed below. The symGaussSeidel and GaussSeidel smoothers are preferred
in the tutorials.

e GaussSeidel: Gauss-Seidel.
e symGaussSeidel: symmetric Gauss-Seidel.
e DIC/DILU: diagonal incomplete-Cholesky (symmetric), incomplete-LU (asymmetric).

e DICGaussSeidel: diagonal incomplete-Cholesky /LU with Gauss-Seidel (symmetric/-
asymmetric).

When using the smooth solvers, the user can optionally specify the number of sweeps, by
the nSweeps keyword, before the residual is recalculated. Without setting it, it reverts to a
default value of 1.

4.6.1.4 Geometric-algebraic multi-grid solvers

The generalised method of geometric-algebraic multi-grid (GAMG) uses the principle of:
generating a quick solution on a mesh with a small number of cells; mapping this solution
onto a finer mesh; using it as an initial guess to obtain an accurate solution on the fine
mesh. GAMG is faster than standard methods when the increase in speed by solving first
on coarser meshes outweighs the additional costs of mesh refinement and mapping of field
data. In practice, GAMG starts with the mesh specified by the user and coarsens/refines
the mesh in stages. The user is only required to specify an approximate mesh size at the
most coarse level in terms of the number of cells

The agglomeration of cells is performed by the method specified by the agglomerator
keyword. The tutorials all use the default faceAreaPair method, although the MGridGen
option is an alternative method that requires an additional entry specifying the shared
object library for MGridGen:

geometricGamgAgglomerationLibs ("1ibMGridGenGamgAgglomeration.so");

The agglomeration can be controlled using the following optional entries, most of which
default in the tutorials.

e cacheAgglomeration: switch specifying caching of the agglomeration strategy (de-
fault true).

e nCellsInCoarsestLevel: approximate mesh size at the most coarse level in terms of
the number of cells (default 10).

e directSolveCoarset: use a direct solver at the coarsest level (default false).

OpenFOAM-8

4.6 Solution and algorithm control U-131

e mergelevels: keyword controls the speed at which coarsening or refinement is per-
formed; the default is 1, which is safest, but for simple meshes, the solution speed can
be increased by coarsening/refining 2 levels at a time, i.e. setting mergeLevels 2.

Smoothing is specified by the smoother as described in section 4.6.1.3. The number of
sweeps used by the smoother at different levels of mesh density are specified by the following
optional entries.

e nPreSweeps: number of sweeps as the algorithm is coarsening (default 0).

e preSweepsLevelMultiplier: multiplier for the number of sweeps between each coars-
ening level (default 1).

e maxPreSweeps: maximum number of sweeps as the algorithm is coarsening (default
4).

e nPostSweeps: number of sweeps as the algorithm is refining (default 2).

e postSweepsLevelMultiplier: multiplier for the number of sweeps between each re-
finement level (default 1).

e maxPostSweeps: maximum number of sweeps as the algorithm is refining (default 4).

e nFinestSweeps: number of sweeps at finest level (default 2).

4.6.2 Solution under-relaxation

A second sub-dictionary of fvSolution that is often used in OpenFOAM is relaxationFactors
which controls under-relaxation, a technique used for improving stability of a computa-
tion, particularly in solving steady-state problems. Under-relaxation works by limiting the
amount which a variable changes from one iteration to the next, either by modifying the
solution matrix and source prior to solving for a field or by modifying the field directly. An
under-relaxation factor a, 0 < a < 1 specifies the amount of under-relaxation, as described
below.

e No specified a: no under-relaxation.

e o = 1: guaranteed matrix diagonal equality /dominance.

e « decreases, under-relaxation increases.

e o = (: solution does not change with successive iterations.

An optimum choice of « is one that is small enough to ensure stable computation but large
enough to move the iterative process forward quickly; values of o as high as 0.9 can ensure
stability in some cases and anything much below, say, 0.2 are prohibitively restrictive in
slowing the iterative process.

Relaxation factors for under-relaxation of fields are specified within a field sub-dictionary;
relaxation factors for equation under-relaxation are within a equations sub-dictionary. An
example is shown below from tutorial example of simpleFoam, showing typical settings for
an incompressible steady-state solver. The factors are specified for pressure p, pressure U,
and turbulent fields grouped using a regular expression.

