U-146

Mesh generation and conversion

5.2.2 Basic boundary conditions

Boundary conditions are specified in field files, e.g. p, U, in time directories as described in
section 4.2.8. An example pressure field file, p, is shown below for the rhoPimpleFoam case

corresponding to the boundary file presented in section 5.2.1.

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

dimensions
internalField
boundaryField
{
inlet
type

value

outlet
{

type
fggld
psi
amma
ieldInf
1Inf
value

}
bottom
{

type
top

type
obstacle

type

defaultFaces
type
}

[1 -1 -20000];

uniform 1;

fixedValue;
uniform 1;

waveTransmissive;

ghermo:psi;
1.4,

13

3;

uniform 1;

symmetryPlane;
symmetryPlane;
zeroGradient;

empty;

// >k >k >k 3k 5k ok ok 5k 5k %k 3k >k ok >k >k >k >k >k ok ok 5k 5k 5k >k >k >k 5k >k >k >k >k >k 5k 5k 5k %k >k >k >k %k >k >k >k >k >k >k >k 5k %k >k %k >k >k >k >k >k >k >k >k >k %k >k %k %k %k %k %k >k >k *k >k >k k //

Every patch includes a type entry that specifies the type of boundary condition. They range
from a basic fixedValue condition applied to the inlet, to a complex waveTransmissive
condition applied to the outlet. The patches with non-generic types, e.g. symmetryPlane,
defined in boundary, use consistent boundary condition types in the p file.

The main basic boundary condition types available in OpenFOAM are summarised below
using a patch field named Q. This is not a complete list; for all types see $FOAM _SRC/fin-
iteVolume /fields /fvPatchFields/basic.

e fixedValue: value of Q is specified by value.

e fixedGradient: normal gradient of Q (0Q/0n) is specified by gradient.

e zeroGradient: normal gradient of Q is zero.

e calculated: patch field Q calculated from other patch fields.

OpenFOAM-8

5.2 Boundaries U-147

e mixed: mixed fixedValue/ fixedGradient condition depending on valueFraction (0 <
valueFraction < 1) where

1 corresponds to Q = refValue,

5.1
0 corresponds to 0Q/0n = refGradient. (5.1)

valueFraction = {

e directionMixed: mixed condition with tensorial valueFraction, to allow different con-
ditions in normal and tangential directions of a vector patch field, e.g. fixedValue in
the tangential direction, zeroGradient in the normal direction.

5.2.3 Derived types

There are numerous more complex boundary conditions derived from the basic conditions.
For example, many complex conditions are derived from fixedValue, where the value is
calculated by a function of other patch fields, time, geometric information, etc. Some other
conditions derived from mixed/directionMixed switch between fixedValue and fixedGradient
(usually zeroGradient).

There are a number of ways the user can list the available boundary conditions in Open-
FOAM, with the -listScalarBCs and -listVectorBCs utility being the quickest. The boundary
conditions for scalar fields and vector fields, respectively, can be listed for a given solver,
e.g. simpleFoam, as follows.

simpleFoam -listScalarBCs -listVectorBCs

These produce long lists which the user can scan through. If the user wants more information
of a particular condition, they can run the foamlnfo script which provides a description of
the boundary condition and lists example cases where it is used. For example, for the
totalPressure boundary condition, run the following.

foamInfo totalPressure

In the following sections we will highlight some particular important, commonly used bound-
ary conditions.

5.2.3.1 The inlet/outlet condition

The inletOutlet condition is one derived from mixed, which switches between zeroGradient
when the fluid flows out of the domain at a patch face, and fixedValue, when the fluid is
flowing into the domain. For inflow, the inlet value is specified by an inletValue entry.
A good example of its use can be seen in the damBreak tutorial, where it is applied to the
phase fraction on the upper atmosphere boundary. Where there is outflow, the condition is
well posed, where there is inflow, the phase fraction is fixed with a value of 0, corresponding
to 100% air.