OpenFOAM-8

U-132 OpenFOAM cases

55 relaxationFactors

57 fields

58 {

59 P 0.3;

60 }

61 equations

62

63 U 0.7;

64 "(k|omegalepsilon).*" 0.7;
65 }

66}

68 // >k >k >k 3k 5k ok 5k 5k k >k 5k >k >k %k >k >k >k >k ok ok 5k 5k 5k %k >k %k 5k >k >k >k >k >k 5k 5k 5k >k >k >k >k %k >k >k >k >k >k >k >k %k %k >k %k %k %k >k >k >k >k >k %k %k >k >k %k %k %k %k >k >k >k *k >k >k k //

Another example for pimpleFoam, a transient incompressible solver, just uses under-relaxation
to ensure matrix diagonal equality, typical of transient simulations.

61 relaxationFactors

63 equations

64

65 "ok 1;
66 }

67}

70 // >k >k >k 3k 5k ok ok 5k 5k %k 3k %k 5k >k >k >k >k >k ok ok 5k 5k 5k %k >k >k >k >k >k >k >k >k 5k 5k 5k >k >k >k >k %k >k >k >k >k >k >k >k >k 5k >k %k >k >k >k >k >k >k >k >k 5k 5k %k %k %k %k %k %k >k >k *k >k >k k //

4.6.3 PISO, SIMPLE and PIMPLE algorithms

Most fluid dynamics solver applications in OpenFOAM use either the pressure-implicit split-
operator (PISO), the semi-implicit method for pressure-linked equations (SIMPLE) algo-
rithms, or a combined PIMPLE algorithm. These algorithms are iterative procedures for
coupling equations for momentum and mass conservation, PISO and PIMPLE being used
for transient problems and SIMPLE for steady-state.

Within in time, or solution, step, both algorithms solve a pressure equation, to enforce
mass conservation, with an explicit correction to velocity to satisfy momentum conserva-
tion. They optionally begin each step by solving the momentum equation — the so-called
momentum predictor.

While all the algorithms solve the same governing equations (albeit in different forms),
the algorithms principally differ in how they loop over the equations. The looping is con-
trolled by input parameters that are listed below. They are set in a dictionary named after
the algorithm, i.e. SIMPLE, PISO or PIMPLE.

e nCorrectors: used by PISO, and PIMPLE, sets the number of times the algorithm
solves the pressure equation and momentum corrector in each step; typically set to 2
or 3.

e nNonOrthogonalCorrectors: used by all algorithms, specifies repeated solutions of
the pressure equation, used to update the explicit non-orthogonal correction, described
in section 4.5.4, of the Laplacian term V «((1/A)Vp); typically set to 0 (particularly
for steady-state) or 1.

e nQuterCorrectors: used by PIMPLE, it enables looping over the entire system of
equations within on time step, representing the total number of times the system is
solved; must be > 1 and is typically set to 1, replicating the PISO algorithm.

OpenFOAM-8

4.7 Case management tools U-133

e momentumPredictor: switch that controls solving of the momentum predictor; typi-
cally set to off for some flows, including low Reynolds number and multiphase.

4.6.4 Pressure referencing

In a closed incompressible system, pressure is relative: it is the pressure range that matters
not the absolute values. In these cases, the solver sets a reference level of pRefValue in cell
pRefCell. These entries are generally stored in the SIMPLE, PISO or PIMPLE sub-dictionary
and are used by those solvers that require them when the case demands it.

4.6.5 Other parameters

The fvSolutions dictionaries in the majority of standard OpenFOAM solver applications
contain no other entries than those described so far in this section. However, in general the
fvSolution dictionary may contain any parameters to control the solvers, algorithms, or in
fact anything. If any parameter or sub-dictionary is missing when an solver is run, it will
terminate, printing a detailed error message. The user can then add missing parameters
accordingly.

4.7 Case management tools

There are a set of applications and scripts that help with managing case files and help the
user find and set keyword data entries in case files. The tools are described in the following
sections.

4.7.1 File management scripts

The following tools help manage case files.

foamListTimes lists the time directories for a case, omitting the 0 directory by default; the
-rm option deletes the listed time directories, so that a case can be cleaned of time
directories with results by the following command.

foamListTimes -rm

foamCloneCase creates a new case, by copying the 0, system and constant directories from
an existing case; executed simply by the following command, where oldCase refers to
an existing case directory.

foamCloneCase oldCase newCase

foamCleanPolyMesh deletes mesh files for a case; useful to execute before regenerating a
mesh, particularly with snappyHexMesh which generates refinement history and other
files that might need to be removed when re-meshing.

OpenFOAM-8