17 dimensions [00OO0OO0OO0O0];
ig internalField uniform O;

2(1) boundaryField

ii leftWall

OpenFOAM-8

U-148 Mesh generation and conversion

24 {

25 type zeroGradient;
26

27

28 rightWall

29 {

30 type zeroGradient;
31

32

33 lowerWall

34

35 type zeroGradient;
36

37

38 atmosphere

39

40 tyge inletQOutlet;
11 inletValue uniform O;

42 value uniform O;

43

44

45 defaultFaces

46

47 type empty;

48

19 }

51 // >k >k >k 3k 5k ok ok 5k %k 5k 5k >k >k >k >k >k >k >k ok ok 5k 5k 5k >k >k >k >k >k >k >k >k >k 5k 5k 5k %k >k >k %k %k >k >k >k >k >k >k >k %k 5k >k %k >k >k >k >k >k >k >k >k %k %k %k %k %k %k %k >k >k >k *k >k >k k //

5.2.3.2 Entrainment boundary conditions

The combination of the totalPressure condition on pressure and pressurelnletOutletVelocity
on velocity is extremely common for patches where some inflow occurs and the inlet flow
velocity is not known. That includes the atmosphere boundary in the damBreak tutorial,
inlet conditions where only pressure is known, outlets where flow reversal may occur, and
where flow in entrained, e.g. on boundaries surrounding a jet through a nozzle.

The totalPressure condition specifies

Do for outflow

p= (5.2)

Po — %|U2| for inflow (incompressible, subsonic)

where the user specifies py through the p0 keyword. The pressurelnletOutletVelocity condition
specifies zeroGradient at all times, except on the tangential component which is set to fixed-
Value for inflow, with the tangentialVelocity defaulting to 0.

The idea behind this combination is that the condition is a standard combination in the
case of outflow, but for inflow the normal velocity is allowed to find its own value. Under
these circumstances, a rapid rise in velocity presents a risk of instability, but the rise is
moderated by the reduction of inlet pressure, and hence driving pressure gradient, as the
inflow velocity increases.

The specification of these boundary conditions in the U and p_ rgh files, in the damBreak
case, are shown below.

17

18 dimensions [01-10000];
19

20 internalField uniform (0 0 0);
21

22 boundaryField

24 leftWall

25 {

26 type noSlip;
27

28 rightWall

OpenFOAM-8

5.2 Boundaries U-149

29 {

30 type noSlip;

31

32 lowerWall

33

34 type noSlip;

35

36 atmosphere

37 {

38 type pressurelnletOutletVelocity;
39 value uniform (0 0 0);
40

41 defaultFaces

42

43 type empty;

48 // >k >k >k 5k >k >k ok ok 5k 5k 5k k >k >k >k >k >k >k 5k 5k ok 5k 5k 5k 5k >k >k >k >k >k >k >k 5k 5k 5k 5k 5k >k >k >k >k >k %k >k >k >k >k >k 5k %k 5k >k >k >k >k >k %k >k >k >k >k >k >k >k %k %k >k >k >k >k *k *k *k //

17 dimensions [1 -1 -2000 0];
19 intermnalField uniform O;

21 boundaryField
{

23 %eftWall

24

25 tyEe fixedFluxPressure;

26 value uniform O;

27

28

29 rightWall

30 {

31 tyEe fixedFluxPressure;

32 value uniform O;

33

34

35 lowerWall

36

37 type fixedFluxPressure;
E X

38 value uniform O;

39

40

41 atmosphere

42

43 t%pe totalPressure;

44 P uniform O;

45 }

46

a7 defaultFaces

48

49 type empty;

50

51)

53 // 3k 3k >k 3k >k >k 3k 3k 5k 5k 5k 3k 3k 5k 5k 5k >k 5k 3k 3k 3k 3k 3k 3k 5k %k 3k 5k 5k 5k 5k %k 3k 3k 3k 3k 3k %k %k 5k 5k 3k 5k %k K >k %k >k 5k 3k 3k 5k %k 5k >k 5k %k %k >k >k >k >k >k %k %k %k >k >k >k kK % % //

5.2.3.3 Fixed flux pressure

In the above example, it can be seen that all the wall boundaries use a boundary condition
named fixedFluxPressure. This boundary condition is used for pressure in situations where
zeroGradient is generally used, but where body forces such as gravity and surface tension
are present in the solution equations. The condition adjusts the gradient accordingly.

5.2.3.4 Time-varying boundary conditions

There are several boundary conditions for which some input parameters are specified by a
function of time (using Functionl functionality) class. They can be searched by the following
command.

OpenFOAM-8

U-150 Mesh generation and conversion

find $FOAM_SRC/finiteVolume/fields/fvPatchFields -type f | \

xargs grep -1 Functionl | xargs dirname | sort -u

They include conditions such as uniformFixedValue, which is a fixedValue condition which

applies a single value which is a function of time through a uniformValue keyword entry.
The Functionl is specified by a keyword following the uniformValue entry, followed by

parameters that relate to the particular function. The Functionl options are list below.

constant: constant value.

table: inline list of (time value) pairs; interpolates values linearly between times.
tableFile: as above, but with data supplied in a separate file.

csvFile: time-value data supplied in a file in CSV format.

square: square-wave function.

sine: sine function.

one and zero: constant one and zero values.

polynomial: polynomial function using a list (coeff exponent) pairs.

coded: function specified by user coding.

scale: scales a given value function by a scalar scale function; both entries can be
themselves Functionl; scale function is often a ramp function (below), with value
controlling the ramp value.

linearRamp, quadraticRamp, halfCosineRamp, quarterCosineRamp and quarter-
SineRamp: monotonic ramp functions which ramp from 0 to 1 over specified duration.

reverseRamp: reverses the values of a ramp function, e.g. from 1 to 0.

Examples or a time-varying inlet for a scalar are shown below.

inlet
type uniformFixedValue;
uniformValue constant 2;
b
inlet
{
type uniformFixedValue;
uniformValue table ((0 0) (10 2));
X
inlet
{
type uniformFixedValue;
uniformValue polynomial ((1 0) (2 2)); // = 1*t~0 + 2xt~2
b
inlet
{

type uniformFixedValue;

OpenFOAM-8

5.2 Boundaries

U-151

uniformValue
{
type tableFile;
file "dataTable.txt";
}
}
inlet
{
type uniformFixedValue;
uniformValue
{
type csvFile;
nHeaderLine 4, number of header lines
refColumn 0; time column index
componentColumns (1) ; data column index
separator nons optional (defaults to ",")
mergeSeparators no; merge multiple separators
file "dataTable.csv";
}
}
inlet
{
type uniformFixedValue;
%niformValue
type square;
frequency 10;
amplitude 1;
scale 2; // Scale factor for wave
level 1; // Offset
}
}
inlet
{
type uniformFixedValue;
uniformValue
{
type sine;
frequency 10;
amplitude 1;
scale 2; // Scale factor for wave
level 1; // Offset
}
}
input // ramp from O -> 2, from t = 0 -> 0.4
{
type uniformFixedValue;
uniformValue
type scale;
scale linearRamp;
start 0;
duration .4,
value 2;
}
}
input // ramp from 2 -> 0, from t = 0 -> 0.4
type uniformFixedValue;
uniformValue
{
type scale;
scale reverseRamp;
ramp linearRamp;
start 0;
duration 0.4,

OpenFOAM-8

U-152 Mesh generation and conversion

value 2;
}
}
inlet
{
type uniformFixedValue;
uniformValue coded;
name pulse;
codeInclude
#{
#include "mathematicalConstants.H"
#};
code
#{
return scalar
0.5%(1 - cos(constant::mathematical::twoPi*min(x/0.3, 1)))
)
#};
}

5.3 Mesh generation with the blockMesh utility

This section describes the mesh generation utility, blockMesh, supplied with OpenFOAM.
The blockMesh utility creates parametric meshes with grading and curved edges.

The mesh is generated from a dictionary file named blockMeshDict located in the system
(or constant/polyMesh) directory of a case. blockMesh reads this dictionary, generates the
mesh and writes out the mesh data to points and faces, cells and boundary files in the same
directory.

The principle behind blockMesh is to decompose the domain geometry into a set of 1 or
more three dimensional, hexahedral blocks. Edges of the blocks can be straight lines, arcs
or splines. The mesh is ostensibly specified as a number of cells in each direction of the
block, sufficient information for blockMesh to generate the mesh data.

Each block of the geometry is defined by 8 vertices, one at each corner of a hexahedron.
The vertices are written in a list so that each vertex can be accessed using its label, remem-
bering that OpenFOAM always uses the C-+-+ convention that the first element of the list
has label ‘0’. An example block is shown in Figure 5.3 with each vertex numbered according
to the list. The edge connecting vertices 1 and 5 is curved to remind the reader that curved
edges can be specified in blockMesh.

It is possible to generate blocks with less than 8 vertices by collapsing one or more pairs
of vertices on top of each other, as described in section 5.3.5.

Each block has a local coordinate system (1, o, z3) that must be right-handed. A right-
handed set of axes is defined such that to an observer looking down the Oz axis, with O
nearest them, the arc from a point on the Ox axis to a point on the Oy axis is in a clockwise
sense.

The local coordinate system is defined by the order in which the vertices are presented
in the block definition according to:

e the axis origin is the first entry in the block definition, vertex 0 in our example;
e the z; direction is described by moving from vertex 0 to vertex 1;

e the z, direction is described by moving from vertex 1 to vertex 2;

OpenFOAM-8

